Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era
Abstract
:1. Introduction
2. Wide Parameter-Space Search Pipelines
2.1. -Statistic Searches
2.1.1. GCT Hierarchical Search
2.1.2. Weave
2.1.3. Time-Domain -Statistic
2.2. Fourier-Transform-Based Searches
2.2.1. PowerFlux & Falcon
2.2.2. Cross-Correlation
2.3. Hough-Transform Semicoherent Searches
2.3.1. SkyHough
2.3.2. FrequencyHough
2.4. Viterbi Searches
2.5. Machine Learning
3. Post-Processing Strategies
3.1. Coincidences
3.2. Parameter-Space Clustering
3.3. Detector-Consistency Vetoes
3.4. Vetoes
3.5. Vetoing Narrow Spectral Features
3.6. Null-Hypothesis Vetoes
4. Follow-up
4.1. Single-Stage Follow-up
4.2. Multi-Stage Follow-up
5. Upper Bounds on
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Lasky, P.D. Gravitational Waves from Neutron Stars: A Review. Publ. Astron. Soc. Austral. 2015, 32, e034. [Google Scholar] [CrossRef]
- Glampedakis, K.; Gualtieri, L. Gravitational waves from single neutron stars: An advanced detector era survey. Astrophys. Space Sci. Libr. 2018, 457, 673–736. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, M.; Bejger, M. Continuous gravitational waves from neutron stars: Current status and prospects. Universe 2019, 5, 217. [Google Scholar] [CrossRef] [Green Version]
- Haskell, B.; Schwenzer, K. Gravitational waves from isolated neutron stars. arXiv 2021, arXiv:2104.03137. [Google Scholar]
- Essig, R. Working Group Report: New Light Weakly Coupled Particles. In Proceedings of the Community Summer Study 2013: Snowmass on the Mississippi, CSS2013, Minneapolis, MN, USA, 29 July 2013. [Google Scholar]
- Brito, R.; Ghosh, S.; Barausse, E.; Berti, E.; Cardoso, V.; Dvorkin, I.; Klein, A.; Pani, P. Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys. Rev. D 2017, 96, 064050. [Google Scholar] [CrossRef] [Green Version]
- Brito, R.; Ghosh, S.; Barausse, E.; Berti, E.; Cardoso, V.; Dvorkin, I.; Klein, A.; Pani, P. Stochastic and resolvable gravitational waves from ultralight bosons. Phys. Rev. Lett. 2017, 119, 131101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.J.; Baryakhtar, M.; Papa, M.A.; Tsuna, D.; Kawanaka, N.; Eggenstein, H.B. Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes. Phys. Rev. D 2020, 102, 063020. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Papa, M.A.; Reddy, S. Gravitational waves from compact dark matter objects in the solar system. Phys. Lett. B 2020, 800, 135072. [Google Scholar] [CrossRef]
- Isi, M.; Weinstein, A.J.; Mead, C.; Pitkin, M. Detecting Beyond-Einstein Polarizations of Continuous Gravitational Waves. Phys. Rev. D 2015, 91, 082002. [Google Scholar] [CrossRef] [Green Version]
- Isi, M.; Pitkin, M.; Weinstein, A.J. Probing Dynamical Gravity with the Polarization of Continuous Gravitational Waves. Phys. Rev. D 2017, 96, 042001. [Google Scholar] [CrossRef] [Green Version]
- Isi, M.; Sun, L.; Brito, R.; Melatos, A. Directed searches for gravitational waves from ultralight bosons. Phys. Rev. D 2019, 99, 084042, Erratum in 2020, 102, 049901.. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Gao, Y.; Shao, L. Precession of spheroids under Lorentz violation and observational consequences for neutron stars. Phys. Rev. D 2021, 103, 084028. [Google Scholar] [CrossRef]
- Xu, R.; Gao, Y.; Shao, L. Signatures of Lorentz Violation in Continuous Gravitational-Wave Spectra of Ellipsoidal Neutron Stars. Galaxies 2021, 9, 12. [Google Scholar] [CrossRef]
- Palomba, C.; D’Antonio, S.; Astone, P.; Frasca, S.; Intini, G.; La Rosa, I.; Leaci, P.; Mastrogiovanni, S.; Miller, A.L.; Muciaccia, F.; et al. Direct constraints on ultra-light boson mass from searches for continuous gravitational waves. Phys. Rev. Lett. 2019, 123, 171101. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Brito, R.; Isi, M. Search for ultralight bosons in Cygnus X-1 with Advanced LIGO. Phys. Rev. D 2020, 101, 063020, Erratum in 2020, 102, 089902. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.L.; Clesse, S.; De Lillo, F.; Bruno, G.; Depasse, A.; Tanasijczuk, A. Probing planetary-mass primordial black holes with continuous gravitational waves. Phys. Dark Univ. 2021, 32, 100836. [Google Scholar] [CrossRef]
- Miller, A.L.; Aggarwal, N.; Clesse, S.; De Lillo, F. Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational-wave searches. arXiv 2021, arXiv:2110.06188. [Google Scholar]
- Prix, R. Gravitational Waves from Spinning Neutron Stars. In Neutron Stars and Pulsars; Becker, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 357, Chapter 24; pp. 651–685. [Google Scholar] [CrossRef] [Green Version]
- Riles, K. Recent searches for continuous gravitational waves. Mod. Phys. Lett. A 2017, 32, 1730035. [Google Scholar] [CrossRef]
- Jaranowski, P.; Krolak, A.; Schutz, B.F. Data analysis of gravitational-wave signals from spinning neutron stars. 1. The Signal and its detection. Phys. Rev. D 1998, 58, 063001. [Google Scholar] [CrossRef] [Green Version]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quant. Grav. 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Asada, H.; Aso, Y.; Atsuta, S. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nat. Astron. 2019, 3, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M.; Van Den Broeck, C.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science Case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 2020, 2000, 50. [Google Scholar] [CrossRef] [Green Version]
- Reitze, D.; Adhikari, R.X.; Ballmer, S.; Barish, B.; Barsotti, L.; Billingsley, G.; Brown, D.A.; Chen, Y.; Coyne, D.; Eisenstein, R.; et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. Bull. Am. Astron. Soc. 2019, 51, 035. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quant. Grav. 2020, 37, 055002. [Google Scholar] [CrossRef]
- Brady, P.R.; Creighton, T.; Cutler, C.; Schutz, B.F. Searching for periodic sources with LIGO. Phys. Rev. D 1998, 57, 2101–2116. [Google Scholar] [CrossRef] [Green Version]
- Prix, R. Template-based searches for gravitational waves: Efficient lattice covering of flat parameter spaces. Class. Quant. Grav. 2007, 24, S481–S490. [Google Scholar] [CrossRef] [Green Version]
- Wette, K. Lattice template placement for coherent all-sky searches for gravitational-wave pulsars. Phys. Rev. D 2014, 90, 122010. [Google Scholar] [CrossRef] [Green Version]
- Fairhurst, S. Source localization with an advanced gravitational wave detector network. Class. Quant. Grav. 2011, 28, 105021. [Google Scholar] [CrossRef]
- Brady, P.R.; Creighton, T. Searching for periodic sources with LIGO II: Hierarchical searches. Phys. Rev. D 2000, 61, 082001. [Google Scholar] [CrossRef] [Green Version]
- Cutler, C.; Gholami, I.; Krishnan, B. Improved stack-slide searches for gravitational-wave pulsars. Phys. Rev. D 2005, 72, 042004. [Google Scholar] [CrossRef] [Green Version]
- Prix, R.; Shaltev, M. Search for Continuous Gravitational Waves: Optimal StackSlide method at fixed computing cost. Phys. Rev. D 2012, 85, 084010. [Google Scholar] [CrossRef] [Green Version]
- Shaltev, M. Optimizing the StackSlide setup and data selection for continuous-gravitational-wave searches in realistic detector data. Phys. Rev. D 2016, 93, 044058. [Google Scholar] [CrossRef] [Green Version]
- Papa, M.A.; Eggenstein, H.B.; Walsh, S.; Di Palma, I.; Allen, B.; Astone, P.; Bock, O.; Creighton, T.D.; Keitel, D.; Machenschalk, B.; et al. Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data. Phys. Rev. D 2016, 94, 122006. [Google Scholar] [CrossRef] [Green Version]
- Ashton, G.; Prix, R. Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates. Phys. Rev. D 2018, 97, 103020. [Google Scholar] [CrossRef] [Green Version]
- Tenorio, R.; Keitel, D.; Sintes, A.M. Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates. Phys. Rev. D 2021, 104, 084012. [Google Scholar] [CrossRef]
- Dergachev, V. On blind searches for noise dominated signals: A loosely coherent approach. Class. Quant. Grav. 2010, 27, 205017. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Phys. Rev. D 2017, 96, 122004. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data. Phys. Rev. D 2017, 96, 062002. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Full Band All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data. Phys. Rev. D 2018, 97, 102003. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V.; Papa, M.A. Sensitivity improvements in the search for periodic gravitational waves using O1 LIGO data. Phys. Rev. Lett. 2019, 123, 101101. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V.; Papa, M.A. Results from an Extended Falcon All-Sky Survey for Continuous Gravitational Waves. Phys. Rev. D 2020, 101, 022001. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Phys. Rev. D 2019, 100, 024004. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V.; Papa, M.A. Results from the First All-Sky Search for Continuous Gravitational Waves from Small-Ellipticity Sources. Phys. Rev. Lett. 2020, 125, 171101. [Google Scholar] [CrossRef] [PubMed]
- Dergachev, V.; Papa, M.A. Results from high-frequency all-sky search for continuous gravitational waves from small-ellipticity sources. Phys. Rev. D 2021, 103, 063019. [Google Scholar] [CrossRef]
- Dergachev, V.; Papa, M.A. Search for continuous gravitational waves from small-ellipticity sources at low frequencies. Phys. Rev. D 2021, 104, 043003. [Google Scholar] [CrossRef]
- Steltner, B.; Papa, M.A.; Eggenstein, H.B.; Allen, B.; Dergachev, V.; Prix, R.; Machenschalk, B.; Walsh, S.; Zhu, S.J.; Kwang, S. Einstein@Home All-sky Search for Continuous Gravitational Waves in LIGO O2 Public Data. Astrophys. J. 2021, 909, 79. [Google Scholar] [CrossRef]
- Covas, P.B.; Sintes, A.M. First all-sky search for continuous gravitational-wave signals from unknown neutron stars in binary systems using Advanced LIGO data. Phys. Rev. Lett. 2020, 124, 191102. [Google Scholar] [CrossRef] [PubMed]
- Wette, K.; Dunn, L.; Clearwater, P.; Melatos, A. Deep exploration for continuous gravitational waves at 171–172 Hz in LIGO second observing run data. Phys. Rev. D 2021, 103, 083020. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Phys. Rev. D 2021, 103, 064017. [Google Scholar] [CrossRef]
- Tenorio, R. An all-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. In Proceedings of the 55th Rencontres de Moriond on Gravitation, online, 9–11 March 2021. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Phys. Rev. D 2021, 104, 082004. [Google Scholar] [CrossRef]
- Dergachev, V.; Papa, M.A.; Steltner, B.; Eggenstein, H.B. Loosely coherent search in LIGO O1 data for continuous gravitational waves from Terzan 5 and the galactic center. Phys. Rev. D 2019, 99, 084048. [Google Scholar] [CrossRef] [Green Version]
- Piccinni, O.J.; Astone, P.; D’Antonio, S.; Frasca, S.; Intini, G.; La Rosa, I.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Palomba, C. Directed search for continuous gravitational-wave signals from the Galactic Center in the Advanced LIGO second observing run. Phys. Rev. D 2020, 101, 082004. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Phys. Rev. D 2017, 95, 122003. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-Based Cross-Correlation Search in Advanced LIGO Data. Astrophys. J. 2017, 847, 47. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C. Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO. Astrophys. J. 2019, 875, 122, Erratum in 2021, 918, 91. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Phys. Rev. D 2019, 100, 122002. [Google Scholar] [CrossRef]
- Ming, J.; Papa, M.A.; Singh, A.; Eggenstein, H.-B.; Zhu, S.J.; Dergachev, V.; Hu, Y.; Prix, R.; Machenschalk, B.; Beer, C.; et al. Results from an Einstein@Home search for continuous gravitational waves from Cassiopeia A, Vela Jr. and G347.3. Phys. Rev. D 2019, 100, 024063. [Google Scholar] [CrossRef] [Green Version]
- Papa, M.A.; Ming, J.; Gotthelf, E.V.; Allen, B.; Prix, R.; Dergachev, V.; Eggenstein, H.B.; Singh, A.; Zhu, S.J. Search for Continuous Gravitational Waves from the Central Compact Objects in Supernova Remnants Cassiopeia A, Vela Jr., and G347.3–0.5. Astrophys. J. 2020, 897, 22. [Google Scholar] [CrossRef]
- Millhouse, M.; Strang, L.; Melatos, A. Search for gravitational waves from 12 young supernova remnants with a hidden Markov model in Advanced LIGO’s second observing run. Phys. Rev. D 2020, 102, 083025. [Google Scholar] [CrossRef]
- Middleton, H.; Clearwater, P.; Melatos, A.; Dunn, L. Search for gravitational waves from five low mass X-ray binaries in the second Advanced LIGO observing run with an improved hidden Markov model. Phys. Rev. D 2020, 102, 023006. [Google Scholar] [CrossRef]
- Jones, D.; Sun, L. Search for continuous gravitational waves from Fomalhaut b in the second Advanced LIGO observing run with a hidden Markov model. Phys. Rev. D 2021, 103, 023020. [Google Scholar] [CrossRef]
- Lindblom, L.; Owen, B.J. Directed searches for continuous gravitational waves from twelve supernova remnants in data from Advanced LIGO’s second observing run. Phys. Rev. D 2020, 101, 083023. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Papa, M.A.; Krishnan, B.; Watts, A.L. Search for Continuous Gravitational Waves from Scorpius X-1 in LIGO O2 Data. Astrophys. J. Lett. 2021, 906, L14. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo. arXiv 2021, arXiv:2105.11641. [Google Scholar] [CrossRef]
- Ming, J.; Papa, M.A.; Eggenstein, H.B.; Machenschalk, B.; Steltner, B.; Prix, R.; Allen, B.; Behnke, O. Results from an Einstein@Home search for continuous gravitational waves from G347.3 at low frequencies in LIGO O2 data. arXiv 2021, arXiv:2108.02808. [Google Scholar]
- Cutler, C.; Schutz, B.F. The Generalized F-statistic: Multiple detectors and multiple GW pulsars. Phys. Rev. D 2005, 72, 063006. [Google Scholar] [CrossRef] [Green Version]
- Prix, R.; Krishnan, B. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics. Class. Quant. Grav. 2009, 26, 204013. [Google Scholar] [CrossRef] [Green Version]
- Whelan, J.T.; Prix, R.; Cutler, C.J.; Willis, J.L. New Coordinates for the Amplitude Parameter Space of Continuous Gravitational Waves. Class. Quant. Grav. 2014, 31, 065002. [Google Scholar] [CrossRef] [Green Version]
- Prix, R.; Giampanis, S.; Messenger, C. Search method for long-duration gravitational-wave transients from neutron stars. Phys. Rev. D 2011, 84, 023007. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, S.; Krishnan, B.; Willis, J.L. Marginalizing the likelihood function for modeled gravitational wave searches. arXiv 2017, arXiv:1707.08163. [Google Scholar]
- Bero, J.J.; Whelan, J.T. An Analytic Approximation to the Bayesian Detection Statistic for Continuous Gravitational Waves. Class. Quant. Grav. 2019, 36, 015013, Erratum in 2019, 36, 049601. [Google Scholar] [CrossRef] [Green Version]
- Wette, K. Geometric Approach to Analytic Marginalisation of the Likelihood Ratio for Continuous Gravitational Wave Searches. Universe 2021, 7, 174. [Google Scholar] [CrossRef]
- Prix, R.; Whelan, J.T. F-statistic search for white-dwarf binaries in the first Mock LISA Data Challenge. Class. Quant. Grav. 2007, 24, S565–S574. [Google Scholar] [CrossRef] [Green Version]
- Keppel, D. The multi-detector F-statistic metric for short-duration non-precessing inspiral gravitational-wave signals. Phys. Rev. D 2012, 86, 123010. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.B. A Study of Recycled Pulsars in Globular Clusters. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1993. [Google Scholar] [CrossRef]
- Prix, R.; Itoh, Y. Global parameter-space correlations of coherent searches for continuous gravitational waves. Class. Quant. Grav. 2005, 22, S1003–S1012. [Google Scholar] [CrossRef] [Green Version]
- Pletsch, H.J. Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection. Phys. Rev. D 2008, 78, 102005. [Google Scholar] [CrossRef] [Green Version]
- Pletsch, H.J.; Allen, B. Exploiting global correlations to detect continuous gravitational waves. Phys. Rev. Lett. 2009, 103, 181102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pletsch, H.J. Parameter-space metric of semicoherent searches for continuous gravitational waves. Phys. Rev. D 2010, 82, 042002. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.; Wette, K.; Papa, M.A.; Prix, R. Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home. Phys. Rev. D 2019, 99, 082004. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.P. BOINC: A Platform for Volunteer Computing. arXiv 2019, arXiv:1903.01699. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D.; Prix, R.; Papa, M.A.; Leaci, P.; Siddiqi, M. Search for continuous gravitational waves: Improving robustness versus instrumental artifacts. Phys. Rev. D 2014, 89, 064023. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D.; Prix, R. Line-robust statistics for continuous gravitational waves: Safety in the case of unequal detector sensitivities. Class. Quant. Grav. 2015, 32, 035004. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D. Robust semicoherent searches for continuous gravitational waves with noise and signal models including hours to days long transients. Phys. Rev. D 2016, 93, 084024. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D. Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics. J. Phys. Conf. Ser. 2016, 716, 012003. [Google Scholar] [CrossRef]
- Wette, K. Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars. Phys. Rev. D 2015, 92, 082003. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.; Krishnan, B.; Papa, M.A.; Aulbert, C.; Fehrmann, H. Optimal directed searches for continuous gravitational waves. Phys. Rev. D 2016, 93, 064011. [Google Scholar] [CrossRef] [Green Version]
- Owen, B.J. Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. Phys. Rev. D 1996, 53, 6749–6761. [Google Scholar] [CrossRef] [Green Version]
- Prix, R. Search for continuous gravitational waves: Metric of the multi-detector F-statistic. Phys. Rev. D 2007, 75, 023004, Erratum in 2007, 75, 069901. [Google Scholar] [CrossRef] [Green Version]
- Allen, B. Optimal template banks. Phys. Rev. D 2021, 104, 042005. [Google Scholar] [CrossRef]
- Wette, K.; Prix, R. Flat parameter-space metric for all-sky searches for gravitational-wave pulsars. Phys. Rev. D 2013, 88, 123005. [Google Scholar] [CrossRef] [Green Version]
- Wette, K. Empirically extending the range of validity of parameter-space metrics for all-sky searches for gravitational-wave pulsars. Phys. Rev. D 2016, 94, 122002. [Google Scholar] [CrossRef] [Green Version]
- Wette, K.; Walsh, S.; Prix, R.; Papa, M.A. Implementing a semicoherent search for continuous gravitational waves using optimally-constructed template banks. Phys. Rev. D 2018, 97, 123016. [Google Scholar] [CrossRef] [Green Version]
- Allen, B. Spherical ansatz for parameter-space metrics. Phys. Rev. D 2019, 100, 124004. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.; Shoom, A.A. Template banks based on Zn and An* lattices. arXiv 2021, arXiv:2102.11631. [Google Scholar]
- Prix, R. The F-Statistic and Its Implementation in ComputeFstatistic_v2. 2006. Available online: https://dcc.ligo.org/LIGO-T0900149/public (accessed on 31 October 2021).
- LIGO Scientific Collaboration. LIGO Algorithm Library—LALSuite; Free Software (GPL), 2018. [Google Scholar] [CrossRef]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; et al. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Class. Quant. Grav. 2014, 31, 165014. [Google Scholar] [CrossRef]
- Pisarski, A.; Jaranowski, P. Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars. Class. Quant. Grav. 2015, 32, 145014. [Google Scholar] [CrossRef] [Green Version]
- Poghosyan, G.; Matta, S.; Streit, A.; Bejger, M.; Królak, A. Architecture, implementation and parallelization of the software to search for periodic gravitational wave signals. Comput. Phys. Commun. 2015, 188, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, M.; Bejger, M.; Krolak, A. Follow-up procedure for gravitational wave searches from isolated neutron stars using the time-domain F-statistic method. Class. Quant. Grav. 2019, 36, 225008. [Google Scholar] [CrossRef] [Green Version]
- Morawski, F.; Bejger, M.; Ciecielag, P. Convolutional neural network classifier for the output of the time-domain F-statistic all-sky search for continuous gravitational waves. Mach. Learn. Sci. Technol. 2019, 1, 025016. [Google Scholar] [CrossRef]
- Krishnan, B.; Sintes, A.M.; Papa, M.A.; Schutz, B.F.; Frasca, S.; Palomba, C. The Hough transform search for continuous gravitational waves. Phys. Rev. D 2004, 70, 082001. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.; Papa, M.A.; Schutz, B.F. Optimal strategies for sinusoidal signal detection. Phys. Rev. D 2002, 66, 102003. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V. Description of PowerFlux Algorithms and Implementation. 2006. Available online: https://dcc.ligo.org/LIGO-T050186/public (accessed on 31 October 2021).
- Dergachev, V. Description of PowerFlux 2 Algorithms and Implementation. 2011. Available online: https://dcc.ligo.org/LIGO-T1000272/public (accessed on 31 October 2021).
- Dergachev, V.; Riles, K. PowerFlux Polarization Analysis. 2006. Available online: https://dcc.ligo.org/LIGO-T050187/public (accessed on 31 October 2021).
- Mendell, G.; Wette, K. Using generalized PowerFlux methods to estimate the parameters of periodic gravitational waves. Class. Quant. Grav. 2008, 25, 114044. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V. Loosely coherent searches for sets of well-modeled signals. Phys. Rev. D 2012, 85, 062003. [Google Scholar] [CrossRef] [Green Version]
- Dergachev, V. Loosely coherent searches for medium scale coherence lengths. arXiv 2018, arXiv:1807.02351. [Google Scholar]
- Singh, A.; Papa, M.A.; Dergachev, V. Characterizing the sensitivity of isolated continuous gravitational wave searches to binary orbits. Phys. Rev. D 2019, 100, 024058. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, S.; Krishnan, B.; Mukhopadhyay, H.; Whelan, J.T. Cross-correlation search for periodic gravitational waves. Phys. Rev. D 2008, 77, 082001. [Google Scholar] [CrossRef] [Green Version]
- Whelan, J.T.; Sundaresan, S.; Zhang, Y.; Peiris, P. Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1. Phys. Rev. D 2015, 91, 102005. [Google Scholar] [CrossRef] [Green Version]
- Wagner, K.J.; Whelan, J.T.; Wofford, J.K.; Wette, K. Template Lattices for a Cross-Correlation Search for Gravitational Waves from Scorpius X-1. arXiv 2021, arXiv:2106.16142. [Google Scholar]
- Mitra, S.; Dhurandhar, S.; Souradeep, T.; Lazzarini, A.; Mandic, V.; Bose, S.; Ballmer, S. Gravitational wave radiometry: Mapping a stochastic gravitational wave background. Phys. Rev. D 2008, 77, 042002. [Google Scholar] [CrossRef] [Green Version]
- Ain, A.; Dalvi, P.; Mitra, S. Fast Gravitational Wave Radiometry using Data Folding. Phys. Rev. D 2015, 92, 022003. [Google Scholar] [CrossRef] [Green Version]
- Ain, A.; Suresh, J.; Mitra, S. Very fast stochastic gravitational wave background map making using folded data. Phys. Rev. D 2018, 98, 024001. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run. Phys. Rev. Lett. 2017, 118, 121102. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Directional limits on persistent gravitational waves using data from Advanced LIGO’s first two observing runs. Phys. Rev. D 2019, 100, 062001. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs. arXiv 2021, arXiv:2110.09834. [Google Scholar]
- Meadors, G.D.; Krishnan, B.; Papa, M.A.; Whelan, J.T.; Zhang, Y. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems. Phys. Rev. D 2018, 97, 044017. [Google Scholar] [CrossRef] [Green Version]
- Palomba, C.; Astone, P.; Frasca, S. Adaptive Hough transform for the search of periodic sources. Class. Quant. Grav. 2005, 22, S1255–S1264. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, B.; Sintes, A.M. Hough Search with Improved Sensitivity. 2007. Available online: https://dcc.ligo.org/LIGO-T070124-x0/public (accessed on 31 October 2021).
- Hough, P.V. Method and Means for Recognizing Complex Patterns. U.S. Patent US3069654A, 18 December 1962. [Google Scholar]
- Sintes, A.M.; Krishnan, B. Improved hough search for gravitational wave pulsars. J. Phys. Conf. Ser. 2006, 32, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Tenorio, R.; Keitel, D.; Sintes, A.M. Time-frequency track distance for comparing continuous gravitational wave signals. Phys. Rev. D 2021, 103, 064053. [Google Scholar] [CrossRef]
- Sancho de la Jordana, L. Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data. J. Phys. Conf. Ser. 2010, 228, 012004. [Google Scholar] [CrossRef]
- Covas, P.B. Searching for Continuous Gravitational Waves with Advanced LIGO. Ph.D. Thesis, Universitat de les Illes Balears, Palma, Spain, 2020. [Google Scholar]
- Covas, P.B.; Sintes, A.M. New method to search for continuous gravitational waves from unknown neutron stars in binary systems. Phys. Rev. D 2019, 99, 124019. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.; Keitel, D.; Sintes, A.M. Adaptive transient Hough method for long-duration gravitational wave transients. Phys. Rev. D 2019, 99, 104067. [Google Scholar] [CrossRef] [Green Version]
- Antonucci, F.; Astone, P.; D’Antonio, S.; Frasca, S.; Palomba, C. Detection of periodic gravitational wave sources by Hough transform in the f versus f(.) plane. Class. Quant. Grav. 2008, 25, 184015. [Google Scholar] [CrossRef] [Green Version]
- Astone, P.; Colla, A.; D’Antonio, S.; Frasca, S.; Palomba, C. Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform. Phys. Rev. D 2014, 90, 042002. [Google Scholar] [CrossRef] [Green Version]
- Leaci, P. Methods to filter out spurious disturbances in continuous-wave searches from gravitational-wave detectors. Phys. Scr. 2015, 2015. 90, 125001. [Google Scholar] [CrossRef]
- Intini, G.; Leaci, P.; Astone, P.; Antonio, S.D.; Frasca, S.; Rosa, I.L.; Miller, A.; Palomba, C.; Piccinni, O. A Doppler-modulation based veto to discard false continuous gravitational-wave candidates. Class. Quantum Gravity 2020, 37, 225007. [Google Scholar] [CrossRef]
- Astone, P.; Frasca, S.; Palomba, C. The short FFT database and the peak map for the hierarchical search of periodic sources. Class. Quant. Grav. 2005, 22, S1197–S1210. [Google Scholar] [CrossRef] [Green Version]
- Piccinni, O.J.; Astone, P.; D’Antonio, S.; Frasca, S.; Intini, G.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Palomba, C.; Singhal, A. A new data analysis framework for the search of continuous gravitational wave signals. Class. Quant. Grav. 2019, 36, 015008. [Google Scholar] [CrossRef] [Green Version]
- Piccinni, O.J.; Frasca, S. The Band-Sampled-Data collection for the search of continuous gravitational wave signals. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 2653–2657. [Google Scholar] [CrossRef]
- Miller, A.; Astone, P.; D’Antonio, S.; Frasca, S.; Intini, G.; La Rosa, I.; Leaci, P.; Mastrogiovanni, S.; Muciaccia, F.; Palomba, C.; et al. Method to search for long duration gravitational wave transients from isolated neutron stars using the generalized frequency-Hough transform. Phys. Rev. D 2018, 98, 102004. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys. J. 2019, 875, 160. [Google Scholar] [CrossRef] [Green Version]
- D’Antonio, S.; Palomba, C.; Astone, P.; Frasca, S.; Intini, G.; La Rosa, I.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Muciaccia, F.; et al. Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes. Phys. Rev. D 2018, 98, 103017. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.L.; Astone, P.; Bruno, G.; Clesse, S.; D’Antonio, S.; Depasse, A.; De Lillo, F.; Frasca, S.; La Rosa, I.; Leaci, P.; et al. Probing new light gauge bosons with gravitational-wave interferometers using an adapted semicoherent method. Phys. Rev. D 2021, 103, 103002. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run. arXiv 2021, arXiv:2105.13085. [Google Scholar]
- Ashton, G.; Jones, D.I.; Prix, R. Effect of timing noise on targeted and narrow-band coherent searches for continuous gravitational waves from pulsars. Phys. Rev. D 2015, 91, 062009. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Messenger, C.; Riles, K. Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches. Phys. Rev. D 2018, 97, 043016. [Google Scholar] [CrossRef] [Green Version]
- Suvorova, S.; Sun, L.; Melatos, A.; Moran, W.; Evans, R.J. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin. Phys. Rev. D 2016, 93, 123009. [Google Scholar] [CrossRef] [Green Version]
- Suvorova, S.; Clearwater, P.; Melatos, A.; Sun, L.; Moran, W.; Evans, R.J. Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. II. Binary orbital phase tracking. Phys. Rev. D 2017, 96, 102006. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R.J. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants. Phys. Rev. D 2018, 97, 043013. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Melatos, A.; Lasky, P.D. Tracking continuous gravitational waves from a neutron star at once and twice the spin frequency with a hidden Markov model. Phys. Rev. D 2019, 99, 123010. [Google Scholar] [CrossRef] [Green Version]
- Melatos, A.; Clearwater, P.; Suvorova, S.; Sun, L.; Moran, W.; Evans, R.J. Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. III. Rotational phase tracking. Phys. Rev. D 2021, 104, 042003. [Google Scholar] [CrossRef]
- Bayley, J.; Messenger, C.; Woan, G. Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals. Phys. Rev. D 2019, 100, 023006. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Beniwal, D.; Clearwater, P.; Dunn, L.; Melatos, A.; Ottaway, D. Search for continuous gravitational waves from ten H.E.S.S. sources using a hidden Markov model. Phys. Rev. D 2021, 103, 083009. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data. arXiv 2021, arXiv:2109.09255. [Google Scholar]
- Sun, L.; Melatos, A. Application of hidden Markov model tracking to the search for long-duration transient gravitational waves from the remnant of the binary neutron star merger GW170817. Phys. Rev. D 2019, 99, 123003. [Google Scholar] [CrossRef] [Green Version]
- Viterbi, A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 1967, 13, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Sammut, L.; Messenger, C.; Melatos, A.; Owen, B.J. Implementation of the frequency-modulated sideband search method for gravitational waves from low mass X-ray binaries. Phys. Rev. D 2014, 89, 043001. [Google Scholar] [CrossRef] [Green Version]
- Bretthorst, G.L. Bayesian Spectrum Analysis and Parameter Estimation; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Cuoco, E.; Powell, J.; Cavaglià, M.; Ackley, K.; Bejger, M.; Chatterjee, C.; Coughlin, M.; Coughlin, S.; Easter, P.; Essick, R.; et al. Enhancing Gravitational-Wave Science with Machine Learning. Mach. Learn. Sci. Tech. 2021, 2, 011002. [Google Scholar] [CrossRef]
- Dreissigacker, C.; Sharma, R.; Messenger, C.; Zhao, R.; Prix, R. Deep-Learning Continuous Gravitational Waves. Phys. Rev. D 2019, 100, 044009. [Google Scholar] [CrossRef] [Green Version]
- Dreissigacker, C.; Prix, R. Deep-Learning Continuous Gravitational Waves: Multiple detectors and realistic noise. Phys. Rev. D 2020, 102, 022005. [Google Scholar] [CrossRef]
- Sarin, N.; Lasky, P.D. The evolution of binary neutron star post-merger remnants: A review. Gen. Rel. Grav. 2021, 53, 59. [Google Scholar] [CrossRef]
- Miller, A.L.; Astone, P.; D’Antonio, S.; Frasca, S.; Intini, G.; La Rosa, I.; Leaci, P.; Mastrogiovanni, S.; Muciaccia, F.; Mitidis, A.; et al. How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? Phys. Rev. D 2019, 100, 062005. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.S.; Tanaka, T. Use of an excess power method and a convolutional neural network in an all-sky search for continuous gravitational waves. Phys. Rev. D 2021, 103, 084049. [Google Scholar] [CrossRef]
- Bayley, J.; Messenger, C.; Woan, G. Robust machine learning algorithm to search for continuous gravitational waves. Phys. Rev. D 2020, 102, 083024. [Google Scholar] [CrossRef]
- Beheshtipour, B.; Papa, M.A. Deep learning for clustering of continuous gravitational wave candidates. Phys. Rev. D 2020, 101, 064009. [Google Scholar] [CrossRef] [Green Version]
- Beheshtipour, B.; Papa, M.A. Deep learning for clustering of continuous gravitational wave candidates II: Identification of low-SNR candidates. Phys. Rev. D 2021, 103, 064027. [Google Scholar] [CrossRef]
- Covas, P.B.; Effler, A.; Goetz, E.; Meyers, P.M.; Neunzert, A.; Oliver, M.; Pearlstone, B.L.; Roma, V.J.; Schofield, R.M.S.; Adya, V.B.; et al. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys. Rev. D 2018, 97, 082002. [Google Scholar] [CrossRef] [Green Version]
- Tenorio, R.; Modafferi, L.M.; Keitel, D.; Sintes, A.M. Empirically estimating the distribution of the loudest candidate from a gravitational-wave search. arXiv 2021, arXiv:2111.12032. [Google Scholar]
- Singh, A.; Papa, M.A.; Eggenstein, H.B.; Walsh, S. Adaptive clustering procedure for continuous gravitational wave searches. Phys. Rev. D 2017, 96, 082003. [Google Scholar] [CrossRef] [Green Version]
- Leaci, P.; Prix, R. Directed searches for continuous gravitational waves from binary systems: Parameter-space metrics and optimal Scorpius X-1 sensitivity. Phys. Rev. D 2015, 91, 102003. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Phys. Rev. D 2016, 94, 102002. [Google Scholar] [CrossRef] [Green Version]
- Allen, B. χ2 time-frequency discriminator for gravitational wave detection. Phys. Rev. D 2005, 71, 062001. [Google Scholar] [CrossRef] [Green Version]
- Sancho de la Jordana, L.; Sintes, A.M. A χ2 veto for continuous gravitational wave searches. Class. Quant. Grav. 2008, 25, 184014. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D. Improving Robustness of Continuous-Gravitational-Wave Searches against Signal-Like Instrumental Artefacts and a Concept for an Octahedral Gravitational-Wave Detector in Space. Ph.D. Thesis, Leibniz University Hannover, Hannover, Germany, 2014. [Google Scholar] [CrossRef]
- Davis, D.; Areeda, J.S.; Berger, B.K.; Bruntz, R.; Effler, A.; Essick, R.C.; Fisher, R.P.; Godwin, P.; Goetz, E.; Helmling-Cornell, A.F.; et al. LIGO detector characterization in the second and third observing runs. Class. Quant. Grav. 2021, 38, 135014. [Google Scholar] [CrossRef]
- GWOSC-O1 Instrumental Lines. 2021. Available online: https://www.gw-openscience.org/o1speclines/ (accessed on 31 October 2021).
- GWOSC-O2 Instrumental Lines. 2021. Available online: https://www.gw-openscience.org/o2speclines/ (accessed on 31 October 2021).
- GWOSC-O3a Instrumental Lines. 2021. Available online: https://www.gw-openscience.org/O3/o3aspeclines/ (accessed on 31 October 2021).
- Goetz, E.; Neunzert, A.; Riles, K.; Mateas, A.; Kandhasamy, S.; Tasson, J.; Barschaw, C.; Middleton, H.; Hughey, S.; Mueller, L.; et al. O3a Lines and Combs in C00 Data. 2020. Available online: https://dcc.ligo.org/T2000719/public (accessed on 31 October 2021).
- Goetz, E.; Neunzert, A.; Riles, K.; Mateas, A.; Kandhasamy, S.; Tasson, J.; Barschaw, C.; Middleton, H.; Hughey, S.; Mueller, L.; et al. Unidentified O3a Lines and Combs in C00 Data. 2020. Available online: https://dcc.ligo.org/T2000720/public (accessed on 31 October 2021).
- Goetz, E.; Neunzert, A.; Riles, K.; Mateas, A.; Kandhasamy, S.; Tasson, J.; Barschaw, C.; Middleton, H.; Hughey, S.; Mueller, L.; et al. O3 Lines and Combs Found in Self-Gated C01 Data. 2021. Available online: https://dcc.ligo.org/LIGO-T2100153/public (accessed on 31 October 2021).
- Goetz, E.; Neunzert, A.; Riles, K.; Mateas, A.; Kandhasamy, S.; Tasson, J.; Barschaw, C.; Middleton, H.; Hughey, S.; Mueller, L.; et al. Unidentified O3 Lines and Combs Found in Self-Gated C01 Data. 2021. Available online: https://dcc.ligo.org/T2100154/public (accessed on 31 October 2021).
- Driggers, J.C.; Vitale, S.; Lundgren, A.P.; Evans, M.; Kawabe, K.; Dwyer, S.E.; Izumi, K.; Schofield, R.M.S.; Effler, A.; Sigg, D.; et al. Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. Phys. Rev. D 2019, 99, 042001. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.; Massinger, T.J.; Lundgren, A.P.; Driggers, J.C.; Urban, A.L.; Nuttall, L.K. Improving the Sensitivity of Advanced LIGO Using Noise Subtraction. Class. Quant. Grav. 2019, 36, 055011. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.J.; Papa, M.A.; Walsh, S. New veto for continuous gravitational wave searches. Phys. Rev. D 2017, 96, 124007. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D.; Woan, G.; Pitkin, M.; Schumacher, C.; Pearlstone, B.; Riles, K.; Lyne, A.G.; Palfreyman, J.; Stappers, B.; Weltevrede, P. First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars. Phys. Rev. D 2019, 100, 064058. [Google Scholar] [CrossRef] [Green Version]
- Zweizig, J.; Riles, K. Information on Self-Gating of h(t) Used in O3 Continuous-Wave and Stochastic Searches. 2021. Available online: https://dcc.ligo.org/LIGO-T2000384/public (accessed on 31 October 2021).
- Steltner, B.; Papa, M.A.; Eggenstein, H.B. Identification and removal of non-Gaussian noise transients for gravitational wave searches. arXiv 2021, arXiv:2105.09933. [Google Scholar]
- Isi, M.; Mastrogiovanni, S.; Pitkin, M.; Piccinni, O.J. Establishing the significance of continuous gravitational-wave detections from known pulsars. Phys. Rev. D 2020, 102, 123027. [Google Scholar] [CrossRef]
- Wette, K. Estimating the sensitivity of wide-parameter-space searches for gravitational-wave pulsars. Phys. Rev. D 2012, 85, 042003. [Google Scholar] [CrossRef] [Green Version]
- Dreissigacker, C.; Prix, R.; Wette, K. Fast and Accurate Sensitivity Estimation for Continuous-Gravitational-Wave Searches. Phys. Rev. D 2018, 98, 084058. [Google Scholar] [CrossRef] [Green Version]
- Prix, R. Coherent F-Statistic on Semi-Coherent Candidate. 2019. Available online: https://dcc.ligo.org/LIGO-T1700236/public (accessed on 31 October 2021).
- Ashton, G.; Prix, R.; Jones, D.I. Statistical characterization of pulsar glitches and their potential impact on searches for continuous gravitational waves. Phys. Rev. D 2017, 96, 063004. [Google Scholar] [CrossRef] [Green Version]
- Ashton, G.; Prix, R.; Jones, D.I. A semicoherent glitch-robust continuous-gravitational-wave search method. Phys. Rev. D 2018, 98, 063011. [Google Scholar] [CrossRef] [Green Version]
- Shaltev, M.; Prix, R. Fully coherent follow-up of continuous gravitational-wave candidates. Phys. Rev. D 2013, 87, 084057. [Google Scholar] [CrossRef] [Green Version]
- Shaltev, M.; Leaci, P.; Papa, M.A.; Prix, R. Fully coherent follow-up of continuous gravitational-wave candidates: An application to Einstein@Home results. Phys. Rev. D 2014, 89, 124030. [Google Scholar] [CrossRef] [Green Version]
- Keitel, D.; Tenorio, R.; Ashton, G.; Prix, R. PyFstat: A Python package for continuous gravitational-wave data analysis. J. Open Source Softw. 2021, 6, 3000. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Rover, C.; Messenger, C.; Prix, R. Bayesian versus frequentist upper limits. In PHYSTAT 2011; CERN: Geneva, Switzerland, 2011; pp. 158–163. [Google Scholar] [CrossRef]
- Dergachev, V. Novel universal statistic for computing upper limits in an ill-behaved background. Phys. Rev. D 2013, 87, 062001. [Google Scholar] [CrossRef] [Green Version]
Method | Searches | |
---|---|---|
Viterbi 1.0 [149] | (Bessel-weighted) -statistic | [16,57,63,156] |
Viterbi 2.0 [150] | -statistic | [60,64,157] |
Viterbi SNR [151] | -statistic | [65,68] |
Dual-harmonic Viterbi [152] | -statistic | [68] |
Transient Viterbi [158] | Norm. Fourier power | [143,158] |
SOAP [154] | Line-aware statistic | — |
Viterbi 3.0 [153] | -statistic | — |
Search | Pipeline | References |
---|---|---|
All-sky O1 | Einstein@Home | [40] |
Falcon | [43,44] | |
FrequencyHough | [41] | |
PowerFlux | [41,42] | |
SkyHough | [41,42] | |
Time-domain -statistic | [41,42] | |
All-sky O2 | BinarySkyHough | [50] |
Einstein@Home | [49] | |
Falcon | [46,47,48] | |
FrequencyHough | [45] | |
SkyHough | [45] | |
Time-domain -statistic | [45] | |
All-sky O3a | BinarySkyHough | [52] |
PowerFlux | [54] | |
Deep exploration O2 | Weave | [51] |
GC O1 | PowerFlux | [55] |
GC O2 | FrequencyHough + BSD | [56] |
SNR O1 | Einstein@Home | [61] |
Fully-coherent -statistic | [59] | |
SNR O2 | Einstein@Home | [62,69] |
Fully-coherent -statistic | [66] | |
Viterbi 1.0 | [63] | |
Viterbi SNR | [65] | |
SNR O3a | FrequencyHough + BSD | [68] |
Dual-harmonic Viterbi | [68] | |
Viterbi SNR | [68] | |
CDOs in the Solar System O2 | Excess power | [9] |
Cygnus X-1 O2 | Viterbi 1.0 | [16] |
Scorpius X-1 O1 | Cross-Correlation | [58] |
Viterbi 1.0 | [57] | |
Scorpius X-1 O2 | Cross-Correlation | [67] |
Viterbi 2.0 | [60] | |
LMXBs O2 | Viterbi 2.0 | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenorio, R.; Keitel, D.; Sintes, A.M. Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era. Universe 2021, 7, 474. https://doi.org/10.3390/universe7120474
Tenorio R, Keitel D, Sintes AM. Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era. Universe. 2021; 7(12):474. https://doi.org/10.3390/universe7120474
Chicago/Turabian StyleTenorio, Rodrigo, David Keitel, and Alicia M. Sintes. 2021. "Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era" Universe 7, no. 12: 474. https://doi.org/10.3390/universe7120474
APA StyleTenorio, R., Keitel, D., & Sintes, A. M. (2021). Search Methods for Continuous Gravitational-Wave Signals from Unknown Sources in the Advanced-Detector Era. Universe, 7(12), 474. https://doi.org/10.3390/universe7120474