A First-Quantized Model for Unparticles and Gauge Theories around Conformal Window
Abstract
:1. Introduction
2. Conformal Phase
2.1. Classical Analysis
2.2. Quantization
3. Massive Particles and Gapped Unparticles
4. From the Confining to the Conformal Phase
5. Concluding Comments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Chain Algorithm for Gauge Generators
Appendix B. Conformal Window in Gauge Theories with Scalar Matter
References
- Dietrich, D.D.; Sannino, F. Conformal window of SU(N) gauge theories with fermions in higher dimensional representations. Phys. Rev. D 2007, 75, 085018. [Google Scholar] [CrossRef]
- Di Pietro, L.; Serone, M. Looking through the QCD Conformal Window with Perturbation Theory. J. High Energy Phys. 2020, 7, 49. [Google Scholar] [CrossRef]
- Hasenfratz, A.; Schaich, D. Nonperturbative β function of twelve-flavor SU(3) gauge theory. J. High Energy Phys. 2018, 02, 132. [Google Scholar] [CrossRef]
- Hietanen, A.J.; Rantaharju, J.; Rummukainen, K.; Tuominen, K. Spectrum of SU(2) lattice gauge theory with two adjoint Dirac flavours. J. High Energy Phys. 2009, 05, 025. [Google Scholar] [CrossRef]
- Del Debbio, L.; Lucini, B.; Patella, A.; Pica, C.; Rago, A. Large volumes and spectroscopy of walking theories. Phys. Rev. D 2016, 93, 054505. [Google Scholar] [CrossRef]
- Catterall, S.; Sannino, F. Minimal walking on the lattice. Phys. Rev. D 2007, 76, 034504. [Google Scholar] [CrossRef]
- Sannino, F. Conformal Windows of SP(2N) and SO(N) Gauge Theories. Phys. Rev. D 2009, 79, 096007. [Google Scholar] [CrossRef]
- Neil, E.T. Exploring Models for New Physics on the Lattice. PoS 2011, 139, 9. [Google Scholar] [CrossRef]
- Witzel, O. Review on Composite Higgs Models. PoS 2019, 334, 6. [Google Scholar] [CrossRef]
- Brower, R.C.; Hasenfratz, A.; Neil, E.T.; Catterall, S.; Fleming, G.; Giedt, J.; Rinaldi, E.; Schaich, D.; Weinberg, E.; Witzel, O. Lattice Gauge Theory for Physics Beyond the Standard Model. Eur. Phys. J. A 2019, 55, 198. [Google Scholar] [CrossRef]
- Drach, V. Composite electroweak sectors on the lattice. PoS 2020, 363, 242. [Google Scholar] [CrossRef]
- Cacciapaglia, G.; Pica, C.; Sannino, F. Fundamental Composite Dynamics: A Review. Phys. Rep. 2020, 877, 1–70. [Google Scholar] [CrossRef]
- Del Debbio, L.; Patella, A.; Pica, C. Higher representations on the lattice: Numerical simulations. SU(2) with adjoint fermions. Phys. Rev. D 2010, 81, 094503. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Gomis, J. Conformal symmetry for relativistic point particles. Phys. Rev. D 2014, 90, 026001. [Google Scholar] [CrossRef]
- Banks, T.; Zaks, A. On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions. Nucl. Phys. B 1982, 196, 189–204. [Google Scholar] [CrossRef]
- Georgi, H. Unparticle physics. Phys. Rev. Lett. 2007, 98, 221601. [Google Scholar] [CrossRef]
- Georgi, H.; Kats, Y. An Unparticle Example in 2D. Phys. Rev. Lett. 2008, 101, 131603. [Google Scholar] [CrossRef] [PubMed]
- Ryttov, T.A.; Sannino, F. Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World. Phys. Rev. D 2007, 76, 105004. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Gomis, J. Conformal symmetry for relativistic point particles: An addendum. Phys. Rev. D 2015, 91, 047901. [Google Scholar] [CrossRef]
- Pramanik, S.; Ghosh, S.; Pal, P. Conformal Invariance in noncommutative geometry and mutually interacting Snyder Particles. Phys. Rev. D 2014, 90, 105027. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Castellani, L. Symmetries in constrained Hamiltonian systems. Ann. Phys. 1982, 143, 357–371. [Google Scholar] [CrossRef]
- Sazdjian, H. The massless bound state formalism in two particle relativistic quantum mechanics. Int. J. Mod. Phys. A 1988, 3, 1235–1261. [Google Scholar] [CrossRef]
- Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 3065–3079. [Google Scholar] [CrossRef] [PubMed]
- Coon, S.A.; Holstein, B.R. Anomalies in Quantum Mechanics: The 1/r2 Potential. Am. J. Phys. 2002, 70, 513–519. [Google Scholar] [CrossRef]
- Krasnikov, N.V. Unparticle as a field with continuously distributed mass. Int. J. Mod. Phys. A 2007, 22, 5117–5120. [Google Scholar] [CrossRef]
- Gaete, P.; Spallucci, E. A note on unparticle in lower dimensions. Phys. Lett. B 2008, 668, 336–339. [Google Scholar] [CrossRef]
- Nikolic, H. Unparticle as a particle with arbitrary mass. Mod. Phys. Lett. A 2008, 23, 2645–2649. [Google Scholar] [CrossRef]
- Deshpande, N.G.; He, X.G. Unparticle Realization Through Continuous Mass Scale Invariant Theories. Phys. Rev. D 2008, 78, 055006. [Google Scholar] [CrossRef]
- Delgado, A.; Espinosa, J.R.; Quiros, M. Unparticles Higgs Interplay. J. High Energy Phys. 2007, 10, 094. [Google Scholar] [CrossRef]
- Strassler, M.J. On the Phenomenology of Hidden Valleys with Heavy Flavor. arXiv 2008, arXiv:0806.2385. [Google Scholar]
- Megías, E.; Quirós, M. Gapped Continuum Kaluza-Klein spectrum. J. High Energy Phys. 2019, 08, 166. [Google Scholar] [CrossRef]
- Braaten, E.; Hammer, H.W. Neutral Charm Mesons near Threshold are Unparticles! arXiv 2021, arXiv:2107.02831. [Google Scholar]
- Dubin, A.Y.; Kaidalov, A.B.; Simonov, Y.A. The QCD string with quarks. 1. Spinless quarks. Phys. At. Nucl. 1993, 56, 1745–1759. [Google Scholar]
- Buisseret, F. Meson and glueball spectra with the relativistic flux tube model. Phys. Rev. C 2007, 76, 025206. [Google Scholar] [CrossRef]
- Sonnenschein, J.; Weissman, D. Rotating strings confronting PDG mesons. J. High Energy Phys. 2014, 08, 013. [Google Scholar] [CrossRef]
- Chivukula, R.S. A Comment on the zero temperature chiral phase transition in SU(N) gauge theories. Phys. Rev. D 1997, 55, 5238–5240. [Google Scholar] [CrossRef]
- Lucini, B. Numerical results for gauge theories near the conformal window. J. Phys. Conf. Ser. 2015, 631, 012065. [Google Scholar] [CrossRef]
- Lombardo, M.P.; Miura, K.; da Silva, T.J.N.; Pallante, E. On the particle spectrum and the conformal window. J. High Energy Phys. 2014, 12, 183. [Google Scholar] [CrossRef]
- Athenodorou, A.; Bennett, E.; Bergner, G.; Lucini, B. Infrared regime of SU(2) with one adjoint Dirac flavor. Phys. Rev. D 2015, 91, 114508. [Google Scholar] [CrossRef]
- Bergner, G.; Giudice, P.; Münster, G.; Montvay, I.; Piemonte, S. Spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavors. Phys. Rev. D 2017, 96, 034504. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; 9th Dover Printing, 10th Gpo Printing ed.; Dover: New York, NY, USA, 1964. [Google Scholar]
- Tricomi, F.; Erdelyi, A. The asymptotic expansion of a ratio of gamma functions. Pac. J. Math. 1951, 1, 133–142. [Google Scholar] [CrossRef]
- Stephanov, M.A. Deconstruction of Unparticles. Phys. Rev. D 2007, 76, 035008. [Google Scholar] [CrossRef]
- Afonin, S.S. Large degeneracy in light mesons from a modified soft-wall holographic model. Mod. Phys. Lett. A 2017, 32, 1750155. [Google Scholar] [CrossRef]
- Argurio, R.; Marzolla, A.; Mezzalira, A.; Musso, D. Analytic pseudo-Goldstone bosons. J. High Energy Phys. 2016, 3, 12. [Google Scholar] [CrossRef]
- Erdmenger, J.; Evans, N.; Kirsch, I.; Threlfall, E. Mesons in Gauge/Gravity Duals—A Review. Eur. Phys. J. A 2008, 35, 81–133. [Google Scholar] [CrossRef]
- Tuominen, K. Finite Temperature Phase Diagrams of Gauge Theories. Phys. Rev. D 2013, 87, 105014. [Google Scholar] [CrossRef]
- van Damme, R.M.J. Most General Two Loop Counterterm for Fermion Free Gauge Theories With Scalar Fields. Phys. Lett. 1982, 110B, 239–241. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulanger, N.; Buisseret, F.; Lhost, G. A First-Quantized Model for Unparticles and Gauge Theories around Conformal Window. Universe 2021, 7, 471. https://doi.org/10.3390/universe7120471
Boulanger N, Buisseret F, Lhost G. A First-Quantized Model for Unparticles and Gauge Theories around Conformal Window. Universe. 2021; 7(12):471. https://doi.org/10.3390/universe7120471
Chicago/Turabian StyleBoulanger, Nicolas, Fabien Buisseret, and Guillaume Lhost. 2021. "A First-Quantized Model for Unparticles and Gauge Theories around Conformal Window" Universe 7, no. 12: 471. https://doi.org/10.3390/universe7120471
APA StyleBoulanger, N., Buisseret, F., & Lhost, G. (2021). A First-Quantized Model for Unparticles and Gauge Theories around Conformal Window. Universe, 7(12), 471. https://doi.org/10.3390/universe7120471