Space-Based Photometry of Binary Stars: From Voyager to TESS
Abstract
:1. Introduction
1.1. Importance of Binary Stars
1.2. Space Photometry and Binary Stars
1.3. Contents of this Review
2. Early Missions
2.1. Orbiting Astronomical Observatory
2.2. Astronomical Netherlands Satellite
2.3. Voyager
2.4. International Ultraviolet Explorer
2.5. Hipparcos
2.6. Wide Field Infrared Explorer
2.7. MOST
2.8. CoRoT
2.9. BRITE
2.10. Other Space Missions
3. Kepler and K2
3.1. “Normal” EBs
3.2. Giant Systems
3.3. Multiple Eclipsers
3.4. Planets Transiting Binary Stars
3.5. Pulsators
3.6. Evolved Binaries
4. TESS
4.1. Standard EBs
4.2. Pulsators
4.3. Multi-Eclipsers
4.4. The Connection between Binaries and Planets
4.5. Semi-Detached Binaries
4.6. Contact Binaries
4.7. Evolved Binaries
5. Discussion
5.1. Current Status
5.2. Future Missions
5.3. Future Work
5.4. Final Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oberth, H. Die Rakete zu den Planetenräumen; R. Oldenbourg-Verlag: Munich, Germany, 1923. [Google Scholar]
- Young, A.T. Photometric error analysis. VI. Confirmation of Reiger’s theory of scintillation. Astron. J. 1967, 72, 747–753. [Google Scholar] [CrossRef]
- Osborn, J.; Föhring, D.; Dhillon, V.S.; Wilson, R.W. Atmospheric scintillation in astronomical photometry. Mon. Not. R. Astron. Soc. 2015, 452, 1707–1716. [Google Scholar] [CrossRef]
- Lund, M.B. Making it rain: How giving me telescope time can reduce drought. arXiv 2020, arXiv:2003.13879. [Google Scholar]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef] [Green Version]
- Russell, H.N. On the determination of the orbital elements of eclipsing variable stars. I. Astrophys. J. 1912, 35, 315. [Google Scholar] [CrossRef]
- Kopal, Z. Close Binary systems; The International Astrophysics Series; Chapman & Hall: London, UK, 1959. [Google Scholar]
- Andersen, J. Accurate masses and radii of normal stars. Astron. Astrophys. Rev. 1991, 3, 91–126. [Google Scholar] [CrossRef]
- Torres, G.; Andersen, J.; Giménez, A. Accurate masses and radii of normal stars: Modern results and applications. Astron. Astrophys. Rev. 2010, 18, 67–126. [Google Scholar] [CrossRef] [Green Version]
- Southworth, J.; Maxted, P.F.L.; Smalley, B. Eclipsing binaries as standard candles. HD 23642 and the distance to the Pleiades. Astron. Astrophys. 2005, 429, 645–655. [Google Scholar] [CrossRef]
- Paczynski, B.; Sienkiewicz, R. Helium content of population II binary system CM Draconis. Astrophys. J. 1984, 286, 332–336. [Google Scholar] [CrossRef]
- Metcalfe, T.S.; Mathieu, R.D.; Latham, D.W.; Torres, G. The low-mass double-lined eclipsing binary CM Draconis: A test of the primordial helium abundance and the mass-radius relation near the bottom of the main sequence. Astrophys. J. 1996, 456, 356. [Google Scholar] [CrossRef]
- Ribas, I.; Jordi, C.; Torra, J.; Giménez, Á. Chemical composition of eclipsing binaries: A new approach to the helium-to-metal enrichment ratio. Mon. Not. R. Astron. Soc. 2000, 313, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.; Clausen, J.V.; Nordström, B. New strong evidence for the importance of convective overshooting in intermediate-mass stars. Astrophys. J. 1990, 363, L33–L36. [Google Scholar] [CrossRef]
- Ribas, I.; Jordi, C.; Giménez, Á. The mass dependence of the overshooting parameter determined from eclipsing binary data. Mon. Not. R. Astron. Soc. 2000, 318, L55–L59. [Google Scholar] [CrossRef]
- Claret, A.; Torres, G. The dependence of convective core overshooting on stellar mass: Additional binary systems and improved calibration. Astrophys. J. 2018, 859, 100. [Google Scholar] [CrossRef]
- Graczyk, D.; Smolec, R.; Pavlovski, K.; Southworth, J.; Pietrzyński, G.; Maxted, P.F.L.; Konorski, P.; Gieren, W.; Pilecki, B.; Taormina, M.; et al. A solar twin in the eclipsing binary LL Aquarii. Astron. Astrophys. 2016, 594, A92. [Google Scholar] [CrossRef] [Green Version]
- Higl, J.; Siess, L.; Weiss, A.; Ritter, H. An analysis of the TZ Fornacis binary system. Astron. Astrophys. 2018, 617, A36. [Google Scholar] [CrossRef]
- Moya, A.; Zuccarino, F.; Chaplin, W.J.; Davies, G.R. Empirical relations for the accurate estimation of stellar masses and radii. Astrophys. J. Suppl. Ser. 2018, 237, 21. [Google Scholar] [CrossRef]
- Eker, Z.; Bakış, V.; Bilir, S.; Soydugan, F.; Steer, I.; Soydugan, E.; Bakış, H.; Aliçavuş, F.; Aslan, G.; Alpsoy, M. Interrelated main-sequence mass-luminosity, mass-radius, and mass-effective temperature relations. Mon. Not. R. Astron. Soc. 2018, 479, 5491–5511. [Google Scholar] [CrossRef] [Green Version]
- Enoch, B.; Collier Cameron, A.; Parley, N.R.; Hebb, L. An improved method for estimating the masses of stars with transiting planets. Astron. Astrophys. 2010, 516, A33. [Google Scholar] [CrossRef] [Green Version]
- Southworth, J. Homogeneous studies of transiting extrasolar planets. IV. Thirty systems with space-based light curves. Mon. Not. R. Astron. Soc. 2011, 417, 2166–2196. [Google Scholar] [CrossRef]
- Tkachenko, A.; Pavlovski, K.; Johnston, C.; Pedersen, M.G.; Michielsen, M.; Bowman, D.M.; Southworth, J.; Tsymbal, V.; Aerts, C. The mass discrepancy in intermediate- and high-mass eclipsing binaries: The need for higher convective core masses. Astron. Astrophys. 2020, 637, A60. [Google Scholar] [CrossRef]
- Martinet, S.; Meynet, G.; Ekström, S.; Simón-Díaz, S.; Holgado, G.; Castro, N.; Georgy, C.; Eggenberger, P.; Buldgen, G.; Salmon, S.; et al. Convective core sizes in rotating massive stars. I. Constraints from solar metallicity OB field stars. Astron. Astrophys. 2021, 648, A126. [Google Scholar] [CrossRef]
- Johnston, C. One size does not fit all: Evidence for a range of mixing efficiencies in stellar evolution calculations. arXiv 2021, arXiv:2107.09075. [Google Scholar]
- Costa, G.; Girardi, L.; Bressan, A.; Marigo, P.; Rodrigues, T.S.; Chen, Y.; Lanza, A.; Goudfrooij, P. Mixing by overshooting and rotation in intermediate-mass stars. Mon. Not. R. Astron. Soc. 2019, 485, 4641–4657. [Google Scholar] [CrossRef]
- Dervişoǧlu, A.; Pavlovski, K.; Lehmann, H.; Southworth, J.; Bewsher, D. Evidence for conservative mass transfer in the classical Algol system δ Librae from its surface carbon-to-nitrogen abundance ratio. Mon. Not. R. Astron. Soc. 2018, 481, 5660–5674. [Google Scholar] [CrossRef]
- Sarna, M.J.; De Greve, J.P. Chemical evolution of Algols. Q. J. R. Astron. Soc. 1996, 37, 11. [Google Scholar]
- Ferraro, F.R.; Sabbi, E.; Gratton, R.; Piotto, G.; Lanzoni, B.; Carretta, E.; Rood, R.T.; Sills, A.; Fusi Pecci, F.; Moehler, S.; et al. Discovery of carbon/oxygen-depleted blue straggler stars in 47 Tucanae: The chemical signature of a mass transfer formation process. Astrophys. J. 2006, 647, L53–L56. [Google Scholar] [CrossRef] [Green Version]
- Kolbas, V.; Dervişoğlu, A.; Pavlovski, K.; Southworth, J. Tracing CNO exposed layers in the Algol-type binary system u Her. Mon. Not. R. Astron. Soc. 2014, 444, 3118–3129. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Podsiadlowski, P.; Mazzali, P.A.; Nomoto, K.; Lazzati, D.; Cappellaro, E. The rates of hypernovae and gamma-ray bursts: Implications for their progenitors. Astrophys. J. 2004, 607, L17–L20. [Google Scholar] [CrossRef]
- Belczynski, K.; Klencki, J.; Fields, C.E.; Olejak, A.; Berti, E.; Meynet, G.; Fryer, C.L.; Holz, D.E.; O’Shaughnessy, R.; Brown, D.A.; et al. Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astron. Astrophys. 2020, 636, A104. [Google Scholar] [CrossRef]
- Spitzer, L. Report to project rand: Astronomical advantages of an extra-terrestrial observatory. Astron. Q. 1990, 7, 131–142. [Google Scholar] [CrossRef]
- Wilson, R.; Boksenberg, A. Ultraviolet astronomy. Annu. Rev. Astron. Astrophys. 1969, 7, 421. [Google Scholar] [CrossRef]
- Savage, B.D. Ultraviolet-optical space astronomy—Past, present and future. In Ultraviolet-Optical Space Astronomy Beyond HST; Morse, J.A., Shull, J.M., Kinney, A.L., Eds.; 1999; Available online: http://articles.adsabs.harvard.edu//full/1999ASPC..164....3S/0000003.000.html (accessed on 10 September 2021).
- von Essen, C.; Lund, M.N.; Handberg, R.; Sosa, M.S.; Thiim Gadeberg, J.; Kjeldsen, H.; Vanderspek, R.K.; Mortensen, D.S.; Mallonn, M.; Mammana, L.; et al. TESS data for asteroseismology: Timing verification. Astron. J. 2020, 160, 34. [Google Scholar] [CrossRef]
- Tokovinin, A.; Thomas, S.; Sterzik, M.; Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 2006, 450, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Code, A.D.; Houck, T.E.; McNall, J.F.; Bless, R.C.; Lillie, C.F. Ultraviolet photometry from the Orbiting Astronomical Observatory. I. Instrumentation and operation. Astrophys. J. 1970, 161, 377. [Google Scholar] [CrossRef]
- Eaton, J.A.; Ward, D.H. Ultraviolet photometry from the Orbiting Astronomical Observatory. IX. The ultraviolet behavior of U Ophiuchi. Astrophys. J. 1973, 185, 921. [Google Scholar] [CrossRef]
- Heap, S.R. Ultraviolet photometry from the Orbiting Astronomical Observatory. XII. The eclipsing binary LY Aurigae. Astrophys. J. 1973, 186, 939. [Google Scholar] [CrossRef]
- Eaton, J.A. Ultraviolet photometry from the Orbiting Astronomical Observatory. XIX. Atmospheric properties of the detached binaries VV Orionis and MR Cygni. Astrophys. J. 1975, 197, 379–391. [Google Scholar] [CrossRef]
- von Zeipel, H. The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 1924, 84, 665–683. [Google Scholar] [CrossRef] [Green Version]
- Eaton, J.A. Ultraviolet photometry and spectrophotometry of Algol. Publ. Astron. Soc. Pac. 1975, 87, 745–751. [Google Scholar] [CrossRef]
- Kondo, Y.; McCluskey, G.E.; Eaton, J.A. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXII. Ultraviolet light variation of β Lyrae. Astrophys. Space Sci. 1976, 41, 121–137. [Google Scholar] [CrossRef]
- Cherepashchuk, A.M.; Eaton, J.A.; Khaliullin, K.F. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXIX. The structure of the eclipsing Wolf–Rayet binary V444 Cygni as derived from light curves between 2460 Å and 3.5 microns. Astrophys. J. 1984, 281, 774–788. [Google Scholar] [CrossRef]
- Doherty, L.R.; McNall, J.F.; Holm, A.V. Ultraviolet photometry from the Orbiting Astronomical Observatory. XI. The 1971 eclipse of 32 Cygni. Astrophys. J. 1974, 187, 521–530. [Google Scholar] [CrossRef]
- Doherty, L.R.; Jung, A.F. Ultraviolet photometry from the Orbiting Astronomical Observatory. XVIII. The 1972 eclipse of 31 Cygni. Astrophys. J. 1975, 195, 121–125. [Google Scholar] [CrossRef]
- Gallagher, J.S., III; Code, A.D. Ultraviolet photometry from the Orbiting Astronomical Observatory. X. Nova FH Serpentis 1970. Astrophys. J. 1974, 189, 303–314. [Google Scholar] [CrossRef]
- Gallagher, J.S.; Holm, A.V.; Anderson, C.M.; Webbink, R.F. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXIII. The symbiotic star AG Pegasi. Astrophys. J. 1979, 229, 994–1000. [Google Scholar] [CrossRef]
- Rogerson, J.B.; Spitzer, L.; Drake, J.F.; Dressler, K.; Jenkins, E.B.; Morton, D.C.; York, D.G. Spectrophotometric results from the Copernicus satellite. I. Instrumentation and performance. Astrophys. J. 1973, 181, L97–L102. [Google Scholar] [CrossRef]
- Hack, M.; Hutchings, J.B.; Kondo, Y.; McCluskey, G.E.; Plavec, M.; Polidan, R.S. Copernicus spectra of β Lyrae. Nature 1974, 249, 534–536. [Google Scholar] [CrossRef]
- St-Louis, N.; Willis, A.J.; Stevens, I.R. Ultraviolet observations of selective wind eclipses in gamma Velorum and evidence for colliding winds. Astrophys. J. 1993, 415, 298. [Google Scholar] [CrossRef]
- van Duinen, R.J.; Aalders, J.W.G.; Wesselius, P.R.; Wildeman, K.J.; Wu, C.C.; Luinge, W.; Snel, D. The ultraviolet experiment onboard the Astronomical Netherlands Satellite. Astron. Astrophys. 1975, 39, 159–163. [Google Scholar]
- Wu, C.C.; Panek, R.J. Ultraviolet light curves of the dwarf novae U Gem and VW Hyi. Astrophys. J. 1982, 262, 244–252. [Google Scholar] [CrossRef]
- Wu, C.C.; Panek, R.J. Ultraviolet photometry of dwarf novae in outburst. Astrophys. J. 1983, 271, 754–765. [Google Scholar] [CrossRef]
- Wu, C.C.; Kester, D. Ultraviolet photometry of Nova Cygni 1976. Astron. Astrophys. 1977, 58, 331–337. [Google Scholar]
- Wu, C.C.; Eaton, J.A.; Holm, A.V.; Milgrom, M.; Hammerschlag-Hensberge, G. ANS spectrophotometry: The bright X-ray binaries Hercules X-1 (HZ Herculis) and Cygnus X-1 (HDE 226868). Publ. Astron. Soc. Pac. 1982, 94, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Eaton, J.A.; Wu, C.C. ANS spectrophotometry: δ Pictoris as an upper-main-sequence Algol system. Publ. Astron. Soc. Pac. 1983, 95, 319–324. [Google Scholar] [CrossRef]
- Kondo, Y.; McCluskey, G.E.; Wu, C.C. Five-color band ultraviolet photometry of fourteen close binaries. Astrophys. J. Suppl. Ser. 1981, 47, 333–338. [Google Scholar] [CrossRef]
- Kondo, Y.; McCluskey, G.E.; Wu, C.C. Hot/cool spots observed in the ANS ultraviolet light curves of U Cephei. Astrophys. J. 1978, 222, 635–640. [Google Scholar] [CrossRef]
- Eaton, J.A.; Wu, C.C. Ultraviolet photometry from ANS: Chromospheric emission of W Ursae Majoris and 44 i Bootis. Astron. J. 1981, 86, 1387–1393. [Google Scholar] [CrossRef]
- Eaton, J.A.; Wu, C.C.; Rucinski, S.M. Ultraviolet colors of W UMa: Gravity darkening, temperature differences and the cause of W-type light curves. Astrophys. J. 1980, 239, 919–927. [Google Scholar] [CrossRef]
- Broadfoot, A.L.; Sandel, B.R.; Shemansky, D.E.; Atreya, S.K.; Donahue, T.M.; Moos, H.W.; Bertaux, J.L.; Blamont, J.E.; Ajello, J.M.; Strobel, D.F.; et al. Ultraviolet Spectrometer Experiment for the Voyager Mission. Space Sci. Rev. 1977, 21, 183–205. [Google Scholar] [CrossRef]
- Kondo, Y.; McCluskey, G.E.; Silvis, J.M.S.; Polidan, R.S.; McCluskey, C.P.S.; Eaton, J.A. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE and Voyager observations. Astrophys. J. 1994, 421, 787. [Google Scholar] [CrossRef]
- Polidan, R.S. 500 to 3200 Å observations of the interacting binary stars V356 Sgr and β Lyr. Space Sci. Rev. 1989, 50, 85–94. [Google Scholar] [CrossRef]
- Boggess, A.; Carr, F.A.; Evans, D.C.; Fischel, D.; Freeman, H.R.; Fuechsel, C.F.; Klinglesmith, D.A.; Krueger, V.L.; Longanecker, G.W.; Moore, J.V. The IUE spacecraft and instrumentation. Nature 1978, 275, 372–377. [Google Scholar] [CrossRef]
- Stickland, D.J.; Lloyd, C. Spectroscopic binary orbits from ultraviolet radial velocities. Paper 31. Stars with few IUE observations. Observatory 2001, 121, 1–54. [Google Scholar]
- Połubek, G. Ultraviolet light curves of eclipsing binary stars. I. The catalogue of IUE data. Adv. Space Res. 2003, 31, 393–398. [Google Scholar] [CrossRef]
- Brandi, E.; Garcia, L.G.; Kondo, Y.; Sahade, J. The region of formation of the ultraviolet high temperature resonance lines in the eclipsing binary β Persei (Algol). Astron. Astrophys. 1989, 215, 331–333. [Google Scholar]
- Sahade, J. Use of IUE data in advancing the knowledge of interacting binary stars. Astrophys. Space Sci. 1994, 214, 185. [Google Scholar] [CrossRef]
- Perryman, M.A.C.; Lindegren, L.; Kovalevsky, J.; Hög, E.; Bastian, U.; Bernacca, P.L.; Crézé, M.; Donati, F.; Grenon, M.; van Leeuwen, F.; et al. The HIPPARCOS catalogue. Astron. Astrophys. 1997, 323, L49–L52. [Google Scholar]
- van Leeuwen, F.; Evans, D.W.; Grenon, M.; Grossmann, V.; Mignard, F.; Perryman, M.A.C. The HIPPARCOS mission: Photometric data. Astron. Astrophys. 1997, 323, L61–L64. [Google Scholar]
- Kazarovets, E.V.; Samus, N.N.; Durlevich, O.V.; Frolov, M.S.; Antipin, S.V.; Kireeva, N.N.; Pastukhova, E.N. The 74th special name-list of variable stars. Inf. Bull. Var. Stars 1999, 4659, 1. [Google Scholar]
- Popper, D.M. Hipparcos parallaxes of eclipsing binaries and the radiative flux scale. Publ. Astron. Soc. Pac. 1998, 110, 919–922. [Google Scholar] [CrossRef] [Green Version]
- Ribas, I.; Gimenez, A.; Torra, J.; Jordi, C.; Oblak, E. Effective temperature of detached eclipsing binaries from Hipparcos parallax. Astron. Astrophys. 1998, 330, 600–604. [Google Scholar]
- Kruszewski, A.; Semeniuk, I. Nearby Hipparcos eclipsing binaries for colour-surface brightness calibration. Acta Astron. 1999, 49, 561–575. [Google Scholar]
- Semeniuk, I. Comparison of parallaxes from eclipsing binaries method with Hipparcos parallaxes. Acta Astron. 2000, 50, 381–386. [Google Scholar]
- Griffin, R.F. Spectroscopic binary orbits from photoelectric radial velocities. Paper 160: HD 44192, HD 45191, and HD 92823. Observatory 2001, 121, 315–338. [Google Scholar]
- Griffin, R.F. Spectroscopic binary orbits from photoelectric radial velocities. Paper 230. Observatory 2013, 133, 156–184. [Google Scholar]
- Southworth, J. Rediscussion of eclipsing binaries. Paper V. The triple system V455 Aurigae. Observatory 2021, 141, 190. [Google Scholar]
- Munari, U.; Tomov, T.; Zwitter, T.; Milone, E.F.; Kallrath, J.; Marrese, P.M.; Boschi, F.; Prša, A.; Tomasella, L.; Moro, D. Evaluating GAIA performances on eclipsing binaries. I. Orbits and stellar parameters for V505 Persei, V570 Persei and OO Pegasi. Astron. Astrophys. 2001, 378, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Zwitter, T.; Munari, U.; Marrese, P.M.; Prša, A.; Milone, E.F.; Boschi, F.; Tomov, T.; Siviero, A. Evaluating GAIA performances on eclipsing binaries. II. Orbits and stellar parameters for V781 Tau, UV Leo and GK Dra. Astron. Astrophys. 2003, 404, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Bruntt, H. Asteroseismology with the WIRE satellite. Commun. Asteroseismol. 2007, 150, 326. [Google Scholar] [CrossRef] [Green Version]
- Bruntt, H.; Southworth, J. A new level of photometric precision: WIRE observations of eclipsing binary stars. J. Phys. Conf. Ser. 2008, 118, 012012. [Google Scholar] [CrossRef] [Green Version]
- Bruntt, H.; Southworth, J.; Torres, G.; Penny, A.J.; Clausen, J.V.; Buzasi, D.L. Eclipsing binaries observed with the WIRE satellite. I. Discovery and photometric analysis of the new bright A0 IV eclipsing binary ψ Centauri. Astron. Astrophys. 2006, 456, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Southworth, J.; Bruntt, H.; Buzasi, D.L. Eclipsing binaries observed with the WIRE satellite. II. β Aurigae and non-linear limb darkening in light curves. Astron. Astrophys. 2007, 467, 1215–1226. [Google Scholar]
- Baker, R.H. The spectroscopic binary β Aurigae. Publ. Allegh. Obs. Univ. Pittsburgh 1910, 1, 163–190. [Google Scholar]
- Stebbins, J. A new variable star, β Aurigae. Astrophys. J. 1911, 34, 112–130. [Google Scholar] [CrossRef]
- Walker, G.; Matthews, J.; Kuschnig, R.; Johnson, R.; Rucinski, S.; Pazder, J.; Burley, G.; Walker, A.; Skaret, K.; Zee, R.; et al. The MOST asteroseismology mission: Ultraprecise photometry from space. Publ. Astron. Soc. Pac. 2003, 115, 1023–1035. [Google Scholar] [CrossRef]
- Rucinski, S.M.; Kuschnig, R.; Matthews, J.M.; Dimitrov, W.; Pribulla, T.; Guenther, D.B.; Moffat, A.F.J.; Sasselov, D.; Walker, G.A.H.; Weiss, W.W. Discovery of the strongly eccentric, short-period binary nature of the B-type system HD 313926 by the MOST satellite. Mon. Not. R. Astron. Soc. 2007, 380, L63–L66. [Google Scholar] [CrossRef] [Green Version]
- Pribulla, T.; Rucinski, S.; Matthews, J.M.; Kallinger, T.; Kuschnig, R.; Rowe, J.F.; Guenther, D.B.; Moffat, A.F.J.; Sasselov, D.; Walker, G.A.H.; et al. MOST satellite photometry of stars in the M67 field: Eclipsing binaries, blue stragglers and δ Scuti variables. Mon. Not. R. Astron. Soc. 2008, 391, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Bailyn, C.D. Blue stragglers and other stellar anomalies: Implications for the dynamics of globular clusters. Annu. Rev. Astron. Astrophys. 1995, 33, 133–162. [Google Scholar] [CrossRef]
- Pribulla, T.; Rucinski, S.M.; Latham, D.W.; Quinn, S.N.; Siwak, M.; Matthews, J.M.; Kuschnig, R.; Rowe, J.F.; Guenther, D.B.; Moffat, A.F.J.; et al. Eclipsing binaries in the MOST satellite fields. Astron. Nachrichten 2010, 331, 397. [Google Scholar] [CrossRef]
- Jerzykiewicz, M.; Lehmann, H.; Niemczura, E.; Molenda-Żakowicz, J.; Dymitrov, W.; Fagas, M.; Guenther, D.B.; Hartmann, M.; Hrudková, M.; Kamiński, K.; et al. μ Eridani from MOST and from the ground: An orbit, the SPB component’s fundamental parameters and the SPB frequencies. Mon. Not. R. Astron. Soc. 2013, 432, 1032–1045. [Google Scholar] [CrossRef] [Green Version]
- Pablo, H.; Richardson, N.D.; Moffat, A.F.J.; Corcoran, M.; Shenar, T.; Benvenuto, O.; Fuller, J.; Nazé, Y.; Hoffman, J.L.; Miroshnichenko, A.; et al. A coordinated X-ray and optical campaign of the nearest massive eclipsing binary, δ Orionis Aa. III. Analysis of optical photometric (MOST) and spectroscopic (ground-based) variations. Astrophys. J. 2015, 809, 134. [Google Scholar] [CrossRef] [Green Version]
- Windemuth, D.; Herbst, W.; Tingle, E.; Fuechsl, R.; Kilgard, R.; Pinette, M.; Templeton, M.; Henden, A. Dramatic evolution of the disk-shaped secondary in the Orion Trapezium star θ1 Ori B1 (BM Ori): MOST satellite observations. Astrophys. J. 2013, 768, 67. [Google Scholar] [CrossRef] [Green Version]
- Nemravová, J.A.; Harmanec, P.; Brož, M.; Vokrouhlický, D.; Mourard, D.; Hummel, C.A.; Cameron, C.; Matthews, J.M.; Bolton, C.T.; Božić, H.; et al. ξ Tauri: A unique laboratory to study the dynamic interaction in a compact hierarchical quadruple system. Astron. Astrophys. 2016, 594, A55. [Google Scholar] [CrossRef]
- Auvergne, M.; Bodin, P.; Boisnard, L.; Buey, J.T.; Chaintreuil, S.; Epstein, G.; Jouret, M.; Lam-Trong, T.; Levacher, P.; Magnan, A.; et al. The CoRoT satellite in flight: Description and performance. Astron. Astrophys. 2009, 506, 411–424. [Google Scholar] [CrossRef]
- Baglin, A.; Chaintreuil, S.; Vandermarcq, O.; CoRot Team. II.1. The CoRoT observations. In The CoRoT Legacy Book: The Adventure of the Ultra High Precision Photometry from Space; 2016; Available online: https://www.edp-open.org/images/stories/books/contents/corot/cII_1.pdf (accessed on 10 September 2021).
- Southworth, J.; Hinse, T.C.; Jørgensen, U.G.; Dominik, M.; Ricci, D.; Burgdorf, M.J.; Hornstrup, A.; Wheatley, P.J.; Anguita, T.; Bozza, V.; et al. High-precision photometry by telescope defocussing. I. The transiting planetary system WASP-5. Mon. Not. R. Astron. Soc. 2009, 396, 1023–1031. [Google Scholar] [CrossRef]
- Deleuil, M.; Aigrain, S.; Moutou, C.; Cabrera, J.; Bouchy, F.; Deeg, H.J.; Almenara, J.M.; Hébrard, G.; Santerne, A.; Alonso, R.; et al. Planets, candidates, and binaries from the CoRoT/Exoplanet programme. The CoRoT transit catalogue. Astron. Astrophys. 2018, 619, A97. [Google Scholar] [CrossRef]
- Maceroni, C.; Montalbán, J.; Michel, E.; Harmanec, P.; Prsa, A.; Briquet, M.; Niemczura, E.; Morel, T.; Ladjal, D.; Auvergne, M.; et al. HD 174884: A strongly eccentric, short-period early-type binary system discovered by CoRoT. Astron. Astrophys. 2009, 508, 1375–1389. [Google Scholar] [CrossRef] [Green Version]
- Damiani, C.; Maceroni, C.; Cardini, D.; Debosscher, J.; Balaguer-Núñez, L.; Ribas, I. CoRoT 102931335: A candidate γ Dor in an eclipsing binary. Astrophys. Space Sci. 2010, 328, 91–96. [Google Scholar] [CrossRef]
- Maceroni, C.; Montalbán, J.; Gandolfi, D.; Pavlovski, K.; Rainer, M. CoRoT 102918586: A γ Doradus pulsator in a short-period eccentric eclipsing binary. Astron. Astrophys. 2013, 552, A60. [Google Scholar] [CrossRef] [Green Version]
- Mkrtichian, D.E.; Kusakin, A.V.; Gamarova, A.Y.; Nazarenko, V. Pulsating components of eclipsing binaries: New asteroseismic methods of studies and prospects. In IAU Colloq. 185: Radial and Nonradial Pulsations as Probes of Stellar Physics; Aerts, C., Bedding, T.R., Christensen-Dalsgaard, J., Eds.; Astronomical Society of the Pacific Conference Series; 2002; Available online: http://aspbooks.org/publications/259/96.pdf (accessed on 10 September 2021).
- Mkrtichian, D.E.; Nazarenko, V.; Gamarova, A.Y.; Lehmann, H.; Rodriguez, E.; Olson, E.C.; Kim, S.; Kusakin, A.V.; Rovithis-Livaniou, H. Pulsations in Algols. In Interplay of Periodic, Cyclic and Stochastic Variability in Selected Areas of the H-R Diagram; Sterken, C., Ed.; Astronomical Society of the Pacific Conference Series; 2003; Available online: http://www.aspbooks.org/publications/292/113.pdf (accessed on 10 September 2021).
- Sokolovsky, K.; Maceroni, C.; Hareter, M.; Damiani, C.; Balaguer-Núñez, L.; Ribas, I. A new eclipsing binary system with a pulsating component detected by CoRoT. Commun. Asteroseismol. 2010, 161, 55–70. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.; Maceroni, C.; Gandolfi, D.; Lehmann, H.; Hatzes, A.P. CoRoT 105906206: A short-period and totally eclipsing binary with a δ Scuti type pulsator. Astron. Astrophys. 2014, 565, A55. [Google Scholar] [CrossRef] [Green Version]
- Chapellier, E.; Mathias, P. The CoRoT star ID 100866999: A hybrid γ Doradus-δ Scuti star in an eclipsing binary system. Astron. Astrophys. 2013, 556, A87. [Google Scholar] [CrossRef] [Green Version]
- Strassmeier, K.G.; Granzer, T.; Mallonn, M.; Weber, M.; Weingrill, J. CoRoT photometry and STELLA spectroscopy of an eccentric, eclipsing, and spotted HgMn binary with sub-synchronized rotation. Astron. Astrophys. 2017, 597, A55. [Google Scholar] [CrossRef] [Green Version]
- Mandushev, G.; Torres, G.; Latham, D.W.; Charbonneau, D.; Alonso, R.; White, R.J.; Stefanik, R.P.; Dunham, E.W.; Brown, T.M.; O’Donovan, F.T. The challenge of wide-field transit surveys: The case of GSC 01944-02289. Astrophys. J. 2005, 621, 1061–1071. [Google Scholar] [CrossRef]
- O’Donovan, F.T.; Charbonneau, D.; Torres, G.; Mandushev, G.; Dunham, E.W.; Latham, D.W.; Alonso, R.; Brown, T.M.; Esquerdo, G.A.; Everett, M.E.; et al. Rejecting astrophysical false positives from the TrES transiting planet survey: The example of GSC 03885-00829. Astrophys. J. 2006, 644, 1237–1245. [Google Scholar] [CrossRef]
- Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H.J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; et al. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star discovered in the CoRoT light curves. Astron. Astrophys. 2013, 553, A30. [Google Scholar] [CrossRef] [Green Version]
- Tal-Or, L.; Santerne, A.; Mazeh, T.; Bouchy, F.; Moutou, C.; Alonso, R.; Gandolfi, D.; Aigrain, S.; Auvergne, M.; Barge, P.; et al. CoRoT LRa02_E2_0121: A Neptune-size planet candidate turns into a hierarchical triple system with a giant primary. Astron. Astrophys. 2011, 534, A67. [Google Scholar] [CrossRef]
- Fernández Fernández, J.; Chou, D.Y. Study of CoRoT 310266512: A light curve with primary, secondary and tertiary eclipses. Publ. Astron. Soc. Pac. 2015, 127, 421. [Google Scholar] [CrossRef] [Green Version]
- Desmet, M.; Frémat, Y.; Baudin, F.; Harmanec, P.; Lampens, P.; Pacheco, E.J.; Briquet, M.; Degroote, P.; Neiner, C.; Mathias, P.; et al. CoRoT photometry and high-resolution spectroscopy of the interacting eclipsing binary AU Monocerotis. Mon. Not. R. Astron. Soc. 2010, 401, 418–432. [Google Scholar] [CrossRef] [Green Version]
- Gillen, E.; Aigrain, S.; McQuillan, A.; Bouvier, J.; Hodgkin, S.; Alencar, S.H.P.; Terquem, C.; Southworth, J.; Gibson, N.P.; Cody, A.; et al. CoRoT 223992193: A new, low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disc. Astron. Astrophys. 2014, 562, A50. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.W.; Rucinski, S.M.; Moffat, A.F.J.; Schwarzenberg-Czerny, A.; Koudelka, O.F.; Grant, C.C.; Zee, R.E.; Kuschnig, R.; Mochnacki, S.; Matthews, J.M.; et al. BRITE-Constellation: Nanosatellites for precision photometry of bright stars. Publ. Astron. Soc. Pac. 2014, 126, 573. [Google Scholar] [CrossRef] [Green Version]
- Pablo, H.; Whittaker, G.N.; Popowicz, A.; Mochnacki, S.M.; Kuschnig, R.; Grant, C.C.; Moffat, A.F.J.; Rucinski, S.M.; Matthews, J.M.; Schwarzenberg-Czerny, A.; et al. The BRITE Constellation nanosatellite mission: Testing, commissioning and operations. Publ. Astron. Soc. Pac. 2016, 128, 125001. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.W.; Zwintz, K.; Kuschnig, R.; Handler, G.; Moffat, A.F.J.; Baade, D.; Bowman, D.M.; Granzer, T.; Kallinger, T.; Koudelka, O.F.; et al. Space photometry with Brite-Constellation. Universe 2021, 7, 199. [Google Scholar] [CrossRef]
- Schmutz, W.; Koenigsberger, G. Long uninterrupted photometric observations of the Wolf–Rayet star EZ CMa by the Toronto BRITE satellite reveal a very fast apsidal motion. Astron. Astrophys. 2019, 624, L3. [Google Scholar] [CrossRef]
- Rucinski, S.M.; Pigulski, A.; Popowicz, A.; Kuschnig, R.; Kozłowski, S.; Moffat, A.F.J.; Pavlovski, K.; Handler, G.; Pablo, H.; Wade, G.A.; et al. Light-curve instabilities of β Lyrae observed by the BRITE satellites. Astron. J. 2018, 156, 12. [Google Scholar] [CrossRef]
- Rucinski, S.M.; Pigulski, A.; Kuschnig, R.; Moffat, A.F.J.; Popowicz, A.; Pablo, H.; Wade, G.A.; Weiss, W.W.; Zwintz, K. Photometry of β Lyrae in 2018 by the BRITE satellites. Astron. J. 2019, 158, 148. [Google Scholar] [CrossRef]
- Strassmeier, K.G.; Granzer, T.; Weber, M.; Kuschnig, R.; Pigulski, A.; Popowicz, A.; Moffat, A.F.J.; Wade, G.A.; Zwintz, K.; Handler, G. BRITE photometry and STELLA spectroscopy of bright stars in Auriga: Rotation, pulsation, orbits, and eclipses. Astron. Astrophys. 2020, 644, A104. [Google Scholar] [CrossRef]
- Jerzykiewicz, M.; Pigulski, A.; Michalska, G.; Moździerski, D.; Ratajczak, M.; Handler, G.; Moffat, A.F.J.; Pablo, H.; Popowicz, A.; Wade, G.A.; et al. BRITE observations of ν Centauri and γ Lupi, the first non-eclipsing members of the new class of nascent binaries. Mon. Not. R. Astron. Soc. 2021, 503, 5554–5568. [Google Scholar] [CrossRef]
- Richardson, N.D.; Russell, C.M.P.; St-Jean, L.; Moffat, A.F.J.; St-Louis, N.; Shenar, T.; Pablo, H.; Hill, G.M.; Ramiaramanantsoa, T.; Corcoran, M.; et al. The variability of the BRITE-est Wolf–Rayet binary, γ2 Velorum. I. Photometric and spectroscopic evidence for colliding winds. Mon. Not. R. Astron. Soc. 2017, 471, 2715–2729. [Google Scholar] [CrossRef] [Green Version]
- Richardson, N.D.; Pablo, H.; Sterken, C.; Pigulski, A.; Koenigsberger, G.; Moffat, A.F.J.; Madura, T.I.; Hamaguchi, K.; Corcoran, M.F.; Damineli, A.; et al. BRITE-Constellation reveals evidence for pulsations in the enigmatic binary η Carinae. Mon. Not. R. Astron. Soc. 2018, 475, 5417–5423. [Google Scholar] [CrossRef] [Green Version]
- Pablo, H.; Richardson, N.D.; Fuller, J.; Rowe, J.; Moffat, A.F.J.; Kuschnig, R.; Popowicz, A.; Handler, G.; Neiner, C.; Pigulski, A.; et al. The most massive heartbeat: An in-depth analysis of ı Orionis. Mon. Not. R. Astron. Soc. 2017, 467, 2494–2503. [Google Scholar] [CrossRef] [Green Version]
- Pablo, H.; Shultz, M.; Fuller, J.; Wade, G.A.; Paunzen, E.; Mathis, S.; Le Bouquin, J.B.; Pigulski, A.; Handler, G.; Alecian, E.; et al. ϵ Lupi: Measuring the heartbeat of a doubly magnetic massive binary with BRITE Constellation. Mon. Not. R. Astron. Soc. 2019, 488, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Jerzykiewicz, M.; Pigulski, A.; Handler, G.; Moffat, A.F.J.; Popowicz, A.; Wade, G.A.; Zwintz, K.; Pablo, H. BRITE-Constellation photometry of π5 Orionis, an ellipsoidal SPB variable. Mon. Not. R. Astron. Soc. 2020, 496, 2391–2401. [Google Scholar] [CrossRef]
- Jeffers, S.V.; Barnes, J.R.; Collier Cameron, A.; Donati, J.F. Hubble Space Telescope observations of SV Cam. I. The importance of unresolved star-spot distributions in light-curve fitting. Mon. Not. R. Astron. Soc. 2006, 366, 667–674. [Google Scholar] [CrossRef]
- Jeffers, S.V.; Aufdenberg, J.P.; Hussain, G.A.J.; Collier Cameron, A.; Holzwarth, V.R. Hubble Space Telescope observations of SV Cam. II. First derivative light-curve modelling using PHOENIX and ATLAS model atmospheres. Mon. Not. R. Astron. Soc. 2006, 367, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Benedict, G.F.; McArthur, B.E.; Nelan, E.P.; Harrison, T.E. Astrometry with Hubble Space Telescope Fine Guidance Sensors—A review. Publ. Astron. Soc. Pac. 2017, 129, 012001. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, P.D.; Gilliland, R.L.; Guhathakurta, P.; Petro, L.D.; Saha, A.; Shara, M.M. Stellar variability in the central populations of 47 Tucanae from WFPC observations with the Hubble Space Telescope. II. Binary systems. Astrophys. J. 1996, 468, 241. [Google Scholar] [CrossRef]
- Massey, P.; Penny, L.R.; Vukovich, J. Orbits of four very massive binaries in the R136 cluster. Astrophys. J. 2002, 565, 982–993. [Google Scholar] [CrossRef]
- Bonanos, A.Z.; Yang, M.; Sokolovsky, K.V.; Gavras, P.; Hatzidimitriou, D.; Bellas-Velidis, I.; Kakaletris, G.; Lennon, D.J.; Nota, A.; White, R.L.; et al. The Hubble Catalog of Variables (HCV). Astron. Astrophys. 2019, 630, A92. [Google Scholar] [CrossRef]
- Gillen, E.; Hillenbrand, L.A.; Stauffer, J.; Aigrain, S.; Rebull, L.; Cody, A.M. Mon-735: A new low-mass pre-main-sequence eclipsing binary in NGC 2264. Mon. Not. R. Astron. Soc. 2020, 495, 1531–1548. [Google Scholar] [CrossRef]
- Winkler, C.; Courvoisier, T.J.L.; Di Cocco, G.; Gehrels, N.; Giménez, A.; Grebenev, S.; Hermsen, W.; Mas-Hesse, J.M.; Lebrun, F.; Lund, N.; et al. The INTEGRAL mission. Astron. Astrophys. 2003, 411, L1–L6. [Google Scholar] [CrossRef] [Green Version]
- Kuulkers, E.; Ferrigno, C.; Kretschmar, P.; Alfonso-Garzón, J.; Baab, M.; Bazzano, A.; Bélanger, G.; Benson, I.; Bird, A.J.; Bozzo, E.; et al. INTEGRAL reloaded: Spacecraft, instruments and ground system. New Astron. Rev. 2021, 93, 101629. [Google Scholar] [CrossRef]
- Zasche, P. The first light-curve analysis of eclipsing binaries observed by the INTEGRAL/OMC. New Astron. 2008, 13, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Zasche, P. The data mining: An analysis of 20 eclipsing binary light-curves observed by the INTEGRAL/OMC. New Astron. 2009, 14, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Zasche, P. The data mining. II. An analysis of 33 eclipsing binary light-curves observed by the INTEGRAL/OMC. New Astron. 2010, 15, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Zasche, P. The data mining. III. An analysis of 21 eclipsing binary light-curves observed by the INTEGRAL/OMC. New Astron. 2011, 16, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Jackson, B.V.; Buffington, A.; Hick, P.P.; Altrock, R.C.; Figueroa, S.; Holladay, P.E.; Johnston, J.C.; Kahler, S.W.; Mozer, J.B.; Price, S.; et al. The Solar Mass-Ejection Imager (SMEI) mission. Sol. Phys. 2004, 225, 177–207. [Google Scholar] [CrossRef]
- Hounsell, R.; Darnley, M.J.; Bode, M.F.; Harman, D.J.; Surina, F.; Starrfield, S.; Holdsworth, D.L.; Bewsher, D.; Hick, P.P.; Jackson, B.V.; et al. Nova light curves from the Solar Mass Ejection Imager (SMEI). II. The extended catalogue. Astrophys. J. 2016, 820, 104. [Google Scholar] [CrossRef] [Green Version]
- Eyles, C.J.; Harrison, R.A.; Davis, C.J.; Waltham, N.R.; Shaughnessy, B.M.; Mapson-Menard, H.C.A.; Bewsher, D.; Crothers, S.R.; Davies, J.A.; Simnett, G.M.; et al. The Heliospheric Imagers onboard the STEREO mission. Sol. Phys. 2009, 254, 387–445. [Google Scholar] [CrossRef]
- Wraight, K.T.; White, G.J.; Bewsher, D.; Norton, A.J. STEREO observations of stars and the search for exoplanets. Mon. Not. R. Astron. Soc. 2011, 416, 2477–2493. [Google Scholar] [CrossRef] [Green Version]
- Wraight, K.T.; Fossati, L.; White, G.J.; Norton, A.J.; Bewsher, D. Bright low mass eclipsing binary candidates observed by STEREO. Mon. Not. R. Astron. Soc. 2012, 427, 2298–2307. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Ruan, P.; Cai, H.; Deng, J.; Hu, J.; Jiang, X.; Liu, Z.; Qiu, Y.; Wang, J.; Wang, S.; et al. LUT: A lunar-based ultraviolet telescope. Sci. China Physics, Mech. Astron. 2011, 54, 558–562. [Google Scholar] [CrossRef]
- Wang, J.; Cao, L.; Meng, X.M.; Cai, H.B.; Deng, J.S.; Han, X.H.; Qiu, Y.L.; Wang, F.; Wang, S.; Wen, W.B.; et al. Photometric calibration of the Lunar-based Ultraviolet Telescope for its first six months of operation on the Lunar surface. Res. Astron. Astrophys. 2015, 15, 1068. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.M.; Wei, J.Y.; Cao, L.; Qiu, Y.L.; Wu, C.; Wang, J.; Han, X.H.; Deng, J.S.; Xin, L.P.; Cai, H.B. Data Processing Pipelines for Lunar-based Ultraviolet Telescope. In Astronomical Data Analysis Software and Systems XXV; Lorente, N.P.F., Shortridge, K., Wayth, R., Eds.; Astronomical Society of the Pacific Conference Series; 2017; Available online: https://arxiv.org/pdf/1505.07951.pdf (accessed on 10 September 2021).
- Liao, W.; Qian, S.; Li, L.; Zhou, X.; Zhao, E.; Liu, N. LUT observations of the mass-transferring binary AI Dra. Astrophys. Space Sci. 2016, 361, 184. [Google Scholar] [CrossRef]
- Liao, W.P.; Qian, S.B.; Zejda, M.; Zhu, L.Y.; Li, L.J. Lunar-based Ultraviolet Telescope study of the well-known Algol-type binary TW Dra. Res. Astron. Astrophys. 2016, 16, 94. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Zhou, X.; Hu, J.Y.; Qian, S.B.; Li, L.J.; Liao, W.P.; Tian, X.M.; Wang, Z.H. LUT Reveals an Algol-type eclipsing binary with three additional stellar companions in a multiple system. Astron. J. 2016, 151, 107. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Qian, S.B.; Zhang, J.; Li, L.J.; Wang, Q.S. The photometric investigation of V921 Her using the Lunar-Based Ultraviolet Telescope of Chang’e-3 Mission. Adv. Astron. 2016, 2016, 746897. [Google Scholar] [CrossRef]
- Borucki, W.J. Kepler mission: Development and overview. Rep. Prog. Phys. 2016, 79, 036901. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.B.; Sobeck, C.; Haas, M.; Still, M.; Barclay, T.; Mullally, F.; Troeltzsch, J.; Aigrain, S.; Bryson, S.T.; Caldwell, D.; et al. The K2 mission: Characterisation and early results. Publ. Astron. Soc. Pac. 2014, 126, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Borucki, W.J.; Koch, D.G.; Basri, G.; Batalha, N.; Boss, A.; Brown, T.M.; Caldwell, D.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Characteristics of Kepler planetary candidates based on the first data set. Astrophys. J. 2011, 728, 117. [Google Scholar] [CrossRef]
- Rowe, J.F.; Bryson, S.T.; Marcy, G.W.; Lissauer, J.J.; Jontof-Hutter, D.; Mullally, F.; Gilliland, R.L.; Issacson, H.; Ford, E.; Howell, S.B.; et al. Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. Astrophys. J. 2014, 784, 45. [Google Scholar] [CrossRef] [Green Version]
- Marcy, G.W.; Isaacson, H.; Howard, A.W.; Rowe, J.F.; Jenkins, J.M.; Bryson, S.T.; Latham, D.W.; Howell, S.B.; Gautier, T.N., III; Batalha, N.M.; et al. Masses, radii, and orbits of small Kepler planets: The transition from gaseous to rocky planets. Astrophys. J. Suppl. Ser. 2014, 210, 20. [Google Scholar] [CrossRef] [Green Version]
- Morton, T.D.; Bryson, S.T.; Coughlin, J.L.; Rowe, J.F.; Ravichandran, G.; Petigura, E.A.; Haas, M.R.; Batalha, N.M. False positive probabilities for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives. Astrophys. J. 2016, 822, 86. [Google Scholar] [CrossRef] [Green Version]
- Prša, A.; Batalha, N.; Slawson, R.W.; Doyle, L.R.; Welsh, W.F.; Orosz, J.A.; Seager, S.; Rucker, M.; Mjaseth, K.; Engle, S.G.; et al. Kepler Eclipsing Binary Stars. I. Catalogue and principal characterisation of 1879 eclipsing binaries in the first data release. Astron. J. 2011, 141, 83. [Google Scholar] [CrossRef] [Green Version]
- Kirk, B.; Conroy, K.; Prša, A.; Abdul-Masih, M.; Kochoska, A.; Matijevič, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; et al. Kepler eclipsing binary stars. VII. The catalogue of eclipsing binaries found in the entire Kepler data set. Astron. J. 2016, 151, 68. [Google Scholar] [CrossRef] [Green Version]
- Matijevič, G.; Prša, A.; Orosz, J.A.; Welsh, W.F.; Bloemen, S.; Barclay, T. Kepler Eclipsing Binary Stars. III. Classification of Kepler eclipsing binary light curves with locally linear embedding. Astron. J. 2012, 143, 123. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Masih, M.; Prša, A.; Conroy, K.; Bloemen, S.; Boyajian, T.; Doyle, L.R.; Johnston, C.; Kostov, V.; Latham, D.W.; Matijevič, G.; et al. Kepler Eclipsing Binary Stars. VIII. Identification of false positive eclipsing binaries and re-extraction of new light curves. Astron. J. 2016, 151, 101. [Google Scholar] [CrossRef]
- Hełminiak, K.G.; Ukita, N.; Kambe, E.; Kozłowski, S.K.; Sybilski, P.; Ratajczak, M.; Maehara, H.; Konacki, M. HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field. I. Single-lined objects. Mon. Not. R. Astron. Soc. 2016, 461, 2896–2913. [Google Scholar] [CrossRef] [Green Version]
- Hełminiak, K.G.; Ukita, N.; Kambe, E.; Kozłowski, S.K.; Sybilski, P.; Maehara, H.; Ratajczak, M.; Konacki, M.; Pawłaszek, R.K. HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field. II. Double- and triple-lined objects. Mon. Not. R. Astron. Soc. 2017, 468, 1726–1746. [Google Scholar] [CrossRef] [Green Version]
- Hełminiak, K.G.; Konacki, M.; Maehara, H.; Kambe, E.; Ukita, N.; Ratajczak, M.; Pigulski, A.; Kozłowski, S.K. HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field. III. Spectral analysis, updated parameters and new systems. Mon. Not. R. Astron. Soc. 2019, 484, 451–475. [Google Scholar] [CrossRef] [Green Version]
- Maxted, P.F.L.; Hutcheon, R.J. Discovery and characterisation of long-period eclipsing binary stars from Kepler K2 campaigns 1, 2, and 3. Astron. Astrophys. 2018, 616, A38. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, S.; Bender, C.F.; Hambleton, K.; Fleming, S.W.; Deshpande, R.; Conroy, K.; Matijevič, G.; Hebb, L.; Roy, A.; Ak, H.; et al. The SDSS-HET survey of Kepler eclipsing binaries. Description of the survey and first results. Astrophys. J. 2019, 884, 126. [Google Scholar] [CrossRef] [Green Version]
- Hoxie, D.T. The low-mass main-sequence: The comparison between theory and observation. Astron. Astrophys. 1973, 26, 437–441. [Google Scholar]
- Ribas, I. Masses and radii of low-mass stars: Theory versus observations. Astrophys. Space Sci. 2006, 304, 89–92. [Google Scholar] [CrossRef]
- López-Morales, M. On the correlation between the magnetic activity levels, metallicities, and radii of low-mass stars. Astrophys. J. 2007, 660, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Berger, D.H.; Gies, D.R.; McAlister, H.A.; Brummelaar, T.A.T.; Henry, T.J.; Sturmann, J.; Sturmann, L.; Turner, N.H.; Ridgway, S.T.; Aufdenberg, J.P.; et al. First results from the CHARA Array. IV. The interferometric radii of low-mass stars. Astrophys. J. 2006, 644, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Spada, F.; Demarque, P.; Kim, Y.C.; Sills, A. The radius discrepancy in low-mass stars: Single versus binaries. Astrophys. J. 2013, 776, 87. [Google Scholar] [CrossRef] [Green Version]
- Morrell, S.; Naylor, T. Exploring the M-dwarf luminosity-temperature-radius relationships using Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 489, 2615–2633. [Google Scholar] [CrossRef] [Green Version]
- Torres, G. Fundamental properties of lower main-sequence stars. Astron. Nachrichten 2013, 334, 4. [Google Scholar] [CrossRef] [Green Version]
- Bass, G.; Orosz, J.A.; Welsh, W.F.; Windmiller, G.; Ames Gregg, T.; Fetherolf, T.; Wade, R.A.; Quinn, S.N. Kepler studies of low-mass eclipsing binaries. I. Parameters of the long-period binary KIC 6131659. Astrophys. J. 2012, 761, 157. [Google Scholar] [CrossRef] [Green Version]
- Ofir, A.; Gandolfi, D.; Buchhave, L.; Lacy, C.H.S.; Hatzes, A.P.; Fridlund, M. KIC 1571511B: A benchmark low-mass star in an eclipsing binary system in the Kepler field. Mon. Not. R. Astron. Soc. 2012, 423, L1–L5. [Google Scholar] [CrossRef]
- Han, E.; Muirhead, P.S.; Swift, J.J.; Baranec, C.; Law, N.M.; Riddle, R.; Atkinson, D.; Mace, G.N.; DeFelippis, D. Magnetic inflation and stellar mass. I. Revised parameters for the component stars of the Kepler low-mass eclipsing binary T-Cyg1-12664. Astron. J. 2017, 154, 100. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, J.L.; López-Morales, M.; Harrison, T.E.; Ule, N.; Hoffman, D.I. Low-mass eclipsing binaries in the initial Kepler data release. Astron. J. 2011, 141, 78. [Google Scholar] [CrossRef]
- Southworth, J.; Maxted, P.F.L.; Smalley, B. Eclipsing binaries in open clusters. I. V615 Per and V618 Per in h Persei. Mon. Not. R. Astron. Soc. 2004, 349, 547–559. [Google Scholar] [CrossRef] [Green Version]
- Brogaard, K.; Bruntt, H.; Grundahl, F.; Clausen, J.V.; Frandsen, S.; Vandenberg, D.A.; Bedin, L.R. Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results. Astron. Astrophys. 2011, 525, A2. [Google Scholar] [CrossRef] [Green Version]
- Brogaard, K.; VandenBerg, D.A.; Bruntt, H.; Grundahl, F.; Frandsen, S.; Bedin, L.R.; Milone, A.P.; Dotter, A.; Feiden, G.A.; Stetson, P.B.; et al. Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. II. Age dependencies and new insights. Astron. Astrophys. 2012, 543, A106. [Google Scholar] [CrossRef]
- Brewer, L.N.; Sandquist, E.L.; Mathieu, R.D.; Milliman, K.; Geller, A.M.; Jeffries, M.W., Jr.; Orosz, J.A.; Brogaard, K.; Platais, I.; Bruntt, H.; et al. Determining the age of the Kepler open cluster NGC 6819 with a new triple system and other eclipsing binary stars. Astron. J. 2016, 151, 66. [Google Scholar] [CrossRef] [Green Version]
- Sandquist, E.L.; Jessen-Hansen, J.; Shetrone, M.D.; Brogaard, K.; Meibom, S.; Leitner, M.; Stello, D.; Bruntt, H.; Antoci, V.; Orosz, J.A.; et al. The age and distance of the Kepler open cluster NGC 6811 from an eclipsing binary, turnoff star pulsation, and giant asteroseismology. Astrophys. J. 2016, 831, 11. [Google Scholar] [CrossRef] [Green Version]
- Yakut, K.; Eggleton, P.P.; Kalomeni, B.; Tout, C.A.; Eldridge, J.J. A turn-off detached binary star V568 Lyr in the Kepler field of the oldest open cluster (NGC 6791) in the Galaxy. Mon. Not. R. Astron. Soc. 2015, 453, 2937–2942. [Google Scholar] [CrossRef] [Green Version]
- Torres, G.; Curtis, J.L.; Vanderburg, A.; Kraus, A.L.; Rizzuto, A. Eclipsing binaries in the open cluster Ruprecht 147. I. EPIC 219394517. Astrophys. J. 2018, 866, 67. [Google Scholar] [CrossRef] [Green Version]
- Torres, G.; Vanderburg, A.; Curtis, J.L.; Ciardi, D.; Kraus, A.L.; Rizzuto, A.C.; Ireland, M.J.; Lund, M.B.; Christiansen, J.L.; Beichman, C.A. Eclipsing binaries in the open cluster Ruprecht 147. II. EPIC 219568666. Astrophys. J. 2019, 887, 109. [Google Scholar] [CrossRef]
- Torres, G.; Vanderburg, A.; Curtis, J.L.; Kraus, A.L.; Rizzuto, A.C.; Ireland, M.J. Eclipsing binaries in the open cluster Ruprecht 147. III. The triple system EPIC 219552514 at the main-sequence turnoff. Astrophys. J. 2020, 896, 162. [Google Scholar] [CrossRef]
- Gaulme, P.; McKeever, J.; Jackiewicz, J.; Rawls, M.L.; Corsaro, E.; Mosser, B.; Southworth, J.; Mahadevan, S.; Bender, C.; Deshpande, R. Testing the asteroseismic scaling relations for red giants with eclipsing binaries observed by Kepler. Astrophys. J. 2016, 832, 121. [Google Scholar] [CrossRef] [Green Version]
- Hekker, S.; Debosscher, J.; Huber, D.; Hidas, M.G.; De Ridder, J.; Aerts, C.; Stello, D.; Bedding, T.R.; Gilliland, R.L.; Christensen-Dalsgaard, J.; et al. Discovery of a red giant with solar-like oscillations in an eclipsing binary system from Kepler space-based photometry. Astrophys. J. 2010, 713, L187–L191. [Google Scholar] [CrossRef]
- Frandsen, S.; Lehmann, H.; Hekker, S.; Southworth, J.; Debosscher, J.; Beck, P.; Hartmann, M.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; et al. KIC 8410637: A 408-day period eclipsing binary containing a pulsating red giant. Astron. Astrophys. 2013, 556, A138. [Google Scholar] [CrossRef] [Green Version]
- Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P.G.; Pavlovski, K.; Tkachenko, A.; Angelou, G.C.; Ball, W.H.; Barban, C.; Corsaro, E.; et al. Oscillating red giants in eclipsing binary systems: Empirical reference value for asteroseismic scaling relation. Mon. Not. R. Astron. Soc. 2018, 478, 4669–4696. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, H.; Bedding, T.R. Amplitudes of stellar oscillations: The implications for asteroseismology. Astron. Astrophys. 1995, 293, 87–106. [Google Scholar]
- Gaulme, P.; McKeever, J.; Rawls, M.L.; Jackiewicz, J.; Mosser, B.; Guzik, J.A. Red giants in eclipsing binary and multiple-star systems: Modeling and asteroseismic analysis of 70 candidates from Kepler data. Astrophys. J. 2013, 767, 82. [Google Scholar] [CrossRef] [Green Version]
- Gaulme, P.; Jackiewicz, J.; Appourchaux, T.; Mosser, B. Surface activity and oscillation amplitudes of red giants in eclipsing binaries. Astrophys. J. 2014, 785, 5. [Google Scholar] [CrossRef] [Green Version]
- Hełminiak, K.G.; Ukita, N.; Kambe, E.; Konacki, M. Absolute stellar parameters of KIC 09246715: A double-giant eclipsing system with a solar-like oscillator. Astrophys. J. 2015, 813, L25. [Google Scholar] [CrossRef] [Green Version]
- Rawls, M.L.; Gaulme, P.; McKeever, J.; Jackiewicz, J.; Orosz, J.A.; Corsaro, E.; Beck, P.G.; Mosser, B.; Latham, D.W.; Latham, C.A. KIC 9246715: The double red giant eclipsing binary with odd oscillations. Astrophys. J. 2016, 818, 108. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bedding, T.R.; Huber, D.; Ball, W.H.; Stello, D.; Murphy, S.J.; Bland-Hawthorn, J. Modelling Kepler red giants in eclipsing binaries: Calibrating the mixing-length parameter with asteroseismology. Mon. Not. R. Astron. Soc. 2018, 475, 981–998. [Google Scholar] [CrossRef]
- Benbakoura, M.; Gaulme, P.; McKeever, J.; Sekaran, S.; Beck, P.G.; Spada, F.; Jackiewicz, J.; Mathis, S.; Mathur, S.; Tkachenko, A.; et al. Spectroscopic and seismic analysis of red giants in eclipsing binaries discovered by Kepler. Astron. Astrophys. 2021, 648, A113. [Google Scholar] [CrossRef]
- Carter, J.A.; Fabrycky, D.C.; Ragozzine, D.; Holman, M.J.; Quinn, S.N.; Latham, D.W.; Buchhave, L.A.; Van Cleve, J.; Cochran, W.D.; Cote, M.T.; et al. KOI-126: A triply eclipsing hierarchical triple with two low-mass stars. Science 2011, 331, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derekas, A.; Kiss, L.L.; Borkovits, T.; Huber, D.; Lehmann, H.; Southworth, J.; Bedding, T.R.; Balam, D.; Hartmann, M.; Hrudkova, M.; et al. HD 181068: A Red Giant in a Triply Eclipsing Compact Hierarchical Triple System. Science 2011, 332, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borkovits, T.; Derekas, A.; Kiss, L.L.; Király, A.; Forgács-Dajka, E.; Bíró, I.B.; Bedding, T.R.; Bryson, S.T.; Huber, D.; Szabó, R. Dynamical masses, absolute radii and 3D orbits of the triply eclipsing star HD 181068 from Kepler photometry. Mon. Not. R. Astron. Soc. 2013, 428, 1656–1672. [Google Scholar] [CrossRef]
- Hełminiak, K.G.; Ukita, N.; Kambe, E.; Kozłowski, S.K.; Pawłaszek, R.; Maehara, H.; Baranec, C.; Konacki, M. KIC 4150611: A rare multi-eclipsing quintuple with a hybrid pulsator. Astron. Astrophys. 2017, 602, A30. [Google Scholar] [CrossRef]
- Lehmann, H.; Zechmeister, M.; Dreizler, S.; Schuh, S.; Kanzler, R. KIC 4247791: A SB4 system with two eclipsing binaries. A quadruple system? Astron. Astrophys. 2012, 541, A105. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K.; Uehara, S.; Kawahara, H. Absolute dimensions of a flat hierarchical triple system KIC 6543674 from the Kepler photometry. Astrophys. J. 2015, 806, L37. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, H.; Borkovits, T.; Rappaport, S.A.; Ngo, H.; Mawet, D.; Csizmadia, S.; Forgács-Dajka, E. KIC 7177553: A quadruple system of two close binaries. Astrophys. J. 2016, 819, 33. [Google Scholar] [CrossRef] [Green Version]
- Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B.L.; Tan, T.G.; Justesen, A.B.; Kristiansen, M.H.; Jacobs, T.L.; et al. EPIC 219217635: A doubly eclipsing quadruple system containing an evolved binary. Mon. Not. R. Astron. Soc. 2018, 478, 5135–5152. [Google Scholar] [CrossRef] [Green Version]
- Borkovits, T.; Rappaport, S.; Kaye, T.; Isaacson, H.; Vanderburg, A.; Howard, A.W.; Kristiansen, M.H.; Omohundro, M.R.; Schwengeler, H.M.; Terentev, I.A.; et al. Photodynamical analysis of the triply eclipsing hierarchical triple system EPIC 249432662. Mon. Not. R. Astron. Soc. 2019, 483, 1934–1951. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D.; Pollacco, D.; Watson, C.A.; Faedi, F.; Gómez Maqueo Chew, Y.; Cegla, H.M.; McDaid, P.; Burton, J.; McCormac, J.; Skillen, I. A transiting companion to the eclipsing binary KIC002856960. Astron. Astrophys. 2012, 545, L4. [Google Scholar] [CrossRef] [Green Version]
- Marsh, T.R.; Armstrong, D.J.; Carter, P.J. KIC 2856960: The impossible triple star. Mon. Not. R. Astron. Soc. 2014, 445, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Doyle, L.R.; Carter, J.A.; Fabrycky, D.C.; Slawson, R.W.; Howell, S.B.; Winn, J.N.; Orosz, J.A.; Prşa, A.; Welsh, W.F.; Quinn, S.N.; et al. Kepler-16: A transiting circumbinary planet. Science 2011, 333, 1602–1606. [Google Scholar] [CrossRef] [Green Version]
- Welsh, W.F.; Orosz, J.A.; Carter, J.A.; Fabrycky, D.C.; Ford, E.B.; Lissauer, J.J.; Prša, A.; Quinn, S.N.; Ragozzine, D.; Short, D.R.; et al. Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 2012, 481, 475–479. [Google Scholar] [CrossRef]
- Orosz, J.A.; Welsh, W.F.; Carter, J.A.; Fabrycky, D.C.; Cochran, W.D.; Endl, M.; Ford, E.B.; Haghighipour, N.; MacQueen, P.J.; Mazeh, T.; et al. Kepler-47: A transiting circumbinary multiplanet system. Science 2012, 337, 1511. [Google Scholar] [CrossRef] [Green Version]
- Orosz, J.A.; Welsh, W.F.; Haghighipour, N.; Quarles, B.; Short, D.R.; Mills, S.M.; Satyal, S.; Torres, G.; Agol, E.; Fabrycky, D.C.; et al. Discovery of a third transiting planet in the Kepler-47 circumbinary system. Astron. J. 2019, 157, 174. [Google Scholar] [CrossRef] [Green Version]
- Southworth, J.; Zima, W.; Aerts, C.; Bruntt, H.; Lehmann, H.; Kim, S.L.; Kurtz, D.W.; Pavlovski, K.; Prša, A.; Smalley, B.; et al. Kepler Photom. KIC 10661783: A Bin. Star Total Eclipses δ Scuti Pulsations. Mon. Not. R. Astron. Soc. 2011, 414, 2413–2423. [Google Scholar] [CrossRef]
- Lehmann, H.; Southworth, J.; Tkachenko, A.; Pavlovski, K. Physical properties of the eclipsing δ Scuti star KIC 10661783. Astron. Astrophys. 2013, 557, A79. [Google Scholar] [CrossRef] [Green Version]
- Miszuda, A.; Szewczuk, W.; Daszyńska-Daszkiewicz, J. The eclipsing binary systems with δ Scuti component. I. KIC 10661783. Mon. Not. R. Astron. Soc. 2021, 505, 3206–3218. [Google Scholar] [CrossRef]
- Maceroni, C.; Lehmann, H.; da Silva, R.; Montalbán, J.; Lee, C.U.; Ak, H.; Deshpande, R.; Yakut, K.; Debosscher, J.; Guo, Z.; et al. KIC 3858884: A hybrid δ Scuti pulsator in a highly eccentric eclipsing binary. Astron. Astrophys. 2014, 563, A59. [Google Scholar] [CrossRef]
- Hambleton, K.M.; Kurtz, D.W.; Prša, A.; Guzik, J.A.; Pavlovski, K.; Bloemen, S.; Southworth, J.; Conroy, K.; Littlefair, S.P.; Fuller, J. KIC 4544587: An eccentric, short-period binary system with δ Sct pulsations and tidally excited modes. Mon. Not. R. Astron. Soc. 2013, 434, 925–940. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, X.; Li, Y.; Chen, H.; Luo, C.; Su, J.; Chen, X.; Han, Z. KIC 10736223: An Algol-type eclipsing binary that has just undergone the rapid mass-transfer stage. Astrophys. J. 2020, 895, 136. [Google Scholar] [CrossRef]
- Liakos, A. Asteroseismology of two Kepler detached eclipsing binaries. Astron. Astrophys. 2020, 642, A91. [Google Scholar] [CrossRef]
- Debosscher, J.; Aerts, C.; Tkachenko, A.; Pavlovski, K.; Maceroni, C.; Kurtz, D.; Beck, P.G.; Bloemen, S.; Degroote, P.; Lombaert, R.; et al. KIC 11285625: A double-lined spectroscopic binary with a γ Doradus pulsator discovered from Kepler space photometry. Astron. Astrophys. 2013, 556, A56. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Gies, D.R.; Matson, R.A.; García Hernández, A. Kepler eclipsing binaries with δ Scuti/γ Doradus pulsating components. I. KIC 9851944. Astrophys. J. 2016, 826, 69. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W. γ Doradus pulsations in the eclipsing binary star KIC 6048106. Astrophys. J. 2016, 833, 170. [Google Scholar] [CrossRef]
- Guo, Z.; Gies, D.R.; Matson, R.A. Gravity modes reveal the internal rotation of a post-mass-transfer γ Doradus/δ Scuti hybrid pulsator in Kepler eclipsing binary KIC 9592855. Astrophys. J. 2017, 851, 39. [Google Scholar] [CrossRef] [Green Version]
- Sekaran, S.; Tkachenko, A.; Abdul-Masih, M.; Prša, A.; Johnston, C.; Huber, D.; Murphy, S.J.; Banyard, G.; Howard, A.W.; Isaacson, H.; et al. Tango of celestial dancers: A sample of detached eclipsing binary systems containing g-mode pulsating components. A case study of KIC 9850387. Astron. Astrophys. 2020, 643, A162. [Google Scholar] [CrossRef]
- Sekaran, S.; Tkachenko, A.; Johnston, C.; Aerts, C. A comparison of the dynamical and model-derived parameters of the pulsating eclipsing binary KIC 9850387. Astron. Astrophys. 2021, 648, A91. [Google Scholar] [CrossRef]
- Welsh, W.F.; Orosz, J.A.; Aerts, C.; Brown, T.M.; Brugamyer, E.; Cochran, W.D.; Gilliland, R.L.; Guzik, J.A.; Kurtz, D.W.; Latham, D.W.; et al. KOI-54: The Kepler discovery of tidally excited pulsations and brightenings in a highly eccentric binary. Astrophys. J. Suppl. Ser. 2011, 197, 4. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.E.; Everett, M.; Mullally, F.; Barclay, T.; Howell, S.B.; Still, M.; Rowe, J.; Christiansen, J.L.; Kurtz, D.W.; Hambleton, K.; et al. A class of eccentric binaries with dynamic tidal distortions discovered with Kepler. Astrophys. J. 2012, 753, 86. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.G.; Hambleton, K.; Vos, J.; Kallinger, T.; Bloemen, S.; Tkachenko, A.; García, R.A.; Østensen, R.H.; Aerts, C.; Kurtz, D.W.; et al. Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry. A sample study and the analysis of KIC 5006817. Astron. Astrophys. 2014, 564, A36. [Google Scholar] [CrossRef]
- Cheng, S.J.; Fuller, J.; Guo, Z.; Lehman, H.; Hambleton, K. Detailed characterisation of heartbeat stars and their tidally excited oscillations. Astrophys. J. 2020, 903, 122. [Google Scholar] [CrossRef]
- Fuller, J. Heartbeat stars, tidally excited oscillations and resonance locking. Mon. Not. R. Astron. Soc. 2017, 472, 1538–1564. [Google Scholar] [CrossRef]
- Guo, Z.; Gies, D.R.; Fuller, J. Tidally induced pulsations in Kepler eclipsing binary KIC 3230227. Astrophys. J. 2017, 834, 59. [Google Scholar] [CrossRef] [Green Version]
- Shibahashi, H.; Kurtz, D.W. FM stars: A Fourier view of pulsating binary stars, a new technique for measuring radial velocities photometrically. Mon. Not. R. Astron. Soc. 2012, 422, 738–752. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.J.; Bedding, T.R.; Shibahashi, H.; Kurtz, D.W.; Kjeldsen, H. Finding binaries among Kepler pulsating stars from phase modulation of their pulsations. Mon. Not. R. Astron. Soc. 2014, 441, 2515–2527. [Google Scholar] [CrossRef]
- Murphy, S.J.; Moe, M.; Kurtz, D.W.; Bedding, T.R.; Shibahashi, H.; Boffin, H.M.J. Finding binaries from phase modulation of pulsating stars with Kepler. V. Orbital parameters, with eccentricity and mass-ratio distributions of 341 new binaries. Mon. Not. R. Astron. Soc. 2018, 474, 4322–4346. [Google Scholar] [CrossRef]
- Murphy, S.J.; Bedding, T.R.; Shibahashi, H. A planet in an 840 day orbit around a Kepler main-sequence A star found from phase modulation of its pulsations. Astrophys. J. 2016, 827, L17. [Google Scholar] [CrossRef] [Green Version]
- Tkachenko, A.; Aerts, C.; Pavlovski, K.; Southworth, J.; Degroote, P.; Debosscher, J.; Still, M.; Bryson, S.; Molenberghs, G.; Bloemen, S.; et al. Detection of gravity modes in the massive binary V380 Cyg from Kepler space-based photometry and high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 2012, 424, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Tkachenko, A.; Degroote, P.; Aerts, C.; Pavlovski, K.; Southworth, J.; Pápics, P.I.; Moravveji, E.; Kolbas, V.; Tsymbal, V.; Debosscher, J.; et al. The eccentric massive binary V380 Cyg: Revised orbital elements and interpretation of the intrinsic variability of the primary component. Mon. Not. R. Astron. Soc. 2014, 438, 3093–3110. [Google Scholar] [CrossRef] [Green Version]
- Bloemen, S.; Marsh, T.R.; Østensen, R.H.; Charpinet, S.; Fontaine, G.; Degroote, P.; Heber, U.; Kawaler, S.D.; Aerts, C.; Green, E.M.; et al. Kepler observations of the beaming binary KPD 1946+4340. Mon. Not. R. Astron. Soc. 2011, 410, 1787–1796. [Google Scholar]
- Shakura, N.I.; Postnov, K.A. Doppler-effect modulation of the observed radiation flux from ultracompact binary stars. Astron. Astrophys. 1987, 183, L21–L22. [Google Scholar]
- Zucker, S.; Mazeh, T.; Alexander, T. Beaming binaries: A new observational category of photometric binary stars. Astrophys. J. 2007, 670, 1326–1330. [Google Scholar] [CrossRef] [Green Version]
- Marsh, T.R. Gravitational lensing in eclipsing binary stars. Mon. Not. R. Astron. Soc. 2001, 324, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Kruse, E.; Agol, E. KOI-3278: A self-lensing binary star system. Science 2014, 344, 275–277. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, H.; Masuda, K.; MacLeod, M.; Latham, D.W.; Bieryla, A.; Benomar, O. Discovery of three self-lensing binaries from Kepler. Astron. J. 2018, 155, 144. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K.; Kawahara, H.; Latham, D.W.; Bieryla, A.; Kunitomo, M.; MacLeod, M.; Aoki, W. Self-lensing discovery of a 0.2 M⊙ white dwarf in an unusually wide orbit around a Sun-like star. Astrophys. J. 2019, 881, L3. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.B.; Everett, M.E.; Seebode, S.A.; Szkody, P.; Still, M.; Wood, M.; Ramsay, G.; Cannizzo, J.; Smale, A. Spectroscopy of new and poorly known cataclysmic variables in the Kepler field. Astron. J. 2013, 145, 109. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Neff, J.E.; Ayres, T.R.; Kowalski, A.; Hawley, S.; Berdyugina, S.; Harper, G.M.; Korhonen, H.; Piskunov, N.; Saar, S.; et al. Serendipitous discovery of a dwarf nova in the Kepler field near the G dwarf KIC 5438845. Astron. J. 2015, 149, 67. [Google Scholar] [CrossRef]
- Ramsay, G.; Cannizzo, J.K.; Howell, S.B.; Wood, M.A.; Still, M.; Barclay, T.; Smale, A. Kepler observations of V447 Lyr: An eclipsing U Gem cataclysmic variable. Mon. Not. R. Astron. Soc. 2012, 425, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Osaki, Y.; Kato, T. Study of superoutbursts and superhumps in SU UMa Stars by the Kepler light curves of V344 Lyrae and V1504 Cygni. Publ. Astron. Soc. Jpn. 2013, 65, 95. [Google Scholar] [CrossRef] [Green Version]
- Dobrotka, A.; Ness, J.U.; Bajčičáková, I. Fast stochastic variability study of two SU UMa systems V1504 Cyg and V344 Lyr observed by Kepler satellite. Mon. Not. R. Astron. Soc. 2016, 460, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Ridden-Harper, R.; Tucker, B.E.; Garnavich, P.; Rest, A.; Margheim, S.; Shaya, E.J.; Littlefield, C.; Barensten, G.; Hedges, C.; Gully-Santiago, M. Discovery of a new WZ Sagittae-type cataclysmic variable in the Kepler/K2 data. Mon. Not. R. Astron. Soc. 2019, 490, 5551–5559. [Google Scholar] [CrossRef]
- Justesen, A.B.; Albrecht, S. Temperature and distance dependence of tidal circularization in close binaries: A catalogue of eclipsing binaries in the southern hemisphere observed by the TESS satellite. Astrophys. J. 2021, 912, 123. [Google Scholar] [CrossRef]
- IJspeert, L.W.; Tkachenko, A.; Johnston, C.; Garcia, S.; De Ridder, J.; Van Reeth, T.; Aerts, C. An all-sky sample of intermediate- to high-mass OBA-type eclipsing binaries observed by TESS. Astron. Astrophys. 2021, 652, A120. [Google Scholar] [CrossRef]
- Bedding, T.R.; Hey, D.R.; Murphy, S.J. A dance with dragons: TESS reveals α Draconis is a detached eclipsing binary. Res. Notes AAS 2019, 3, 163. [Google Scholar] [CrossRef]
- Maxted, P.F.L.; Gaulme, P.; Graczyk, D.; Hełminiak, K.G.; Johnston, C.; Orosz, J.A.; Prša, A.; Southworth, J.; Torres, G.; Davies, G.R.; et al. The TESS light curve of AI Phoenicis. Mon. Not. R. Astron. Soc. 2020, 498, 332. [Google Scholar] [CrossRef]
- Graczyk, D.; Pietrzyński, G.; Gałan, C.; Gieren, W.; Tkachenko, A.; Anderson, R.I.; Gallenne, A.; Górski, M.; Hajdu, G.; Kałuszyński, M.; et al. The surface brightness—Colour relations based on eclipsing binary stars and calibrated with Gaia EDR3. Astron. Astrophys. 2021, 649, A109. [Google Scholar] [CrossRef]
- Gyldenkerne, K.; Jørgensen, H.E.; Carstensen, E. Four-colour photometry of eclipsing binaries. I. HS Hya, light curves, photometric elements, and determination of helium content. Astron. Astrophys. 1975, 42, 303–309. [Google Scholar]
- Zasche, P.; Paschke, A. HS Hydrae about to turn off its eclipses. Astron. Astrophys. 2012, 542, L23. [Google Scholar] [CrossRef] [Green Version]
- Davenport, J.R.A.; Windemuth, D.; Warmbein, K.; Howard, E.L.; Klein, C.; Birky, J. The rise and fall of the eclipsing binary HS Hydrae. arXiv 2021, arXiv:2107.10954. [Google Scholar]
- Southworth, J. DEBCat: A catalogue of detached eclipsing binary stars. In Living Together: Planets, Host Stars and Binaries; Rucinski, S.M., Torres, G., Zejda, M., Eds.; Astronomical Society of the Pacific Conference Series; 2015; Available online: https://eprints.keele.ac.uk/1641/1/496-0164.pdf (accessed on 10 September 2021).
- Southworth, J. Rediscussion of eclipsing binaries. Paper I. The totally-eclipsing B-type system ζ Phoenicis. Observatory 2020, 140, 247. [Google Scholar]
- Southworth, J. Rediscussion of eclipsing binaries. Paper II. The eccentric G-type system KX Cancri. Observatory 2021, 141, 22. [Google Scholar]
- Southworth, J. Rediscussion of eclipsing binaries. Paper III. The interferometric, spectroscopic and eclipsing binary V1022 Cassiopeiae. Observatory 2021, 141, 52. [Google Scholar]
- Southworth, J. Rediscussion of eclipsing binaries. Paper IV. The The evolved G-type system AN Camelopardalis. Observatory 2021, 141, 122. [Google Scholar]
- Southworth, J. Rediscussion of eclipsing binaries. Paper VI. The F-type system V505 Persei. arXiv 2021, arXiv:2106.04323. [Google Scholar]
- Zasche, P.; Uhlař, R.; Svoboda, P.; Cagaš, P.; Mašek, M. Light-time effect detected in fourteen eclipsing binaries. Astron. Astrophys. 2020, 643, A130. [Google Scholar] [CrossRef]
- Baroch, D.; Giménez, A.; Ribas, I.; Morales, J.C.; Anglada-Escudé, G. Analysis of apsidal motion in eclipsing binaries using TESS data. I. A test of gravitational theories. Astron. Astrophys. 2021, 649, A64. [Google Scholar] [CrossRef]
- Claret, A.; Giménez, A.; Baroch, D.; Ribas, I.; Morales, J.C.; Anglada-Escudé, G. Analysis of apsidal motion in eclipsing binaries using TESS data. II. A test of internal stellar structure. arXiv 2021, arXiv:2107.10765. [Google Scholar]
- Miller, A.; Kounkel, M.; Boggio, C.; Covey, K.; Price-Whelan, A.M. Orbital and stellar parameters for 2M06464003+0109157: A double-lined eclipsing binary of spotted, sub-solar twins. Publ. Astron. Soc. Pac. 2021, 133, 044201. [Google Scholar] [CrossRef]
- Acton, J.S.; Goad, M.R.; Raynard, L.; Casewell, S.L.; Jackman, J.A.G.; Alexander, R.D.; Anderson, D.R.; Bayliss, D.; Bryant, E.M.; Burleigh, M.R.; et al. NGTS J214358.5-380102 - NGTS discovery of the most eccentric known eclipsing M-dwarf binary system. Mon. Not. R. Astron. Soc. 2020, 494, 3950–3961. [Google Scholar] [CrossRef] [Green Version]
- Acton, J.S.; Goad, M.R.; Casewell, S.L.; Vines, J.I.; Burleigh, M.R.; Eigmüller, P.; Nielsen, L.D.; Gänsicke, B.T.; Bayliss, D.; Bouchy, F.; et al. An eclipsing M-dwarf close to the hydrogen burning limit from NGTS. Mon. Not. R. Astron. Soc. 2020, 498, 3115–3124. [Google Scholar] [CrossRef]
- Swayne, M.I.; Maxted, P.F.L.; Hodžić, V.K.; Triaud, A.H.M.J. The TESS light curve of the eccentric eclipsing binary 1SWASP J011351.29+314909.7 - no evidence for a very hot M-dwarf companion. Mon. Not. R. Astron. Soc. 2020, 498, L15–L19. [Google Scholar] [CrossRef]
- Paunzen, E.; Hümmerich, S.; Fedurco, M.; Bernhard, K.; Komžík, R.; Vaňko, M. V680 Mon—A young mercury-manganese star in an eclipsing heartbeat system. Mon. Not. R. Astron. Soc. 2021, 504, 3749–3757. [Google Scholar] [CrossRef]
- Kochukhov, O.; Johnston, C.; Labadie-Bartz, J.; Shetye, S.; Ryabchikova, T.A.; Tkachenko, A.; Shultz, M.E. V772 Cas: An ellipsoidal HgMn star in an eclipsing binary. Mon. Not. R. Astron. Soc. 2021, 500, 2577–2589. [Google Scholar] [CrossRef]
- Kochukhov, O.; Labadie-Bartz, J.; Khalack, V.; Shultz, M.E. New eclipsing binaries with mercury-manganese stars. Mon. Not. R. Astron. Soc. 2021, 506, L40–L44. [Google Scholar] [CrossRef]
- Kołaczek-Szymański, P.A.; Pigulski, A.; Michalska, G.; Moździerski, D.; Różański, T. Massive heartbeat stars from TESS. I. TESS sectors 1-16. Astron. Astrophys. 2021, 647, A12. [Google Scholar] [CrossRef]
- Jayasinghe, T.; Stanek, K.Z.; Kochanek, C.S.; Thompson, T.A.; Shappee, B.J.; Fausnaugh, M. An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS. Mon. Not. R. Astron. Soc. 2019, 489, 4705–4711. [Google Scholar] [CrossRef]
- Lesh, J.R.; Aizenman, M.L. The observational status of the β Cephei stars. Annu. Rev. Astron. Astrophys. 1978, 16, 215. [Google Scholar] [CrossRef]
- Southworth, J.; Bowman, D.; Tkachenko, A.; Pavlovski, K. Discovery of β Cep pulsations in the eclipsing binary V453 Cygni. Mon. Not. R. Astron. Soc. 2020, 497, L19–L23. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, K. β Cephei pulsations in the high-mass eclipsing system CW Cephei. Astron. J. 2021, 161, 32. [Google Scholar] [CrossRef]
- Southworth, J.; Bowman, D.M.; Pavlovski, K. A β Cephei pulsator and a changing orbital inclination in the high-mass eclipsing binary system VV Orionis. Mon. Not. R. Astron. Soc. 2021, 501, L65–L70. [Google Scholar] [CrossRef]
- Budding, E.; Love, T.; Blackford, M.G.; Banks, T.; Rhodes, M.J. Absolute parameters of young stars: V Puppis. Mon. Not. R. Astron. Soc. 2021, 502, 6032–6043. [Google Scholar] [CrossRef]
- Waelkens, C. Slowly pulsating B stars. Astron. Astrophys. 1991, 246, 453. [Google Scholar] [CrossRef] [Green Version]
- Clausen, J.V. V539 Arae: First accurate dimensions of a slowly pulsating B star. Astron. Astrophys. 1996, 308, 151–169. [Google Scholar]
- Stassun, K.G.; Torres, G.; Johnston, C.; Stevens, D.J.; Feliz, D.L.; Kounkel, M.; Bouma, L.G. Discovery and characterisation of a rare magnetic hybrid β Cephei slowly pulsating B-type star in an eclipsing binary in the young open cluster NGC 6193. Astrophys. J. 2021, 910, 133. [Google Scholar] [CrossRef]
- Handler, G.; Kurtz, D.W.; Rappaport, S.A.; Saio, H.; Fuller, J.; Jones, D.; Guo, Z.; Chowdhury, S.; Sowicka, P.; Aliçavus, F.K.; et al. Tidally trapped pulsations in a close binary star system discovered by TESS. Nat. Astron. 2020, 4, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, D.W.; Handler, G.; Rappaport, S.A.; Saio, H.; Fuller, J.; Jacobs, T.; Schmitt, A.; Jones, D.; Vanderburg, A.; LaCourse, D.; et al. The single-sided pulsator CO Camelopardalis. Mon. Not. R. Astron. Soc. 2020, 494, 5118–5133. [Google Scholar] [CrossRef]
- Rappaport, S.A.; Kurtz, D.W.; Handler, G.; Jones, D.; Nelson, L.A.; Saio, H.; Fuller, J.; Holdsworth, D.L.; Vanderburg, A.; Žák, J.; et al. A tidally tilted sectoral dipole pulsation mode in the eclipsing binary TIC 63328020. Mon. Not. R. Astron. Soc. 2021, 503, 254–269. [Google Scholar]
- Lee, J.W. Tidally perturbed oblique pulsations in the hierarchical triple system V1031 Orionis. arXiv 2021, arXiv:2104.12326. [Google Scholar]
- Lee, J.W.; Hong, K.; Kristiansen, M.H. TESS photometry of the eclipsing δ Scuti star AI Hydrae. Publ. Astron. Soc. Jpn. 2020, 72, 37. [Google Scholar] [CrossRef]
- Jørgensen, H.E.; Grønbech, B. Four-colour photometry of eclipsing binaries. IXb. AI Hya, light curves and photometric elements. Astron. Astrophys. 1978, 66, 377–383. [Google Scholar]
- Lee, J.W.; Hong, K.; Kim, H.Y. Tidally excited modes and δ Scuti pulsations in the eclipsing triple star IM Persei. Astron. J. 2021, 161, 129. [Google Scholar] [CrossRef]
- Southworth, J. Rediscussion of eclipsing binaries. Paper VII. δ Scuti, γ Doradus and tidally-perturbed pulsations in RR Lyncis. arXiv 2021, arXiv:2109.10196. [Google Scholar]
- Bedding, T.R.; Murphy, S.J.; Hey, D.R.; Huber, D.; Li, T.; Smalley, B.; Stello, D.; White, T.R.; Ball, W.H.; Chaplin, W.J.; et al. Very regular high-frequency pulsation modes in young intermediate-mass stars. Nature 2020, 581, 147–151. [Google Scholar] [CrossRef]
- Barceló Forteza, S.; Moya, A.; Barrado, D.; Solano, E.; Martín-Ruiz, S.; Suárez, J.C.; García Hernández, A. Unveiling the power spectra of δ Scuti stars with TESS. The temperature, gravity, and frequency scaling relation. Astron. Astrophys. 2020, 638, A59. [Google Scholar] [CrossRef]
- Hasanzadeh, A.; Safari, H.; Ghasemi, H. Relations between the asteroseismic indices and stellar parameters of δ Scuti stars for two years of TESS mission. Mon. Not. R. Astron. Soc. 2021, 505, 1476–1484. [Google Scholar] [CrossRef]
- Pollacco, D.L.; Skillen, I.; Cameron, A.C.; Christian, D.J.; Hellier, C.; Irwin, J.; Lister, T.A.; Street, R.A.; West, R.G.; Anderson, D. The WASP project and the SuperWASP cameras. Publ. Astron. Soc. Pac. 2006, 118, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Borkovits, T.; Rappaport, S.A.; Hajdu, T.; Maxted, P.F.L.; Pál, A.; Forgács-Dajka, E.; Klagyivik, P.; Mitnyan, T. TICs 167692429 and 220397947: The first compact hierarchical triple stars discovered with TESS. Mon. Not. R. Astron. Soc. 2020, 493, 5005–5023. [Google Scholar] [CrossRef] [Green Version]
- Mitnyan, T.; Borkovits, T.; Rappaport, S.A.; Pál, A.; Maxted, P.F.L. TIC 278825952: A triply eclipsing hierarchical triple system with the most intrinsically circular outer orbit. Mon. Not. R. Astron. Soc. 2020, 498, 6034–6043. [Google Scholar] [CrossRef]
- Borkovits, T.; Rappaport, S.A.; Tan, T.G.; Gagliano, R.; Jacobs, T.; Huang, X.; Mitnyan, T.; Hambsch, F.J.; Kaye, T.; Maxted, P.F.L.; et al. The compact triply eclipsing triple star TIC 209409435 discovered with TESS. Mon. Not. R. Astron. Soc. 2020, 496, 4624–4636. [Google Scholar] [CrossRef]
- Rowden, P.; Borkovits, T.; Jenkins, J.M.; Stassun, K.G.; Twicken, J.D.; Newton, E.R.; Ziegler, C.; Hellier, C.; Soto, A.G.; Matthews, E.C.; et al. TIC 278956474: Two close binaries in one young quadruple system identified by TESS. Astron. J. 2020, 160, 76. [Google Scholar] [CrossRef]
- Borkovits, T.; Rappaport, S.A.; Maxted, P.F.L.; Terentev, I.; Omohundro, M.; Gagliano, R.; Jacobs, T.; Kristiansen, M.H.; LaCourse, D.; Schwengeler, H.M.; et al. BG Ind: The nearest doubly eclipsing, compact hierarchical quadruple system. Mon. Not. R. Astron. Soc. 2021, 503, 3759–3774. [Google Scholar] [CrossRef]
- Kostov, V.B.; Powell, B.P.; Torres, G.; Borkovits, T.; Rappaport, S.A.; Tokovinin, A.; Zasche, P.; Anderson, D.; Barclay, T.; Berlind, P.; et al. TIC 454140642: A compact, coplanar, quadruple-lined quadruple star system consisting of two eclipsing binaries. arXiv 2021, arXiv:2105.12586. [Google Scholar]
- Volkov, I.M.; Kravtsova, A.S.; Chochol, D. BU CMi as a quadruple doubly eclipsing system. arXiv 2021, arXiv:2107.09116. [Google Scholar]
- Powell, B.P.; Kostov, V.B.; Rappaport, S.A.; Borkovits, T.; Zasche, P.; Tokovinin, A.; Kruse, E.; Latham, D.W.; Montet, B.T.; Others, M. TIC 168789840: A sextuply eclipsing sextuple star system. Astron. J. 2021, 161, 162. [Google Scholar] [CrossRef]
- Kostov, V.B.; Orosz, J.A.; Feinstein, A.D.; Welsh, W.F.; Cukier, W.; Haghighipour, N.; Quarles, B.; Martin, D.V.; Montet, B.T.; Torres, G.; et al. TOI-1338: TESS’ first transiting circumbinary planet. Astron. J. 2020, 159, 253. [Google Scholar] [CrossRef]
- Kostov, V.B.; Powell, B.P.; Orosz, J.A.; Welsh, W.F.; Cochran, W.; Collins, K.A.; Endl, M.; Hellier, C.; Latham, D.W.; MacQueen, P.; et al. TIC 172900988: A transiting circumbinary planet detected in one sector of TESS data. arXiv 2021, arXiv:2105.08614. [Google Scholar]
- Lendl, M.; Bouchy, F.; Gill, S.; Nielsen, L.D.; Turner, O.; Stassun, K.; Acton, J.S.; Anderson, D.R.; Armstrong, D.J.; Bayliss, D.; et al. TOI-222: A single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS. Mon. Not. R. Astron. Soc. 2020, 492, 1761–1769. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Cooke, B.F.; Bayliss, D.; Nielsen, L.D.; Lendl, M.; Wheatley, P.J.; Anderson, D.R.; Moyano, M.; Bryant, E.M.; Others, M. A long-period (P = 61.8 d) M5V dwarf eclipsing a Sun-like star from TESS and NGTS. Mon. Not. R. Astron. Soc. 2020, 495, 2713–2719. [Google Scholar] [CrossRef]
- Miller, A.; Kounkel, M.; Sun, M.; Dixon, D.; Boggio, C.; Covey, K.R.; Stassun, K.G.; Mathieu, R. 2M17091769+3127589: A mass-transfer binary with an extreme mass ratio. arXiv 2021, arXiv:2107.11393. [Google Scholar]
- Bowman, D.M.; Johnston, C.; Tkachenko, A.; Mkrtichian, D.E.; Gunsriwiwat, K.; Aerts, C. Discovery of tidally perturbed pulsations in the eclipsing binary U Gru: A crucial system for tidal asteroseismology. Astrophys. J. 2019, 883, L26. [Google Scholar] [CrossRef]
- Shi, X.d.; Qian, S.b.; Li, L.j.; Liao, W.p. HL Dra: An active Algol-like binary system with a pulsating component star and a cool third body. Mon. Not. R. Astron. Soc. 2021, 505, 6166–6178. [Google Scholar] [CrossRef]
- Xia, Q.; Michel, R.; Li, K.; Higuera, J. The first photometric investigation and spectroscopic analysis of two contact binaries: ASAS J124343+1531.7 and LINEAR 2323566. Publ. Astron. Soc. Pac. 2021, 133, 054202. [Google Scholar] [CrossRef]
- Zheng, S.Y.; Li, K.; Xia, Q.Q. The first photometric and spectroscopic analysis of the extremely low mass ratio contact binary NSVS 5029961. arXiv 2021, arXiv:2106.15036. [Google Scholar]
- Gazeas, K.D.; Loukaidou, G.A.; Niarchos, P.G.; Palafouta, S.; Athanasopoulos, D.; Liakos, A.; Zola, S.; Essam, A.; Hakala, P. CoBiToM project. I. Contact binaries towards merging. Mon. Not. R. Astron. Soc. 2021, 502, 2879–2892. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Dai, M. Discovery of two pulsating extremely low-mass pre-white dwarf candidates in the TESS eclipsing binaries. Astrophys. J. 2020, 888, 49. [Google Scholar] [CrossRef]
- Maxted, P.F.L.; Anderson, D.R.; Burleigh, M.R.; Collier Cameron, A.; Heber, U.; Gänsicke, B.T.; Geier, S.; Kupfer, T.; Marsh, T.R.; Nelemans, G.; et al. Discovery of a stripped red giant core in a bright eclipsing binary system. Mon. Not. R. Astron. Soc. 2011, 418, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Maxted, P.F.L.; Bloemen, S.; Heber, U.; Geier, S.; Wheatley, P.J.; Marsh, T.R.; Breedt, E.; Sebastian, D.; Faillace, G.; Owen, C.; et al. EL CVn-type binaries—Discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems. Mon. Not. R. Astron. Soc. 2014, 437, 1681–1697. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Baran, A.S.; Sanjayan, S.; Ostrowski, J. A search for variable subdwarf B stars in TESS full frame images—I. Variable objects in the southern ecliptic hemisphere. Mon. Not. R. Astron. Soc. 2020, 499, 5508–5526. [Google Scholar] [CrossRef]
- Baran, A.S.; Østensen, R.H.; Heber, U.; Irrgang, A.; Sanjayan, S.; Telting, J.H.; Reed, M.D.; Ostrowski, J. Space observations of AA Doradus provide consistent mass determinations. New HW-Vir systems observed with TESS. arXiv 2021, arXiv:2105.01074. [Google Scholar]
- Baran, A.S.; Sahoo, S.K.; Sanjayan, S.; Ostrowski, J. A search for variable subdwarf B stars in TESS Full Frame Images II. Variable objects in the northern ecliptic hemisphere. arXiv 2021, arXiv:2105.01077. [Google Scholar]
- Liu, W.; Qian, S.B.; Zhi, Q.J.; Han, Z.T.; Wang, Q.S.; Dong, A.J. Quasi-periodic oscillations and long-term orbital period variation of the eclipsing dwarf nova EM Cyg. Mon. Not. R. Astron. Soc. 2021, 505, 677–683. [Google Scholar] [CrossRef]
- Schaefer, B.E. Discovery of 13 new orbital periods for classical novae. Res. Notes AAS 2021, 5, 150. [Google Scholar] [CrossRef]
- Rawat, N.; Pandey, J.C.; Joshi, A. TESS observations of TX Col: Rapidly varying accretion flow. Astrophys. J. 2021, 912, 78. [Google Scholar] [CrossRef]
- Littlefield, C.; Scaringi, S.; Garnavich, P.; Szkody, P.; Kennedy, M.R.; Iłkiewicz, K.; Mason, P.A. Quasi-periodic oscillations in the TESS light curve of TX Col, a diskless intermediate polar on the precipice of forming an accretion disk. Astron. J. 2021, 162, 49. [Google Scholar] [CrossRef]
- Littlefield, C.; Garnavich, P.; Mukai, K.; Mason, P.A.; Szkody, P.; Kennedy, M.; Myers, G.; Schwarz, R. Fast-cadence TESS photometry and Doppler tomography of the asynchronous polar CD Ind: A revised accretion geometry from newly proposed spin and orbital periods. Astrophys. J. 2019, 881, 141. [Google Scholar] [CrossRef] [Green Version]
- Duffy, C.; Ramsay, G.; Steeghs, D.; Dhillon, V.; Kennedy, M.R.; Mata Sánchez, D.; Ackley, K.; Dyer, M.; Lyman, J.; Ulaczyk, K.; et al. Evidence that short-period AM CVn systems are diverse in outburst behaviour. Mon. Not. R. Astron. Soc. 2021, 502, 4953–4962. [Google Scholar] [CrossRef]
- Pichardo Marcano, M.; Rivera Sandoval, L.E.; Maccarone, T.J.; Scaringi, S. TACOS: TESS AM CVn Outbursts Survey. arXiv 2021, arXiv:2106.15104. [Google Scholar]
- Benz, W.; Broeg, C.; Fortier, A.; Rando, N.; Beck, T.; Beck, M.; Queloz, D.; Ehrenreich, D.; Maxted, P.F.L.; Isaak, K.G.; et al. The CHEOPS mission. Exp. Astron. 2021, 51, 109–151. [Google Scholar] [CrossRef]
- Swayne, M.I.; Maxted, P.F.L.; Triaud, A.H.M.J.; Sousa, S.G.; Broeg, C.; Florén, H.G.; Guterman, P.; Simon, A.E.; Boisse, I.; Bonfanti, A.; et al. The EBLM project. VIII. First results for M-dwarf mass, radius, and effective temperature measurements using CHEOPS light curves. Mon. Not. R. Astron. Soc. 2021, 506, 306–322. [Google Scholar] [CrossRef]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef] [Green Version]
- Alonso, R.; Brown, T.M.; Torres, G.; Latham, D.W.; Sozzetti, A.; Mandushev, G.; Belmonte, J.A.; Charbonneau, D.; Deeg, H.J.; Dunham, E.W.; et al. TrES-1: The transiting planet of a bright K0 V Star. Astrophys. J. 2004, 613, L153–L156. [Google Scholar] [CrossRef]
- Bakos, G.Á.; Lázár, J.; Papp, I.; Sári, P.; Green, E.M. System description and first light curves of the Hungarian Automated Telescope, an autonomous observatory for variability search. Publ. Astron. Soc. Pac. 2002, 114, 974–987. [Google Scholar] [CrossRef]
- Bakos, G.Á.; Csubry, Z.; Penev, K.; Bayliss, D.; Jordán, A.; Afonso, C.; Hartman, J.D.; Henning, T.; Kovács, G.; Noyes, R.W.; et al. HATSouth: A global network of fully automated identical wide-field telescopes. Publ. Astron. Soc. Pac. 2013, 125, 154. [Google Scholar] [CrossRef] [Green Version]
- Pepper, J.; Pogge, R.W.; DePoy, D.L.; Marshall, J.L.; Stanek, K.Z.; Stutz, A.M.; Poindexter, S.; Siverd, R.; O’Brien, T.P.; Trueblood, M.; et al. The Kilodegree Extremely Little Telescope (KELT): A small robotic telescope for large-area synoptic surveys. Publ. Astron. Soc. Pac. 2007, 119, 923–935. [Google Scholar] [CrossRef] [Green Version]
- Talens, G.J.J.; Spronck, J.F.P.; Lesage, A.L.; Otten, G.P.P.L.; Stuik, R.; Pollacco, D.; Snellen, I.A.G. The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars. Astron. Astrophys. 2017, 601, A11. [Google Scholar]
- Law, N.M.; Fors, O.; Ratzloff, J.; Wulfken, P.; Kavanaugh, D.; Sitar, D.J.; Pruett, Z.; Birchard, M.N.; Barlow, B.N.; Cannon, K.; et al. Evryscope science: Exploring the potential of all-sky gigapixel-scale telescopes. Publ. Astron. Soc. Pac. 2015, 127, 234. [Google Scholar] [CrossRef] [Green Version]
- Geller, A.M.; Polzin, A.; Bowen, A.; Miller, A.A. Simulating eclipsing binary yields of the Rubin Observatory in the galactic field and star clusters. arXiv 2021, arXiv:2107.02836. [Google Scholar]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Amarsi, A.M.; Grevesse, N. The chemical make-up of the Sun: A 2020 vision. arXiv 2021, arXiv:2105.01661. [Google Scholar]
- Miller, N.J.; Maxted, P.F.L.; Smalley, B. Fundamental effective temperature measurements for eclipsing binary stars. I. Development of the method and application to AI Phoenicis. Mon. Not. R. Astron. Soc. 2020, 497, 2899–2909. [Google Scholar] [CrossRef]
- Serenelli, A.; Weiss, A.; Aerts, C.; Angelou, G.C.; Baroch, D.; Bastian, N.; Beck, P.G.; Bergemann, M.; Bestenlehner, J.M.; Czekala, I.; et al. Weighing stars from birth to death: Mass determination methods across the HRD. Astron. Astrophys. Rev. 2021, 29, 4. [Google Scholar] [CrossRef]
- Duchêne, G.; Kraus, A. Stellar multiplicity. Annu. Rev. Astron. Astrophys. 2013, 51, 269–310. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Johnson, J.A.; Morton, T.D. Measuring the number of M dwarfs per M dwarf using Kepler eclipsing binaries. Astrophys. J. 2015, 813, 75. [Google Scholar] [CrossRef] [Green Version]
- Moe, M.; Kratter, K.M. Impact of binary stars on planet statistics. I. Planet occurrence rates, trends with stellar mass, and wide companions to hot Jupiter hosts. arXiv 2019, arXiv:1912.01699. [Google Scholar]
- Bate, M.R. Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation. Mon. Not. R. Astron. Soc. 2009, 392, 590–616. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, P. Evolutionary Processes in Binary and Multiple Stars; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; et al. V1309 Scorpii: Merger of a contact binary. Astron. Astrophys. 2011, 528, A114. [Google Scholar] [CrossRef]
- Izzard, R.G.; Hall, P.D.; Tauris, T.M.; Tout, C.A. Common envelope evolution. In IAU Symposium; 2012; Available online: http://personal.ph.surrey.ac.uk/~ri0005/doc/papers/2011/comenv_2011-Izzard.pdf (accessed on 10 September 2021).
- Politano, M. The final orbital separation in common envelope evolution. Astron. Astrophys. 2021, 648, L6. [Google Scholar] [CrossRef]
- Warner, B. Cataclysmic Variable Stars; Cambridge Astrophysics Series; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
Mission/ Instrument | Launch Date | End Date | Wavelength Range (nm) | Aperture (cm) | Sect. |
---|---|---|---|---|---|
OAO | 7 December 1968 | January 1973 | 105–420 | 20–40 | 2.1 |
ANS | 30 August 1974 | June 1976 | 155–329 | 22 | 2.2 |
Voyager 1/UVS | 5 September 1977 | ongoing | 50–170 | 4 | 2.3 |
Voyager 2/UVS | 20 August 1977 | ongoing | 50–170 | 4 | 2.3 |
IUE | 1978 January 26 | 30 September 1996 | 115–330 | 45 | 2.4 |
Hipparcos | 8 August 1989 | 15 August 1993 | 380–630 * | 29 | 2.5 |
WIRE | 5 March 1999 | 23 October 2006 | ∼V + R | 5.2 | 2.6 |
MOST | 30 June 2003 | March 2019 | 400–700 * | 15 | 2.7 |
CoRoT | 27 December 2006 | October 2012 | 450–850 * | 27 | 2.8 |
BRITE | 2013 to 2014 | ongoing | 400–700 | 3 | 2.9 |
HST | 24 April 1990 | ongoing | UV–opt–IR | 240 | 2.10 |
Spitzer | 25 August 2003 | 30 January 2020 | IR | 85 | 2.10 |
INTEGRAL/OMC | 17 October 2002 | ongoing | V-band | 5 | 2.10 |
Coriolis/SMEI | 6 January 2003 | ongoing | 450–950 | ≈1 | 2.10 |
STEREO A/HI-1 | 26 October 2006 | ongoing | 630–730 | 1.6 | 2.10 |
STEREO B/HI-1 | 26 October 2006 | 1 October 2014 | 630–730 | 1.6 | 2.10 |
LUT | 1 December 2013 | ongoing | 245–340 | 15 | 2.10 |
Kepler + K2 | 7 March 2009 | 30 October 2018 | 440–840 * | 95 | 3 |
TESS | 18 April 2018 | ongoing | 590–990 * | 10.5 | 4 |
Gaia | 19 December 2013 | ongoing | 320–1000 | 145 × 50 | 5.2 |
CHEOPS | 18 December 2019 | ongoing | 400–800 * | 32 | 5.2 |
PLATO | 2026 planned | ∼500–900 | ∼12 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Southworth, J. Space-Based Photometry of Binary Stars: From Voyager to TESS. Universe 2021, 7, 369. https://doi.org/10.3390/universe7100369
Southworth J. Space-Based Photometry of Binary Stars: From Voyager to TESS. Universe. 2021; 7(10):369. https://doi.org/10.3390/universe7100369
Chicago/Turabian StyleSouthworth, John. 2021. "Space-Based Photometry of Binary Stars: From Voyager to TESS" Universe 7, no. 10: 369. https://doi.org/10.3390/universe7100369
APA StyleSouthworth, J. (2021). Space-Based Photometry of Binary Stars: From Voyager to TESS. Universe, 7(10), 369. https://doi.org/10.3390/universe7100369