Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model
Abstract
:1. Introduction
2. Data Collection & Method of Fitting
3. Results
4. Analysis of Various Properties of Earth-Impacting CMEs
4.1. Location
4.2. Central Propagation Angle & Half-Angular Width
4.3. Simple Kinematics Analysis
5. Conclusions & Discussion
- A large majority of the Earth-impacting CMEs are located near the solar disk’s center, which is defined by the coordinates [30S,30N] × [40E,40W]. This conclusion is consistent with previous studies. For example, Hess et al. (2017) [24] found that all the Earth-affecting CMEs are within 45 in latitude from the equator and 36 in longitude from the central meridian. A few Earth-impacting CMEs come from the region far from the solar disk’s center, which shows a possibility for limb events to be Earth-impacting.
- Assuming a radial propagation, the central propagation angle (CPA, or ) of CMEs could represent their deviations. Based on this, we suggest that CMEs with a CPA less than may well be Earth-impacting, which verifies the previous results, such as 86% of FHCMES have a CPA smaller than 50 [29]. If taking CMEs’ other geometric parameters into account, such as the half-angular width (), and considering the effect of the errors, the proportion of Earth-impacting CMEs that satisfy is no less than 69%, which suggests that this inequality should be an important part of Earth-impacting CME forecasting.
- The velocity and acceleration of Earth-impacting CMEs follow each other with a negative correlation owing to the drag from the environment of which the background solar wind is a major part, so we use the v-axis intercept 341 km·s as the average solar wind. This conclusion is reasonable and consistent with other studies [3,19,24,27]. The propagation time is inversely related to velocity, based upon which an empirical formula of CMEs’ propagation can be obtained by hyperbolic fitting. This formula is , which can give, with a good approximation, the propagation time of a CME to determine when it will reach Earth. However, the empirical statistical model only represents the general relationship between propagation time and CMEs’ initial velocities; it can not describe the detail of the motion of CMEs, so we introduce an aerodynamic drag model to conduct more analysis. A rough comparison of these two models shows that the deviations between the calculated results and actual values of our empirical statistical model are smaller than those of the aerodynamic drag model, and the equation of the latter we use has low performance in low speed events. The matter needs further investigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. ICME-CME List
No. | Initial Time by COR2 | Initial Time by C2 | PA | Width | V | Acc | Start of the Ejecta | V |
---|---|---|---|---|---|---|---|---|
1 | 2008/07/21T11:38:30 | 2008/07/21 13:31 | 228 | 47 | 200 | 11 | 2008-07-25T13:17:20 | 408 |
2 | 2008/12/12T07:37:00 | 2008/12/12 09:30 | 154 | 8 | 281 | 29.4 | 2008-12-17T03:24:45 | 339 |
3 | 2009/01/21T22:07:00 | 2009/01/21 18:54 | 253 | 73 | 220 | 4.5 | 2009-01-26T04:59:15 | 348 |
4 | 2009/06/23T00:37:00 | 2009/06/22 22:30 | 241 | 47 | 126 | 1.9 | 2009-06-27T18:36:00 | 388 |
5 | 2009/11/09T17:24:00 | −−− | −−− | −−− | −−− | −−− | 2009-11-14T10:41:15 | 322 |
6 | 2009/12/30T14:54:00 | 2009/12/30 10:30 | 275 | 65 | 173 | 4 | 2010-01-01T22:03:00 | 296 |
7 | 2010/02/03T01:24:00 | −−− | −−− | −−− | −−− | −−− | 2010-02-07T23:17:15 | 360 |
8 | 2010/02/06T19:54:00 | 2010/02/06 20:06 | 95 | 97 | 240 | − 0.1 | 2010-02-12T13:16:58 | 326 |
9 | 2010/02/07T03:24:00 | 2010/02/07 04:06 | Halo | 360 | 421 | 0.5 | 2010-02-11T11:33:00 | 358 |
10 | 2010/02/08T09:24:00 | 2010/02/08 06:30 | 85 | 99 | 153 | 0 | 2010-02-13T22:14:14 | 308 |
11 | 2010/02/10T17:24:00 | 2010/02/10 17:30 | 90 | 58 | 538 | 4.3 | 2010-02-15T11:53:48 | 308 |
12 | 2010/02/12T11:54:00 | 2010/02/12 13:42 | Halo | 360 | 509 | −18.3 | 2010-02-16T04:01:52 | 318 |
13 | 2010/02/13T23:08:00 | 2010/02/13 19:54 | 290 | 126 | 247 | 8.6 | 2010-02-19T19:57:00 | 396 |
14 | 2010/04/03T10:08:00 | 2010/04/03 10:33 | Halo | 360 | 668 | −1 | 2010-04-05T13:09:45 | 639 |
15 | 2010/04/06T01:39:00 | 2010/04/06 02:30 | 125 | 9 | 378 | −34.9 | 2010-04-09T19:07:30 | 448 |
16 | 2010/04/08T03:54:00 | 2010/04/08 04:54 | 249 | 160 | 264 | −2.2 | 2010-04-12T01:07:30 | 409 |
17 | 2010/04/18T23:24:00 | 2010/04/18 20:30 | 257 | 100 | 381 | 17.1 | 2010-04-22T05:06:00 | 399 |
18 | 2010/05/23T17:24:00 | 2010/05/23 18:06 | Halo | 360 | 258 | 3.2 | 2010-05-28T19:43:30 | 354 |
19 | 2010/06/16T11:24:00 | 2010/06/16 04:06 | 341 | 47 | 198 | 0.6 | 2010-06-21T07:30:00 | 365 |
20 | 2010/06/16T21:24:00 | 2010/06/16 14:54 | 61 | 153 | 236 | 6.5 | 2010-06-21T07:30:00 | 365 |
21 | 2010/08/01T08:24:00 | 2010/08/01 13:42 | Halo | 360 | 850 | 247 | 2010-08-04T09:54:00 | 537 |
22 | 2011/01/19T11:54:00 | −−− | −−− | −−− | −−− | −−− | 2011-01-24T10:18:11 | 367 |
23 | 2011/01/21T13:24:00 | 2011/01/21 13:25 | 341 | 144 | 117 | 3.1 | 2011-01-25T00:20:48 | 349 |
24 | 2011/01/30T11:54:00 | 2011/01/30 12:36 | 184 | 264 | 120 | 3.3 | 2011-02-04T09:29:15 | 405 |
25 | 2011/03/25T06:54:00 | 2011/03/25 08:48 | 107 | 59 | 320 | 1.2 | 2011-03-30T00:21:05 | 358 |
26 | 2011/05/25T05:39:00 | 2011/05/25 05:24 | 320 | 38 | 276 | 2.8 | 2011-05-28T05:33:00 | 517 |
27 | 2011/05/25T13:39:00 | 2011/05/25 13:25 | 321 | 78 | 561 | −2.6 | 2011-05-28T05:33:00 | 517 |
28 | 2011/06/01T18:24:00 | 2011/06/01 18:36 | 112 | 189 | 361 | 4.1 | 2011-06-05T01:57:00 | 513 |
29 | 2011/07/11T11:24:00 | 2011/07/11 12:00 | 213 | 53 | 266 | 8.6 | 2011-07-15T06:29:15 | 415 |
30 | 2011/08/02T06:54:00 | 2011/08/02 06:36 | 288 | 268 | 712 | −15.5 | 2011-08-06T22:16:30 | 539 |
31 | 2011/09/13T23:24:00 | 2011/09/14 00:00 | 334 | 242 | 408 | 3.2 | 2011-09-17T15:37:30 | 441 |
32 | 2011/09/14T21:24:00 | 2011/09/14 20:12 | 239 | 131 | 375 | 9 | 2011-09-18T12:24:00 | 442 |
33 | 2011/10/01T10:24:00 | 2011/10/01 09:36 | 317 | 203 | 448 | −3.3 | 2011-10-05T09:49:30 | 453 |
34 | 2011/10/02T01:24:00 | 2011/10/02 02:00 | 167 | 103 | 259 | 0.6 | 2011-10-06T14:06:00 | 371 |
35 | 2011/10/22T01:24:00 | 2011/10/22 01:25 | Halo | 360 | 593 | 9.5 | 2011-10-25T00:32:37 | 472 |
36 | 2011/10/26T12:24:00 | 2011/10/26 10:00 | 298 | 158 | 270 | 5.1 | 2011-10-31T00:58:30 | 389 |
37 | 2011/11/26T07:24:00 | 2011/11/26 07:12 | Halo | 360 | 933 | 9 | 2011-11-29T01:50:15 | 449 |
38 | 2011/12/26T11:54:00 | 2011/12/26 11:48 | 340 | 277 | 736 | −19.3 | 2011-12-29T22:21:00 | 384 |
39 | 2012/01/19T15:24:00 | 2012/01/19 14:36 | Halo | 360 | 1120 | 54.1 | 2012-01-22T23:57:45 | 418 |
40 | 2012/02/09T21:54:00 | 2012/02/09 21:17 | Halo | 360 | 659 | 1.2 | 2012-02-14T20:36:22 | 384 |
41 | 2012/02/10T20:24:00 | 2012/02/10 20:00 | Halo | 360 | 533 | 3.8 | 2012-02-16T14:14:37 | 335 |
42 | 2012/02/24T03:24:00 | 2012/02/24 03:46 | 341 | 341 | 800 | 13.3 | 2012-02-27T18:04:30 | 439 |
43 | 2012/03/03T19:24:00 | 2012/03/03 18:36 | 49 | 192 | 1078 | −17.3 | 2012-03-06T06:30:00 | 380 |
44 | 2012/03/07T00:39:00 | 2012/03/07 00:24 | Halo | 360 | 2684 | −88.2 | 2012-03-09T03:08:31 | 563 |
45 | 2012/03/13T17:39:00 | 2012/03/13 17:36 | Halo | 360 | 1884 | 45.6 | 2012-03-15T21:00:00 | 685 |
46 | 2012/03/20T16:24:00 | 2012/03/30 14:46 | 44 | 141 | 584 | −1.9 | 2012-04-04T20:06:00 | 335 |
47 | 2012/04/19T15:39:00 | 2012/04/19 15:12 | 138 | 142 | 540 | 7.9 | 2012-04-23T16:43:18 | 373 |
48 | 2012/04/23T18:24:00 | 2012/04/23 18:24 | Halo | 360 | 528 | −1.1 | 2012-04-26T02:35:37 | 541 |
49 | 2012/04/29T10:39:00 | 2012/04/29 09:36 | 61 | 145 | 475 | 2.2 | 2012-05-04T03:27:00 | 310 |
50 | 2012/05/11T23:53:00 | 2012/05/12 00:00 | Halo | 360 | 805 | −6.6 | 2012-05-16T16:07:30 | 369 |
41 | 2012/05/28T05:24:00 | 2012/05/28 08:00 | 323 | 79 | 621 | 76.1 | 2012-06-01T19:30:00 | 359 |
52 | 2012/05/28T11:24:00 | 2012/05/28 11:36 | 292 | 74 | 115 | −2.7 | 2012-06-02T14:54:00 | 334 |
53 | 2012/06/06T20:24:00 | 2012/06/06 20:36 | 180 | 173 | 494 | −2.3 | 2012-06-08T11:00:16 | 488 |
54 | 2012/06/14T13:54:00 | 2012/06/14 14:12 | Halo | 360 | 987 | −1.2 | 2012-06-16T22:12:00 | 446 |
55 | 2012/07/01T06:54:00 | 2012/07/01 06:12 | 154 | 181 | 423 | −1.5 | 2012-07-05T01:14:15 | 491 |
56 | 2012/07/06T23:24:00 | 2012/07/06 23:24 | Halo | 360 | 1828 | −56.1 | 2012-07-08T23:46:30 | 413 |
57 | 2012/07/12T16:39:00 | 2012/07/12 16:48 | Halo | 360 | 885 | 195.6 | 2012-07-15T06:22:30 | 516 |
58 | 2012/08/14T03:24:00 | 2012/08/14 04:36 | 276 | 150 | 198 | 2 | 2012-08-16T21:49:30 | 413 |
59 | 2012/08/26T08:24:00 | 2012/08/26 07:24 | 25 | 86 | 208 | 1.5 | 2012-08-30T18:40:30 | 400 |
60 | 2012/08/31T19:24:00 | 2012/08/31 19:24 | 334 | 157 | 278 | 7.3 | 2012-09-04T16:38:26 | 446 |
61 | 2012/08/31T20:24:00 | 2012/08/31 20:00 | Halo | 360 | 1442 | 2 | 2012-09-05T06:39:22 | 505 |
62 | 2012/09/02T03:24:00 | 2012/09/02 04:00 | Halo | 360 | 538 | −6.9 | 2012-09-06T02:15:00 | 425 |
63 | 2012/09/02T09:54:00 | 2012/09/02 09:36 | 287 | 173 | 404 | 4.3 | 2012-09-06T18:27:00 | 391 |
64 | 2012/09/24T09:24:00 | 2012/09/24 04:36 | 90 | 81 | 245 | 3.7 | 2012-09-30T12:29:15 | 328 |
65 | 2012/09/28T00:24:00 | 2012/09/28 00:12 | Halo | 360 | 947 | −27.1 | 2012-10-01T17:10:30 | 358 |
66 | 2012/10/05T02:39:00 | 2012/10/05 02:48 | 258 | 284 | 612 | 21.2 | 2012-10-08T17:22:30 | 391 |
67 | 2012/10/27T16:24:00 | 2012/10/27 16:48 | Halo | 360 | 317 | 9.1 | 2012-10-31T23:30:45 | 344 |
68 | 2012/11/09T15:24:00 | 2012/11/09 15:12 | 175 | 276 | 559 | 4 | 2012-11-13T07:43:30 | 380 |
69 | 2012/11/20T12:24:00 | 2012/11/20 12:00 | Halo | 360 | 619 | 2.6 | 2012-11-24T12:45:00 | 379 |
70 | 2012/11/23T14:24:00 | 2012/12/11 15:36 | Halo | 360 | 519 | −1.9 | 2012-11-26T21:47:15 | 415 |
71 | 2012/12/11T15:24:00 | 2012/11/24 13:48 | 63 | 60 | 380 | −40.2 | 2012-12-14T07:34:30 | 324 |
Appendix A.2. Aerodynamic Drag Model Calculation
Algorithm A1 Aerodynamic Drag Model Calculation |
References
- Gosling, J.; Hildner, E.; MacQueen, R.; Munro, R.; Poland, A.; Ross, C. Mass ejections from the Sun: A view from Skylab. J. Geophys. Res. 1974, 79, 4581–4587. [Google Scholar] [CrossRef]
- Hundhausen, A. An introduction. Coronal Mass Ejections 1997, 99, 1–7. [Google Scholar]
- Temmer, M. Space weather: The solar perspective An update to Schwenn (2006). Living Rev. Sol. Phys. 2021, 18. [Google Scholar] [CrossRef]
- Ogilvie, K.W.; Chornay, D.J.; Fritzenreiter, R.J.; Hunsaker, F.; Keller, J.; Lobell, J.; Miller, G.; Scudder, J.D.; Sittler, E.C.; Torbert, R.B.; et al. Swe, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 1995, 71, 55–77. [Google Scholar] [CrossRef]
- Klein, L.W.; Burlaga, L.F. Interplanetary magnetic clouds At 1 AU. J. Geophys. Res. Space Phys. 1982, 87, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G.; Cane, H.V. Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta. J. Geophys. Res. Space Phys. 1995, 100, 23397–23412. [Google Scholar] [CrossRef]
- Burlaga, L.F.; Skoug, R.M.; Smith, C.W.; Webb, D.F.; Zurbuchen, T.H.; Reinard, A. Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998–1999. J. Geophys. Res. Space Phys. 2001, 106, 20957–20977. [Google Scholar] [CrossRef]
- Bame, S.J.; Asbridge, J.R.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D. Bi-directional streaming of solar wind electrons >80 eV: ISEE evidence for a closed-field structure within the driver gas of an interplanetary shock. Geophys. Res. Lett. 1981, 8, 173–176. [Google Scholar] [CrossRef]
- Bame, S.; Asbridge, J.; Feldman, W.; Fenimore, E.; Gosling, J. Solar-wind heavy-ions from flare-heated coronal plasma. Sol. Phys. 1979, 62, 179–201. [Google Scholar] [CrossRef]
- Henke, T.; Woch, J.; Schwenn, R.; Mall, U.; Gloeckler, G.; von Steiger, R.; Forsyth, R.; Balogh, A. Ionization state and magnetic topology of coronal mass ejections. J. Geophys. Res.-Space Phys. 2001, 106, 10597–10613. [Google Scholar] [CrossRef]
- Ipavich, F.M.; Galvin, A.B.; Gloeckler, G.; Hovestadt, D.; Bame, S.J.; Klecker, B.; Scholer, M.; Fisk, L.A.; Fan, C.Y. Solar wind Fe and CNO measurements in high-speed flows. J. Geophys. Res. Space Phys. 1986, 91, 4133–4141. [Google Scholar] [CrossRef]
- Schwenn, R.; Rosenbauer, H.; Mühlhäuser, K.H. Singly-ionized helium in the driver gas of an interplanetary shock wave. Geophys. Res. Lett. 1980, 7, 201–204. [Google Scholar] [CrossRef]
- Burlaga, L.; Sittler, E.; Mariani, F.; Schwenn, R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. Space Phys. 1981, 86, 6673–6684. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996-aEuro parts per thousand 2009): Catalog and Summary of Properties. Sol. Phys. 2010, 264, 189–237. [Google Scholar] [CrossRef]
- Jian, L.K.; Russell, C.T.; Luhmann, J.G.; Galvin, A.B. STEREOObservations of Interplanetary Coronal Mass Ejections in 2007–2016. Astrophys. J. 2018, 855, 114. [Google Scholar] [CrossRef]
- Chi, Y.; Shen, C.; Wang, Y.; Xu, M.; Ye, P.; Wang, S. Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Sol. Phys. 2016, 291, 2419–2439. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, W.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.; Vasyliunas, V. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Shen, C.L.; Chi, Y.T.; Wang, Y.M.; Xu, M.J.; Wang, S. Statistical comparison of the ICME’s geoeffectiveness of different types and different solar phases from 1995 to 2014. J. Geophys. Res.-Space Phys. 2017, 122, 5931–5948. [Google Scholar] [CrossRef]
- Gopalswamy, N. Coronal mass ejections of solar cycle 23. J. Astrophys. Astron. 2006, 27, 243–254. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Yashiro, S.; Michalek, G.; Stenborg, G.; Vourlidas, A.; Freeland, S.; Howard, R. The soho/lasco cme catalog. Earth Moon Planets 2009, 104, 295–313. [Google Scholar] [CrossRef]
- Ameri, D.; Valtonen, E. Investigation of the Geoeffectiveness of Disk-Centre Full-Halo Coronal Mass Ejections. Sol. Phys. 2017, 292, 79. [Google Scholar] [CrossRef]
- Besliu-Ionescu, D.; Mierla, M. Geoeffectiveness Prediction of CMEs. Front. Astron. Space Sci. 2021, 8, 79. [Google Scholar] [CrossRef]
- Goswami, A. Studying the properties of interplanetary counterpart of halo-CMEs and their influences on Dst index. Adv. Space Res. 2019, 64, 287–298. [Google Scholar] [CrossRef]
- Hess, P.; Zhang, J. A Study of the Earth-Affecting CMEs of Solar Cycle 24. Sol. Phys. 2017, 292, 80. [Google Scholar] [CrossRef]
- Soni, S.L.; Yadav, M.L.; Gupta, R.S.; Verma, P.L. Exhaustive study of three-time periods of solar activity due to single active regions: Sunspot, flare, CME, and geo-effectiveness characteristics. Astrophys. Space Sci. 2020, 365, 189. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, P.; Wang, S.; Zhou, G.; Wang, J. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. Space Phys. 2002, 107, SSH-2. [Google Scholar] [CrossRef]
- Wang, Y.M.; Shen, C.L.; Wang, S.; Ye, P.Z. Deflection of coronal mass ejection in the interplanetary medium. Sol. Phys. 2004, 222, 329–343. [Google Scholar] [CrossRef]
- Shen, C.; Wang, Y.; Pan, Z.; Miao, B.; Ye, P.; Wang, S. Full-halo coronal mass ejections: Arrival at the Earth. J. Geophys. Res. Space Phys. 2014, 119, 5107–5116. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Wang, Y.; Pan, Z.; Zhang, M.; Ye, P.; Wang, S. Full halo coronal mass ejections: Do we need to correct the projection effect in terms of velocity? J. Geophys. Res. Space Phys. 2013, 118, 6858–6865. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.; Khan, P.A.; Atulkar, R.; Purohit, P.K. Investigation of geo-effective properties of halo coronal mass ejections. Russ. J. Earth Sci. 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Wang, Y.K.; Wan, L.F.; Cheng, X.; Ding, M.D.; Zhang, J. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J. 2015, 806, 271. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Ofman, L.; Lawrence, G. Cone model for halo CMEs: Application to space weather forecasting. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Xue, X.; Wang, C.; Dou, X. An ice-cream cone model for coronal mass ejections. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Brueckner, G.; Howard, R.; Koomen, M.; Korendyke, C.; Michels, D.; Moses, J.; Socker, D.; Dere, K.; Lamy, P.; Llebaria, A.; et al. The large angle spectroscopic coronagraph (LASCO). In The SOHO Mission; Springer: Berlin/Heidelberg, Germany, 1995; pp. 357–402. [Google Scholar]
- Delaboudiniere, J.; Artzner, G.; Brunaud, J.; Gabriel, A.; Hochedez, J.; Millier, F.; Song, X.; Au, B.; Dere, K.; Howard, R.; et al. EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 1995, 162, 291–312. [Google Scholar] [CrossRef]
- Domingo, V.; Fleck, B.; Poland, A.I. The SOHO mission: An overview. Sol. Phys. 1995, 162, 1–37. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Kucera, T.; Davila, J.; Cyr, O.S.; Guhathakurta, M.; Christian, E. The STEREO mission: An introduction. Space Sci. Rev. 2008, 136, 5–16. [Google Scholar] [CrossRef]
- Thernisien, A.; Howard, R.; Vourlidas, A. Modeling of flux rope coronal mass ejections. Astrophys. J. 2006, 652, 763. [Google Scholar] [CrossRef] [Green Version]
- Thernisien, A.; Vourlidas, A.; Howard, R. Forward modeling of coronal mass ejections using STEREO/SECCHI data. Sol. Phys. 2009, 256, 111–130. [Google Scholar] [CrossRef]
- Thernisien, A. Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. Ser. 2011, 194, 33. [Google Scholar] [CrossRef]
- Temmer, M.; Preiss, S.; Veronig, A. CME projection effects studied with STEREO/COR and SOHO/LASCO. Sol. Phys. 2009, 256, 183–199. [Google Scholar] [CrossRef]
- Lugaz, N.; Vourlidas, A.; Roussev, I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere-application to CME-CME interaction. arXiv 2009, arXiv:0909.0534. [Google Scholar] [CrossRef] [Green Version]
- Lugaz, N.; Hernandez-Charpak, J.; Roussev, I.; Davis, C.; Vourlidas, A.; Davies, J. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 2010, 715, 493. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.D.; Luhmann, J.G.; Möstl, C.; Martinez-Oliveros, J.C.; Bale, S.D.; Lin, R.P.; Harrison, R.A.; Temmer, M.; Webb, D.F.; Odstrcil, D. Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett. 2012, 746, L15. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Inhester, B.; Wei, Y.; Gan, W.; Zhang, T.; Wang, M. Morphological evolution of a three-dimensional coronal mass ejection cloud reconstructed from three viewpoints. Astrophys. J. 2012, 751, 18. [Google Scholar] [CrossRef]
- de Koning, C.A.; Pizzo, V.; Biesecker, D. Geometric localization of CMEs in 3D space using STEREO beacon data: First results. Sol. Phys. 2009, 256, 167–181. [Google Scholar] [CrossRef]
- Mierla, M.; Inhester, B.; Marqué, C.; Rodriguez, L.; Gissot, S.; Zhukov, A.; Berghmans, D.; Davila, J. On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data. Sol. Phys. 2009, 259, 123. [Google Scholar] [CrossRef] [Green Version]
- Lugaz, N. Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Sol. Phys. 2010, 267, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Inhester, B.; Mierla, M. Comparisons of CME morphological characteristics derived from five 3D reconstruction methods. Sol. Phys. 2013, 282, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Maloney, S.A.; Gallagher, P.T. Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. Lett. 2010, 724, L127. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.T.; Zhang, J.; Shen, C.L.; Hess, P.; Liu, L.J.; Mishra, W.; Wang, Y.M. Observational Study of an Earth-affecting Problematic ICME from STEREO. Astrophys. J. 2018, 863, 108. [Google Scholar] [CrossRef]
- Sheeley, N.R.; Walters, J.H.; Wang, Y.M.; Howard, R.A. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J. Geophys. Res.-Space Phys. 1999, 104, 24739–24767. [Google Scholar] [CrossRef]
- Howard, R.; Moses, J.; Vourlidas, A.; Newmark, J.; Socker, D.; Plunkett, S.; Korendyke, C.; Cook, J.; Hurley, A.; Davila, J.; et al. Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 2008, 136, 67. [Google Scholar] [CrossRef] [Green Version]
- Cane, H.V.; Richardson, I.G.; St. Cyr, O.C. Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett. 2000, 27, 3591–3594. [Google Scholar] [CrossRef]
- Luhmann, J.G.; Gopalswamy, N.; Jian, L.K.; Lugaz, N. ICME Evolution in the Inner Heliosphere Invited Review. Sol. Phys. 2020, 295, 61. [Google Scholar] [CrossRef]
- Lugaz, N.; Temmer, M.; Wang, Y.M.; Farrugia, C.J. The Interaction of Successive Coronal Mass Ejections: A Review. Sol. Phys. 2017, 292, 64. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Wu, S.T.; Feng, X.S.; Wu, C.C. Acceleration and deceleration of coronal mass ejections during propagation and interaction. J. Geophys. Res.-Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Gopalswamy, N.; Lara, A.; Yashiro, S.; Kaiser, M.L.; Howard, R.A. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys.-Res.-Space Phys. 2001, 106, 29207–29217. [Google Scholar] [CrossRef]
- Owens, M.; Cargill, P. Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections. Ann. Geophys. 2004, 22, 4397–4406. [Google Scholar] [CrossRef] [Green Version]
- Vrsnak, B.; Temmer, M.; Zic, T.; Taktakishvili, A.; Dumbovic, M.; Mostl, C.; Veronig, A.M.; Mays, M.L.; Odstrcil, D. Heliospheric propagation of coronal mass ejections: Comparison of numerical wsa-enlil plus cone model and analytical drag-based model. Astrophys. J. Suppl. Ser. 2014, 213, 21. [Google Scholar] [CrossRef] [Green Version]
- Dumbovic, M.; Calogovic, J.; Martinic, K.; Vrsnak, B.; Sudar, D.; Temmer, M.; Veronig, A. Drag-Based Model (DBM) Tools for Forecast of Coronal Mass Ejection Arrival Time and Speed. Front. Astron. Space Sci. 2021, 8. [Google Scholar] [CrossRef]
- Vrsnak, B.; Zic, T.; Vrbanec, D.; Temmer, M.; Rollett, T.; Mostl, C.; Veronig, A.; Calogovic, J.; Dumbovic, M.; Lulic, S.; et al. Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Sol. Phys. 2013, 285, 295–315. [Google Scholar] [CrossRef]
- Byrne, J.P.; Maloney, S.A.; McAteer, R.T.J.; Refojo, J.M.; Gallagher, P.T. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 2010, 1, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.L.; Wang, Y.M.; Wang, S.; Liu, Y.; Liu, R.; Vourlidas, A.; Miao, B.; Ye, P.Z.; Liu, J.J.; Zhou, Z.J. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat. Phys. 2012, 8, 923–928. [Google Scholar] [CrossRef]
- Braga, C.R.; Dal Lago, A.; Echer, E.; Stenborg, G.; de Mendonca, R.R.S. Pseudo-automatic Determination of Coronal Mass Ejections’ Kinematics in 3D. Astrophys. J. 2017, 842, 134. [Google Scholar] [CrossRef]
- Chi, Y.; Scott, C.; Shen, C.; Barnard, L.; Owens, M.; Xu, M.; Zhang, J.; Jones, S.; Zhong, Z.; Yu, B.; et al. Modeling the Observed Distortion of Multiple (Ghost) CME Fronts in STEREO Heliospheric Imagers. Astrophys. J. Lett. 2021, 917, L16. [Google Scholar] [CrossRef]
- Zhuang, B.; Wang, Y.; Shen, C.; Liu, S.; Wang, J.; Pan, Z.; Li, H.; Liu, R. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth. Astrophys. J. 2017, 845, 117. [Google Scholar] [CrossRef]
- Hinterreiter, J.; Amerstorfer, T.; Reiss, M.A.; Mostl, C.; Temmer, M.; Bauer, M.; Amerstorfer, U.V.; Bailey, R.L.; Weiss, A.J.; Davies, J.A.; et al. Why are ELEvoHI CME Arrival Predictions Different if Based on STEREO-A or STEREO-B Heliospheric Imager Observations? Space-Weather-Int. J. Res. Appl. 2021, 19, e2020SW002674. [Google Scholar] [CrossRef]
- Patsourakos, S.; Vourlidas, A.; Kliem, B. Toward understanding the early stages of an impulsively accelerated coronal mass ejection—SECCHI observations. Astron. Astrophys. 2010, 522, A100. [Google Scholar] [CrossRef]
- Heinemann, S.G.; Temmer, M.; Farrugia, C.J.; Dissauer, K.; Kay, C.; Wiegelmann, T.; Dumbovic, M.; Veronig, A.M.; Podladchikova, T.; Hofmeister, S.J.; et al. CME-HSS Interaction and Characteristics Tracked from Sun to Earth. Sol. Phys. 2019, 294, 121. [Google Scholar] [CrossRef] [Green Version]
- Dumbovic, M.; Guo, J.N.; Temmer, M.; Mays, M.L.; Veronig, A.; Heinemann, S.G.; Dissauer, K.; Hofmeister, S.; Halekas, J.; Mostl, C.; et al. Unusual Plasma and Particle Signatures at Mars and STEREO-A Related to CME-CME Interaction. Astrophys. J. 2019, 880, 18. [Google Scholar] [CrossRef] [Green Version]
- Bein, B.M.; Berkebile-Stoiser, S.; Veronig, A.M.; Temmer, M.; Muhr, N.; Kienreich, I.; Utz, D.; Vrsnak, B. Impulsive acceleration of coronal mass ejections. i. statistics and coronal mass ejection source region characteristics. Astrophys. J. 2011, 738, 191. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Liu, Y.S.; Yang, Y. Numerical Research on the Effect of the Initial Parameters of a CME Flux-rope Model on Simulation Results. Astrophys. J. Suppl. Ser. 2021, 253, 12. [Google Scholar] [CrossRef]
- Shen, F.; Liu, Y.S.; Yang, Y. Numerical Research on the Effect of the Initial Parameters of a CME Flux-rope Model on Simulation Results. II. Different Locations of Observers. Astrophys. J. 2021, 915, 30. [Google Scholar] [CrossRef]
- Fox, N.J.; Velli, M.C.; Bale, S.D.; Decker, R.; Driesman, A.; Howard, R.A.; Kasper, J.C.; Kinnison, J.; Kusterer, M.; Lario, D.; et al. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star. Space Sci. Rev. 2016, 204, 7–48. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.; Zouganelis, I.; St Cyr, O.C.; Gilbert, H.R.; Nieves-Chinchilla, T. Europe’s next mission to the Sun. Nat. Astron. 2020, 4, 205. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, H.; Wang, Y.; Xia, L.; Shen, C.; Guo, J.; Zhang, Q.; Huang, Z.; Liu, K.; Li, X.; et al. Concept of the solar ring mission: An overview. Sci. China Technol. Sci. 2020, 63, 1699–1713. [Google Scholar] [CrossRef]
- Braga, C.R.; Vourlidas, A. Coronal mass ejections observed by heliospheric imagers at 0.2 and 1 au The events on April 1 and 2, 2019. Astron. Astrophys. 2021, 650, A31. [Google Scholar] [CrossRef]
No. | Time_Fit (UT) | Time_Arrive (UT) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2008/07/21T11:37:30 | 8.49 | −7.83 | 11.74 | 21.57 | 331 ± 35 | 11.3 ± 11.3 | 2008-07-25T13:17:20 |
2 | 2008/12/12T09:37:30 | 7.40 | 7.27 | 51.43 | 26.15 | 337 ± 29 | 5.5 ± 8.0 | 2008-12-17T03:24:45 |
3 | 2009/01/21T22:37:30 | 25.95 | −5.59 | 40.25 | 17.22 | 256 ± 20 | −10.0 ± 4.5 | 2009-01-26T04:59:15 |
4 | 2009/06/23T01:37:30 | 17.04 | −8.38 | −41.37 | 17.43 | 168 ± 24 | 4.2 ± 6.3 | 2009-06-27T18:36:00 |
5 | 2009/11/09T17:24:00 | 1.62 | 4.47 | 39.69 | 16.82 | 391 ± 37 | −15.4 ± 14.9 | 2009-11-14T10:41:15 |
6 | 2009/12/30T15:24:00 | 31.95 | 1.12 | 5.59 | 23.89 | 410 ± 15 | 6.2 ± 2.6 | 2010-01-01T22:03:00 |
7 | 2010/02/03T03:24:00 | 6.61 | −15.65 | 30.19 | 24.43 | 156 ± 7 | 2.5 ± 0.6 | 2010-02-07T23:17:15 |
8 | 2010/02/06T20:24:00 | −37.35 | −3.91 | −64.85 | 19.58 | 259 ± 14 | −8.8 ± 2.2 | 2010-02-12T13:16:58 |
9 | 2010/02/07T03:54:03 | −6.00 | −7.00 | −−− | 40.50 | 481 | −−− | 2010-02-11T11:33:00 |
10 | 2010/02/08T09:24:00 | −12.58 | −2.24 | −25.71 | 27.61 | 421 ± 43 | 6.1 ± 18.8 | 2010-02-13T22:14:14 |
11 | 2010/02/10T17:39:00 | −27.56 | −7.83 | −43.04 | 16.09 | 675 ± 51 | −5.0 ± 24.2 | 2010-02-15T11:53:48 |
12 | 2010/02/12T13:42:04 | −1.00 | 11.00 | −−− | 42.00 | 550 | −−− | 2010-02-16T04:01:52 |
13 | 2010/02/14T00:24:00 | 43.59 | 13.98 | −59.25 | 45.36 | 206 ± 10 | 5.4 ± 1.4 | 2010-02-19T19:57:00 |
14 | 2010/04/03T10:33:58 | −1.00 | −27.00 | −−− | 42.00 | 853 | −−− | 2010-04-05T13:09:45 |
15 | 2010/04/06T01:39:00 | −31.53 | 2.80 | 32.98 | 19.15 | 703 ± 37 | −38.5 ± 12.5 | 2010-04-09T19:07:30 |
16 | 2010/04/08T04:24:00 | −5.86 | −3.35 | −25.16 | 50.50 | 496 ± 25 | −8.7 ± 5.8 | 2010-04-12T01:07:30 |
17 | 2010/04/18T22:54:00 | 41.32 | −21.24 | −10.62 | 29.23 | 343 ± 11 | 12.0 ± 1.5 | 2010-04-22T05:06:00 |
18 | 2010/05/23T18:06:05 | 16.00 | 7.00 | −−− | 35.00 | 365 | −−− | 2010-05-28T19:43:30 |
19 | 2010/06/16T12:54:00 | −19.05 | −0.56 | −22.92 | 24.41 | 193 ± 9 | 5.7 ± 1.1 | 2010-06-21T07:30:00 |
20 | 2010/06/16T23:54:00 | −40.94 | 19.01 | 81.62 | 23.00 | 183 ± 15 | 3.4 ± 2.8 | 2010-06-21T07:30:00 |
21 | 2010/08/01T13:42:05 | −38.00 | 20.00 | −−− | 46.50 | 1262 | −−− | 2010-08-04T09:54:00 |
22 | 2011/01/19T14:24:00 | −23.80 | 0.00 | 34.10 | 19.48 | 189 ± 8 | 2.4 ± 0.8 | 2011-01-24T10:18:11 |
23 | 2011/01/21T15:39:00 | 6.57 | 26.27 | −35.78 | 26.21 | 167 ± 8 | 3.9 ± 0.9 | 2011-01-25T00:20:48 |
24 | 2011/01/30T09:39:00 | −19.09 | −17.89 | 8.94 | 25.51 | 180 ± 7 | 6.4 ± 1.0 | 2011-02-04T09:29:15 |
25 | 2011/03/25T08:54:00 | −22.57 | −4.47 | 24.04 | 34.90 | 221 ± 11 | 8.4 ± 1.7 | 2011-03-30T00:21:05 |
26 | 2011/05/25T05:24:00 | 4.99 | −6.15 | 42.48 | 33.14 | 634 ± 37 | −14.0 ± 14.9 | 2011-05-28T05:33:00 |
27 | 2011/05/25T13:39:00 | 8.90 | 11.18 | 44.72 | 20.60 | 648 ± 64 | −18.3 ± 33.0 | 2011-05-28T05:33:00 |
28 | 2011/06/01T18:24:00 | −25.57 | −6.15 | 73.79 | 27.48 | 667 ± 21 | −5.6 ± 5.5 | 2011-06-05T01:57:00 |
29 | 2011/07/11T11:54:00 | 18.41 | −11.74 | 81.62 | 26.27 | 413 ± 24 | −22.6 ± 5.9 | 2011-07-15T06:29:15 |
30 | 2011/08/02T06:54:00 | 58.95 | 10.62 | −33.54 | 44.57 | 729 ± 44 | −35.6 ± 16.9 | 2011-08-06T22:16:30 |
31 | 2011/09/13T23:54:00 | 16.91 | 26.27 | −46.96 | 61.83 | 523 ± 15 | 3.6 ± 3.1 | 2011-09-17T15:37:30 |
32 | 2011/09/14T22:24:00 | 44.94 | −3.35 | 44.72 | 24.64 | 456 ± 9 | 19.2 ± 1.4 | 2011-09-18T12:24:00 |
33 | 2011/10/01T10:54:00 | 0.26 | −7.27 | 43.04 | 53.88 | 413 ± 17 | −12.7 ± 3.5 | 2011-10-05T09:49:30 |
34 | 2011/10/02T02:24:00 | −7.98 | −7.27 | −51.99 | 42.73 | 430 ± 21 | −21.8 ± 5.2 | 2011-10-06T14:06:00 |
35 | 2011/10/22T00:54:00 | 33.85 | 40.00 | −77.70 | 44.43 | 604 ± 20 | 32.1 ± 4.5 | 2011-10-25T00:32:37 |
36 | 2011/10/26T12:24:00 | 27.90 | 12.86 | −68.76 | 41.61 | 451 ± 29 | −10.6 ± 8.0 | 2011-10-31T00:58:30 |
37 | 2011/11/26T07:12:06 | 35.00 | 17.00 | −−− | 88.50 | 900 | −−− | 2011-11-29T01:50:15 |
38 | 2011/12/26T11:54:00 | 0.93 | 23.48 | 77.70 | 52.69 | 693 ± 31 | −44.3 ± 10.1 | 2011-12-29T22:21:00 |
39 | 2012/01/19T14:36:05 | −17.00 | 43.00 | −−− | 70.50 | 1090 | −−− | 2012-01-22T23:57:45 |
40 | 2012/02/09T21:17:36 | −42.00 | 29.00 | −−− | 39.50 | 648 | −−− | 2012-02-14T20:36:22 |
41 | 2012/02/10T20:24:00 | −14.77 | 21.24 | −54.22 | 45.14 | 551 ± 24 | −3.9 ± 6.9 | 2012-02-16T14:14:37 |
42 | 2012/02/24T03:54:00 | −8.29 | 22.92 | −78.82 | 66.40 | 738 ± 38 | −23.3 ± 10.7 | 2012-02-27T18:04:30 |
43 | 2012/03/03T18:54:00 | −55.67 | 20.68 | −34.66 | 35.93 | 928 ± 29 | −10.8 ± 8.0 | 2012-03-06T06:30:00 |
44 | 2012/03/07T00:24:06 | −36.00 | 33.00 | −−− | 70.00 | 2012 | −−− | 2012-03-09T03:08:31 |
45 | 2012/03/13T17:36:05 | 37.00 | 33.00 | −−− | 52.00 | 1525 | −−− | 2012-03-15T21:00:00 |
46 | 2012/03/30T15:24:00 | −60.56 | 32.98 | −87.76 | 44.13 | 514 ± 16 | −15.6 ± 3.3 | 2012-04-04T20:06:00 |
47 | 2012/04/19T16:24:00 | −40.86 | −26.27 | −3.35 | 54.59 | 708 ± 29 | 20.3 ± 8.0 | 2012-04-23T16:43:18 |
48 | 2012/04/23T18:24:00 | 1.89 | −17.89 | −5.03 | 57.55 | 690 ± 43 | −46.9 ± 18.8 | 2012-04-26T02:35:37 |
49 | 2012/04/29T10:39:00 | −43.84 | 26.83 | −66.52 | 44.44 | 459 ± 17 | −11.5 ± 3.5 | 2012-05-04T03:27:00 |
50 | 2012/05/12T00:00:05 | 25.00 | −10.00 | −−− | 32.50 | 939 | −−− | 2012-05-16T16:07:30 |
41 | 2012/05/28T06:39:00 | −2.40 | 5.03 | 48.63 | 27.01 | 334 ± 18 | 14.3 ± 4.4 | 2012-06-01T19:30:00 |
52 | 2012/05/28T11:39:00 | 24.95 | 12.86 | 21.80 | 40.89 | 148 ± 20 | 2.3 ± 4.6 | 2012-06-02T14:54:00 |
53 | 2012/06/06T20:39:00 | 10.01 | −29.07 | −76.02 | 39.30 | 584 ± 27 | −19.8 ± 8.3 | 2012-06-08T11:00:16 |
54 | 2012/06/14T14:24:00 | −0.33 | −24.60 | 34.10 | 64.09 | 1045 ± 77 | −52.3 ± 51.3 | 2012-06-16T22:12:00 |
55 | 2012/07/01T06:39:00 | −19.72 | −25.71 | 47.52 | 45.68 | 365 ± 11 | 1.0 ± 1.5 | 2012-07-05T01:14:15 |
56 | 2012/07/06T23:24:00 | 62.41 | −30.19 | −44.16 | 60.87 | 1110 ± 43 | −79.0 ± 18.8 | 2012-07-08T23:46:30 |
57 | 2012/07/12T16:54:00 | −2.64 | −13.42 | −81.06 | 67.80 | 1299 ± 59 | −57.0 ± 27.6 | 2012-07-15T06:22:30 |
58 | 2012/08/14T04:24:00 | 6.58 | 2.24 | 38.57 | 29.28 | 400 ± 18 | −12.1 ± 3.5 | 2012-08-16T21:49:30 |
59 | 2012/08/26T08:24:00 | −7.04 | −11.74 | 32.98 | 19.84 | 187 ± 21 | 0.4 ± 4.5 | 2012-08-30T18:40:30 |
60 | 2012/08/31T19:24:00 | 38.23 | 34.10 | 29.07 | 32.87 | 165 ± 21 | 13.0 ± 4.5 | 2012-09-04T16:38:26 |
61 | 2012/08/31T20:24:00 | −36.12 | −8.94 | −50.87 | 80.64 | 1050 ± 59 | −65.8 ± 27.6 | 2012-09-05T06:39:22 |
62 | 2012/09/02T03:54:00 | 2.95 | 10.62 | −64.29 | 27.57 | 516 ± 26 | −0.7 ± 7.4 | 2012-09-06T02:15:00 |
63 | 2012/09/02T09:54:00 | 39.30 | 15.65 | −44.16 | 35.28 | 346 ± 14 | −8.7 ± 2.6 | 2012-09-06T18:27:00 |
64 | 2012/09/24T06:24:00 | −39.98 | 11.18 | −16.77 | 40.06 | 336 ± 13 | 8.2 ± 2.3 | 2012-09-30T12:29:15 |
65 | 2012/09/28T00:54:00 | 24.32 | 17.89 | 65.96 | 48.49 | 822 ± 39 | −12.2 ± 15.4 | 2012-10-01T17:10:30 |
66 | 2012/10/05T03:24:00 | 9.61 | −21.24 | 40.81 | 43.85 | 532 ± 19 | 5.4 ± 3.4 | 2012-10-08T17:22:30 |
67 | 2012/10/27T16:24:00 | 17.38 | 13.98 | −51.99 | 40.12 | 375 ± 9 | 9.9 ± 1.1 | 2012-10-31T23:30:45 |
68 | 2012/11/09T15:24:00 | −1.81 | −15.09 | 38.57 | 30.81 | 485 ± 19 | −8.1 ± 4.4 | 2012-11-13T07:43:30 |
69 | 2012/11/20T12:54:00 | 17.73 | 13.42 | −83.29 | 49.54 | 581 ± 24 | −13.1 ± 5.9 | 2012-11-24T12:45:00 |
70 | 2012/11/23T14:24:00 | −19.05 | −20.12 | 55.90 | 28.99 | 599 ± 24 | 0.0 ± 5.9 | 2012-11-26T21:47:15 |
71 | 2012/12/11T15:24:00 | −10.39 | −4.47 | −13.98 | 22.12 | 505 ± 35 | −21.9 ± 11.3 | 2012-12-14T07:34:30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Z.; Shen, C.; Mao, D.; Chi, Y.; Xu, M.; Liu, J.; Wang, Y. Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model. Universe 2021, 7, 361. https://doi.org/10.3390/universe7100361
Zhong Z, Shen C, Mao D, Chi Y, Xu M, Liu J, Wang Y. Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model. Universe. 2021; 7(10):361. https://doi.org/10.3390/universe7100361
Chicago/Turabian StyleZhong, Zhihui, Chenglong Shen, Dongwei Mao, Yutian Chi, Mengjiao Xu, Jiayi Liu, and Yuming Wang. 2021. "Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model" Universe 7, no. 10: 361. https://doi.org/10.3390/universe7100361
APA StyleZhong, Z., Shen, C., Mao, D., Chi, Y., Xu, M., Liu, J., & Wang, Y. (2021). Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model. Universe, 7(10), 361. https://doi.org/10.3390/universe7100361