Dark Gravitational Field on Riemannian and Sasaki Spacetime
Abstract
1. Introduction
2. Dark Gravity in the Riemannian Spacetime
2.1. Geodesics and Tidal Forces
2.2. Einstein Equations
2.3. Raychaudhuri Equation
2.4. Conformal Dark FLRW-Metric Structure
3. Gravity on the Sasaki Tangent Bundle
3.1. Deviation of Geodesics of a Sasaki Spacetime
3.2. Dark Gravity on the Tangent Bundle
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A
The Curvature Tensor of a Sasaki Tangent Bundle
References
- Farnes, J.S. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef]
- Nadler, E.O.; Wechsler, R.H.; Bechtol, K.; Mao, Y.Y.; Green, G.; Drlica-Wagner, A.; McNanna, M.; Mau, S.; Pace, A.B.; Simon, J.D.; et al. Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophys. J. 2020, 893, 48. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, L.; Abdukerim, A.; Chen, X.; Chen, Y.; Cui, X.; Fang, D.; Fu, C.; Giboni, K.; Giuliani, F.; et al. Constraining Dark Matter Models with a Light Mediator at the PandaX-II Experiment. Phys. Rev. Lett. 2018, 121, 021304. [Google Scholar] [CrossRef] [PubMed]
- Dror, J.A.; Elor, G.; McGehee, R. Directly Detecting Signals from Absorption of Fermionic Dark Matter. Phys. Rev. Lett. 2020, 124, 181301. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, J.W.; Enzi, W.; Vegetti, S.; Auger, M.W.; Fassnacht, C.D.; Despali, G.; Koopmans, L.V.; McKean, J.P. SHARP—VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. Mon. Not. R. Astron. Soc. 2020, 492, 3047–3059. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Rigault, M.; Brinnel, V.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Barbary, K.; Bongard, S.; Boone, K.; et al. Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate. arXiv 2018, arXiv:1806.03849. [Google Scholar]
- Martinelli, M.; Tutusaus, I. CMB tensions with low-redshift H0 and S8 measurements: Impact of a redshift-dependent type-Ia supernovae intrinsic luminosity. Symmetry 2019, 11, 986. [Google Scholar] [CrossRef]
- Di Valentino, E.; Gariazzo, S.; Mena, O.; Vagnozzi, S. Soundness of Dark Energy Properties. J. Cosmol. Astropart. Phys. 2020. [Google Scholar] [CrossRef]
- Dhawan, S.; Jha, S.W.; Leibundgut, B. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 2018, 609, A72. [Google Scholar] [CrossRef]
- Leibundgut, B.; Blondin, S. Evidence for dark energy from Type Ia supernovae. Nucl. Phys. B Proc. Suppl. 2005, 138, 10–15. [Google Scholar] [CrossRef]
- Krauss, L.M.; Jones-Smith, K.; Huterer, D. Dark energy, a cosmological constant, and type Ia supernovae. New J. Phys. 2007, 9, 141. [Google Scholar] [CrossRef][Green Version]
- Perlmutter, S. Supernovae, Dark Energy, and the Accelerating Universe. Phys. Today 2003, 56, 53. [Google Scholar] [CrossRef]
- Riess, A.G. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Allam, S.; Andersen, P.; Angus, C.; Asorey, J.; Avelino, A.; Avila, S.; Bassett, B.A.; Bechtol, K.; Bernstein, G.M.; et al. First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophys. J. Lett. 2019, 872, L30. [Google Scholar] [CrossRef]
- Kang, Y.; Lee, Y.W.; Kim, Y.L.; Chung, C.; Ree, C.H. Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. arXiv 2019, arXiv:1912.04903. [Google Scholar] [CrossRef]
- Nielsen, J.T.; Guffanti, A.; Sarkar, S. Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep. 2016, 6, 35596. [Google Scholar] [CrossRef] [PubMed]
- Di Valentino, E.; Melchiorri, A.; Linder, E.V.; Silk, J. Constraining dark energy dynamics in extended parameter space. Phys. Rev. D. 2017, 96, 023523. [Google Scholar] [CrossRef]
- Leibundgut, B.; Sullivan, M. Type Ia supernova cosmology. Space Sci. Rev. 2018, 214, 57. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Velten, H.; Gomes, S.; Busti, V.C. Gauging the cosmic acceleration with recent type Ia supernovae data sets. Phys. Rev. D. 2018, 97, 083516. [Google Scholar] [CrossRef]
- Hoscheit, B.L.; Barger, A.J. The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a ΛLTB Model. Astrophys. J. 2018, 854, 46. [Google Scholar] [CrossRef]
- Gariazzo, S.; Escudero, M.; Diamanti, R.; Mena, O. Cosmological searches for a noncold dark matter component. Phys. Rev. D 2017, 96, 043501. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D 2020, 101, 063502. [Google Scholar] [CrossRef]
- Collett, T.E.; Oldham, L.J.; Smith, R.J.; Auger, M.W.; Westfall, K.B.; Bacon, D.; Nichol, R.C.; Masters, K.L.; Koyama, K.; van den Bosch, R. A Precise Extragalactic Test of General Relativity. Science 2018, 360, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Hartle, J.B. Gravity: An Introduction to Einstein’s General Relativity; Addison-Wesley: Boston, MA, USA, 2003. [Google Scholar]
- Borowiec, A.; Godłowski, W.; Szydłowski, M. Dark Matter and Dark Energy as Effects of Modified Gravity. Int. J. Geom. Methods Mod. Phys. 2007, 4, 183–196. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P.; Stel, F. The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection. Mon. Not. R. Astron. Soc. 1995, 283, 27–47. [Google Scholar]
- Harko, T.; Lobo, F. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D. 2012, 86, 124034. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F. Generalized Curvature-Matter Couplings in Modified Gravity. Galaxies 2014, 2, 410–465. [Google Scholar] [CrossRef]
- Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 1958, 10, 338–354. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Mukhanov, V. Resolving Cosmological Singularities. J. Cosmol. Astropart. Phys. 2017, 2017, 009. [Google Scholar] [CrossRef]
- Ball, P. Dark matter highlights extra dimensions. Nature 2005. [Google Scholar] [CrossRef]
- Kahil, M.; Harko, T. Is dark matter an extra-dimensional effect? Mod. Phys. Lett. A 2011, 24, 667–682. [Google Scholar] [CrossRef]
- Coimbra Araújo, C.H.; da Rocha, R. Gravity with Extra Dimensions and Dark Matter Interpretation: A Straightforward Approach. ISRN High Energy Phys. 2013, 2013, 713508. [Google Scholar] [CrossRef]
- Tanabashi, M. Particle Data Group. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Miller, K.S. On the Inverse of the Sum of Matrices. Math. Mag. 1981, 54, 67–72. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Dark Energy and Dark Matter as Curvature Effects? J. Cosmol. Astropart. Phys. 2006, 2006. [Google Scholar] [CrossRef]
- Raychaudhuri, A. Relativistic Cosmology. Phys. Rev. 1955, 98, 1123. [Google Scholar] [CrossRef]
- Hawking, S.; Ellis, G. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Kar, S.; Sengupta, S. The Raychaudhuri equations: A brief review. Pramana J. Phys. 2007, 69, 49–76. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Alexiou, M. Raychaudhuri equation in the Finsler–Randers space-time and generalized scalar-tensor theories. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850039. [Google Scholar] [CrossRef]
- Moreshi, O.; Boero, E.; Gallo, E.; Gesser, F. Dark matter description by non-conventional energy-momentum tensor. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2015; Volume 1647, pp. 35–43. [Google Scholar]
- Peebles, P.J.E. Fluid Dark Matter. Astrophys. J. 2000, 534, L127. [Google Scholar] [CrossRef] [PubMed]
- Arbey, A. Dark Fluid: A complex scalar field to unify dark energy and dark matter. Phys. Rev. D 2006, 74, 043516. [Google Scholar] [CrossRef]
- Kuzmichev, V.; Kuzmichev, V. Two-component perfect fluid in FRW universe. Acta Phys. Pol. Ser. B 2012, 43, 1899–1910. [Google Scholar] [CrossRef]
- Alvarenga, F.; Fracalossi, R.; Freitas, R.C.; Gonçalves, S. Classical and quantum cosmology with two perfect fluids: Stiff matter and radiation. Gen. Relativ. Gravit. 2016, 49, 136. [Google Scholar] [CrossRef]
- Ferrando, J.J.; Morales, J.A.; Portilla, M. Two-perfect fluid interpretation of an energy tensor. Gen. Relativ. Gravit. 1990, 22, 1021–1032. [Google Scholar] [CrossRef][Green Version]
- Oliveira, S.R. Model of two perfect fluids for an anisotropic and homogeneous universe. Phys. Rev. D 1989, 40, 3976. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. F (R) Theor. Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. F (R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Francaviglia, M.; Mercadante, S. From Dark Energy & Dark Matter to Dark Metric. Found. Phys. 2009, 39, 1161–1176. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Dark energy, inflation and dark matter from modified F(R) gravity. arXiv 2008, arXiv:0807.0685. [Google Scholar]
- Tupper, B.O.J. Conformally Ricci-flat viscous fluids. J. Math. Phys. 1990, 31, 1704. [Google Scholar] [CrossRef]
- Hansraj, S.; Govinder, K.; Mewalal, N. Conformal Mappings in Relativistic Astrophysics. J. Appl. Math. 2013, 2013, 196385. [Google Scholar] [CrossRef]
- de Felice, F.; Clarke, C.J.S. Relativity on Curved Manifolds; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Liddle, A.; Lyth, D. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rund, H. The Differential Geometry of Finsler Spaces; Springer: Berlin/Heidelberg, Germany, 1959. [Google Scholar]
- Bejan, C.; Gül, I. Sasaki metric on the tangent bundle of a Weyl manifold. Publ. Inst. Math. 2018, 103, 25–32. [Google Scholar] [CrossRef]
- Kowalski, O. Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold. J. Reine Angew. Math. 1971, 250, 124–129. [Google Scholar]
1 | For all three metric tensors a metric signature (−,+,+,+) shall be assumed in their respective space. |
2 | One must be careful that and do not function as Christoffel symbols for the unified space . |
3 | These symbols could be explicitly calculated using [37]. |
4 | The lower-indices denote an antisymmetrization (similarly, indices between parentheses shall denote symmetrization). |
5 | One must be careful that for the unified space there is but one curvature tensor; the unified . |
6 | For such operations we must always use the unified metric. |
7 | We will refrain from using specific Lagrangians neither for the ordinary nor for the dark matter sector due to the existence of a plethora of potential Lagrangians for ordinary matter and a possible need for a complicated Lagrangian in order to effectively reproduce the dark sector phenomenology [38]. |
8 | One can clearly see that . |
9 | We assume . |
10 | The same apply to any curves in general. |
11 | This is true only if the vector (or tensor) acted upon belongs to the space with metric . |
12 | This is true only if the vector (or tensor) acted upon belongs to the space with metric . |
13 | This operation does not constitute a covariant derivative as the symbols are not proper Christoffel symbols and there is no corresponding geometric space. |
14 | One must be careful that only is the covariant derivative of ; all other operations defined before represent arbitrary operators in the framework of the unified space and can only be treated otherwise if we restrict our study in the corresponding subspaces. |
15 | The velocities are also assumed to follow a conformal relation [54]. |
16 | These are the same as in Equation (11). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrinos, P.; Savvopoulos, C. Dark Gravitational Field on Riemannian and Sasaki Spacetime. Universe 2020, 6, 138. https://doi.org/10.3390/universe6090138
Stavrinos P, Savvopoulos C. Dark Gravitational Field on Riemannian and Sasaki Spacetime. Universe. 2020; 6(9):138. https://doi.org/10.3390/universe6090138
Chicago/Turabian StyleStavrinos, Panayiotis, and Christos Savvopoulos. 2020. "Dark Gravitational Field on Riemannian and Sasaki Spacetime" Universe 6, no. 9: 138. https://doi.org/10.3390/universe6090138
APA StyleStavrinos, P., & Savvopoulos, C. (2020). Dark Gravitational Field on Riemannian and Sasaki Spacetime. Universe, 6(9), 138. https://doi.org/10.3390/universe6090138