Next Article in Journal
The Spectrum of Gravitational Waves, Their Overproduction in Quintessential Inflation and Its Influence in the Reheating Temperature
Previous Article in Journal
Is There Still Something Left That Gravity Probe B Can Measure?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons

1
Department of Electrical and Electronic Engineering, Suzhou University, Suzhou 234000, China
2
School of Physics, Beihang University, Beijing 100191, China
3
School of Physics, Southeast University, Nanjing 210094, China
*
Author to whom correspondence should be addressed.
Universe 2020, 6(6), 86; https://doi.org/10.3390/universe6060086
Submission received: 27 May 2020 / Revised: 19 June 2020 / Accepted: 21 June 2020 / Published: 23 June 2020
(This article belongs to the Section High Energy Nuclear and Particle Physics)

Abstract

:
We study the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 recently observed by LHCb using the method of Quantum Chromodynamics (QCD) sum rules within the framework of heavy quark effective theory. Our results suggest that they can be interpreted as D-wave bottom baryons of J P = 3 / 2 + and 5 / 2 + respectively, both of which contain two λ -mode excitations. We also investigate other possible assignments containing ρ -mode excitations. We extract all the parameters that are necessary to study their decay properties when using the method of light-cone sum rules. We predict masses of their strangeness partners to be m Ξ b ( 3 / 2 + ) = 6.26 0.14 + 0.11 GeV and m Ξ b ( 5 / 2 + ) = 6.26 0.14 + 0.11 GeV with the mass splitting Δ M = m Ξ b ( 5 / 2 + ) m Ξ b ( 3 / 2 + ) = 4.5 1.5 + 1.9 MeV, and propose to search for them in future CMS, EIC, and LHCb experiments.

1. Introduction

In the past few years important experimental progresses were made in the field of bottom baryons. All the S-wave singly bottom baryons, except the Ω b of J P = 3 / 2 + , have been well observed in experiments [1]. However, no excited bottom baryons were established until the LHCb Collaboration discovered the Λ b ( 5912 ) 0 and Λ b ( 5920 ) 0 in 2012 [2], which were later confirmed by the CDF Collaboration [3]. At that time, these were the only two excited bottom baryons well observed in experiments, while in the past two years the LHCb and CMS Collaborations continuously observed as many as nine excited bottom baryons:
  • In 2018 the LHCb Collaboration reported their discoveries of two excited bottom baryons, the Σ b ( 6097 ) ± in the Λ b 0 π ± invariant mass spectrum and the Ξ b ( 6227 ) in both the Λ b 0 K and Ξ b 0 π invariant mass spectra [4,5];
  • In 2020 the LHCb Collaboration discovered four excited Ω b states, Ω b ( 6316 ) , Ω b ( 6330 ) , Ω b ( 6340 ) , and Ω b ( 6350 ) , at the same time in the Ξ b 0 K invariant mass spectrum [6];
  • In 2019 the LHCb Collaboration reported their discovery of two excited bottom baryons Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 in the Λ b 0 π + π invariant mass distribution [7]:
    Λ b ( 6146 ) 0 : M = 6146.17 ± 0.33 ± 0.22 ± 0.16 MeV , Γ = 2.9 ± 1.3 ± 0.3 MeV ,
    Λ b ( 6152 ) 0 : M = 6152.51 ± 0.26 ± 0.22 ± 0.16 MeV , Γ = 2.1 ± 0.8 ± 0.3 MeV .
    During this experiment, they observed significant Λ b ( 6146 ) 0 Σ b ± π , Λ b ( 6152 ) 0 Σ b ± π , and Λ b ( 6152 ) 0 Σ b ± π signals, but no significant Λ b ( 6146 ) 0 Σ b ± π signals were observed. The LHCb Collaboration suggested these two states to be the Λ b ( 1 D ) baryons, by comparing with the masses predicted by the constituent quark model [8,9,10,11].
    Later in 2020 the CMS Collaboration confirmed the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 , and measured their masses to be [12]:
    Λ b ( 6146 ) 0 : M = 6146.5 ± 1.9 ± 0.8 ± 0.2 MeV ,
    Λ b ( 6152 ) 0 : M = 6152.7 ± 1.1 ± 0.4 ± 0.2 MeV .
    Besides, they further observed a broad excess of events in the Λ b 0 π + π mass distribution in the region of 6040-6100 MeV, whose mass and width were later measured by LHCb to be [13]:
    Λ b ( 6072 ) 0 : M = 6072.3 ± 2.9 ± 0.6 ± 0.2 MeV , Γ = 72 ± 11 ± 2 MeV .
Much earlier, the Λ b ( 5912 ) 0 and Λ b ( 5920 ) 0 had been studied by Capstick and Isgur in 1986 as P-wave bottom baryons using the relativistic quark model [8], and their predicted masses are in very good agreement with the LHCb and CDF results obtained in 2012 [2,3]. Besides, various phenomenological methods and models were applied to study excited bottom baryons in the past 30 years, such as the constituent quark model [14,15,16,17], the relativistic quark model [9], the chiral quark model [18,19,20], the heavy quark effective theory [10], the quark pair creation model [21,22,23,24], the relativistic flux tube model [11], the color hyperfine interaction [25,26], the chiral perturbation theory [27,28], and Lattice QCD [29,30,31], etc. These studies are all based on the traditional excited bottom baryon interpretation, while there also exists the molecular interpretation [32,33,34,35,36,37,38,39,40,41,42]. We refer to recent reviews for detailed discussions [43,44,45,46,47,48].
We have systematically investigated mass spectra of excited heavy baryons in [49,50,51,52] using the method of QCD sum rules [53,54] within the framework of Heavy Quark Effective Theory (HQET) [55,56,57]. More studies on heavy mesons and baryons containing a single heavy quark can be found in [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76]. Our results suggest that the eight excited bottom baryons, Λ b ( 5912 ) 0 , Λ b ( 5920 ) 0 , Σ b ( 6097 ) ± , Ξ b ( 6227 ) , Ω b ( 6316 ) , Ω b ( 6330 ) , Ω b ( 6340 ) , and Ω b ( 6350 ) , can be well explained as P-wave bottom baryons [50,77,78].
In this paper we shall use the same approach to study D-wave bottom baryons. Some of these studies have been done in our previous papers [51,52], but at that time: (a) We did not construct all the bottom baryon interpolating fields, and (b) we did not complete all the sum rule calculations. In the present study we shall finish these two steps and systematically study D-wave bottom baryons of the S U ( 3 ) flavor 3 ¯ F . The obtained results will be used to examine whether the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 can be interpreted as D-wave bottom baryons. Before doing this, we note that this assignment has been discussed and supported by several theoretical studies, using the chiral quark model [79], the quark pair creation model [80,81], and QCD sum rules [82], etc.
This paper is organized as follows. In Section 2, we construct all the interpolating fields for D-wave bottom baryons of the S U ( 3 ) flavor 3 ¯ F , which are used to perform QCD sum rule analyses in Section 3. The obtained sum rule equations are further used to perform numerical analyses in Section 4. In Section 5 we discuss the results and conclude this paper.

2. Interpolating Fields for the D -Wave Bottom Baryon

The D-waves heavy baryons have been systematically classified in [83], and their interpolating fields have been partly constructed in [51,52]. In this section we further construct all the D-wave heavy baryon interpolating fields of the S U ( 3 ) flavor 3 ¯ F . Note that some of them are different from those given in [51,52], since we have explicitly used several projection operators in the present study.
First we briefly introduce our notations. A D-wave bottom baryon consists of one b o t t o m quark and two light u p / d o w n / s t r a n g e quarks. We use l ρ to denote the orbital angular momentum between the two light quarks, and l λ to denote the orbital angular momentum between the bottom quark and the two-light-quark system. There can be ρ ρ -mode excited D-wave bottom baryons ( l ρ = 2 and l λ = 0 into L = 2 ), λ λ -mode ones ( l ρ = 0 and l λ = 2 into L = 2 ), and ρ λ -mode ones ( l ρ = 1 and l λ = 1 into L = 2 ). Altogether its internal symmetries are as follows:
  • Color structure of the two light quarks is antisymmetric ( 3 ¯ C );
  • Flavor structure of the two light quarks is either antisymmetric ( 3 ¯ F ) or symmetric ( 6 F );
  • Spin structure of the two light quarks is either antisymmetric ( s l = 0 ) or symmetric ( s l = 1 );
  • Orbital structure of the two light quarks is either antisymmetric ( l ρ = 1 ) or symmetric ( l ρ = 0 / 2 );
  • Totally, the two light quarks are antisymmetric due to the Pauli principle.
Accordingly, we categorize D-wave bottom baryons into 12 multiplets, five of which belong to the S U ( 3 ) flavor 3 ¯ F representation, as shown in Figure 1. We denote them as [ F ( l a v o r ) , j l , s l , ρ / λ ] , where j l is the total angular momentum of the light components ( j l = l λ l ρ s l ). Each multiplet contains two bottom baryons, whose total angular momentum are j = j l s b = j l ± 1 / 2 , with s b the spin of the bottom quark.
We use the notation J j , P , F , j l , s l , ρ / λ α 1 α j 1 / 2 to denote the D-wave bottom baryon interpolating field, and separately construct them for the [ 3 ¯ F , 2 , 0 , ρ ρ ] , [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , [ 3 ¯ F , 2 , 1 , ρ λ ] , and [ 3 ¯ F , 3 , 1 , ρ λ ] multiplets. Note that Equations (6), (7), (10), (11) and (18) are the same as those given in [51,52] except for some overall factors; Equations (12), (13) and (17) are different since we have explicitly used some projection operators in the present study; and Equations (15) and (16) were not constructed in [51,52]. Note that we need to use certain projection operators to distinguish the rich internal structures of D-wave bottom baryons. In [51,52] we constructed some of them, but there we could only project baryons into definite total angular momenta (spins). In the present study we constructed all operators to project baryons into definite internal angular momenta (spins).
  • The bottom baryon doublet [ 3 ¯ F , 2 , 0 , ρ ρ ] contains two bottom baryons of j P = 3 / 2 + and 5 / 2 + , whose interpolating fields are:
    J 3 / 2 , + , 3 ¯ F , 2 , 0 , ρ ρ α ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ 5 q b ( x ) 2 [ D μ 1 t q a T ( x ) ] C γ 5 [ D μ 2 t q b ( x ) ] + q a T ( x ) C γ 5 [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 2 α μ 4 , μ 1 μ 2 × γ μ 4 t γ 5 h v c ( x ) ,
    J 5 / 2 , + , 3 ¯ F , 2 , 0 , ρ ρ α 1 α 2 ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ 5 q b ( x ) 2 [ D μ 1 t q a T ( x ) ] C γ 5 [ D μ 2 t q b ( x ) ] + q a T ( x ) C γ 5 [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 5 / 2 α 1 α 2 , μ 1 μ 2 × h v c ( x ) .
    In the above expressions: a , b , c are color indices, and ϵ a b c is the totally antisymmetric tensor; C is the charge-conjugation operator; q ( x ) is the light u p / d o w n / s t r a n g e quark field, and h v ( x ) is the b o t t o m quark field; γ μ t = γ μ v v μ , D μ = μ i g A μ , D μ t = D μ ( D · v ) v μ , g t α 1 α 2 = g α 1 α 2 v α 1 v α 2 , and v is the velocity of the bottom quark; and Γ J = 2 α β , μ ν and Γ J = 5 / 2 α β , μ ν are the J = 2 and J = 5 / 2 projection operators:
    Γ J = 2 α β , μ ν = g t α μ g t β ν + g t α ν g t β μ 2 3 g t α β g t μ ν ,
    Γ J = 5 / 2 α β , μ ν = g t α μ g t β ν + g t α ν g t β μ 2 5 g t α β g t μ ν 1 5 g t α μ γ t β γ t ν 1 5 g t α ν γ t β γ t μ 1 5 g t β μ γ t α γ t ν 1 5 g t β ν γ t α γ t μ ;
  • The bottom baryon doublet [ 3 ¯ F , 2 , 0 , λ λ ] contains two bottom baryons of j P = 3 / 2 + and 5 / 2 + , whose interpolating fields are:
    J 3 / 2 , + , 3 ¯ F , 2 , 0 , λ λ α ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ 5 q b ( x ) + 2 [ D μ 1 t q a T ( x ) ] C γ 5 [ D μ 2 t q b ( x ) ] + q a T ( x ) C γ 5 [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 2 α μ 4 , μ 1 μ 2 × γ μ 4 t γ 5 h v c ( x ) ,
    J 5 / 2 , + , 3 ¯ F , 2 , 0 , λ λ α 1 α 2 ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ 5 q b ( x ) + 2 [ D μ 1 t q a T ( x ) ] C γ 5 [ D μ 2 t q b ( x ) ] + q a T ( x ) C γ 5 [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 5 / 2 α 1 α 2 , μ 1 μ 2 × h v c ( x ) ;
  • The bottom baryon doublet [ 3 ¯ F , 1 , 1 , ρ λ ] contains two bottom baryons of j P = 1 / 2 + and 3 / 2 + , whose interpolating fields are:
    J 1 / 2 , + , 3 ¯ F , 1 , 1 , ρ λ ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ μ 3 t q b ( x ) q a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 2 μ 3 μ 4 , μ 1 μ 2 × γ μ 4 t γ 5 h v c ( x ) ,
    J 3 / 2 , + , 3 ¯ F , 1 , 1 , ρ λ α ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ μ 3 t q b ( x ) q a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 3 / 2 , μ 4 α × Γ J = 2 μ 3 μ 4 , μ 1 μ 2 × h v c ( x ) ,
    where Γ J = 3 / 2 α , μ is the J = 3 / 2 projection operator:
    Γ J = 3 / 2 α , μ = g t α μ 1 3 γ t α γ t μ ;
  • The bottom baryon doublet [ 3 ¯ F , 2 , 1 , ρ λ ] contains two bottom baryons of j P = 3 / 2 + and 5 / 2 + , whose interpolating fields are:
    J 3 / 2 , + , 3 ¯ F , 2 , 1 , ρ λ α ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ μ 3 t q b ( x ) q a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 3 / 2 , μ 5 α × Γ J = 2 μ 4 μ 5 , μ 1 μ 2 × ( 2 i ) σ μ 3 μ 4 h v c ( x ) ,
    J 5 / 2 , + , 3 ¯ F , 2 , 1 , ρ λ α 1 α 2 ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ μ 3 t q b ( x ) q a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 5 / 2 , μ 5 μ 6 α 1 α 2 × Γ J = 2 μ 4 μ 5 , μ 1 μ 2 × ϵ μ 3 μ 4 μ 6 μ 9 × γ μ 9 t γ 5 h v c ( x ) ;
  • The bottom baryon doublet [ 3 ¯ F , 3 , 1 , ρ λ ] contains two bottom baryons of j P = 5 / 2 + and 7 / 2 + , whose interpolating fields are:
    J 5 / 2 , + , 3 ¯ F , 3 , 1 , ρ λ α 1 α 2 ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ μ 3 t q b ( x ) q a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 3 α 1 α 2 μ 4 , μ 1 μ 2 μ 3 × γ μ 4 t γ 5 h v c ( x ) ,
    J 7 / 2 , + , 3 ¯ F , 3 , 1 , ρ λ α 1 α 2 α 3 ( x ) = ϵ a b c [ D μ 1 t D μ 2 t q a T ( x ) ] C γ μ 3 t q b ( x ) q a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t q b ( x ) ] × Γ J = 7 / 2 α 1 α 2 α 3 , μ 1 μ 2 μ 3 × h v c ( x ) ,
    where Γ J = 3 α 1 α 2 α 3 , μ 1 μ 2 μ 3 and Γ J = 7 / 2 α 1 α 2 α 3 , μ 1 μ 2 μ 3 are the J = 3 and J = 7 / 2 projection operators, with S [ ] the symmetrization (only symmetrization but no subtraction) of the trace terms in the sets ( μ 1 μ 2 μ 3 ) and ( ν 1 ν 2 ν 3 ) :
    Γ J = 3 μ 1 μ 2 μ 3 , ν 1 ν 2 ν 3 = S g t μ 1 ν 1 g t μ 2 ν 2 g t μ 3 ν 3 2 5 g t μ 1 ν 1 g t μ 2 μ 3 g t ν 2 ν 3 ,
    Γ J = 7 / 2 μ 1 μ 2 μ 3 , ν 1 ν 2 ν 3 = S [ g t μ 1 ν 1 g t μ 2 ν 2 g t μ 3 ν 3 3 7 g t μ 1 ν 1 g t μ 2 μ 3 g t ν 2 ν 3 + 2 35 g t μ 1 μ 2 g t ν 1 ν 2 γ t μ 3 γ t ν 3 1 28 g t μ 1 ν 1 γ t μ 2 γ t ν 2 γ t μ 3 γ t ν 3 ] .

3. QCD Sum Rule Analyses

In this section we use the D-wave bottom baryon interpolating field J j , P , F , j l , s l , ρ / λ α 1 α j 1 / 2 to perform QCD sum rule analyses within the framework of heavy quark effective theory. Because identical sum rules are obtained using both J j l 1 / 2 , P , F , j l , s l , ρ / λ α 1 α j l 1 and J j l + 1 / 2 , P , F , j l , s l , ρ / λ α 1 α j l within the same multiplet, we only need to use one of them to perform QCD sum rule analyses. In the present study we study the [ 3 ¯ F , 2 , 0 , ρ ρ ] , [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , [ 3 ¯ F , 2 , 1 , ρ λ ] , and [ 3 ¯ F , 3 , 1 , ρ λ ] multiplets through the interpolating fields J 3 / 2 , + , 3 ¯ F , 2 , 0 , ρ ρ α , J 3 / 2 , + , 3 ¯ F , 2 , 0 , λ λ α , J 1 / 2 , + , 3 ¯ F , 1 , 1 , ρ λ , J 3 / 2 , + , 3 ¯ F , 2 , 1 , ρ λ α , and J 5 / 2 , + , 3 ¯ F , 3 , 1 , ρ λ α 1 α 2 , respectively.
We assume that the interpolating field J j , P , F , j l , s l , ρ / λ α 1 α j 1 / 2 couples to the bottom baryon belonging to the [ F , j l , s l , ρ / λ ] multiplet through:
0 | J j , P , F , j l , s l , ρ ρ / λ λ / ρ λ α 1 α j 1 / 2 | j , P , F , j l , s l , ρ ρ / λ λ / ρ λ = f F , j l , s l , ρ ρ / λ λ / ρ λ u α 1 α j 1 / 2 .
Then we can extract the baryon mass to be:
m j , P , F , j l , s l , ρ / λ = m b + Λ ¯ F , j l , s l , ρ / λ + δ m j , P , F , j l , s l , ρ / λ ,
where Λ ¯ F , j l , s l , ρ / λ = Λ ¯ j l 1 / 2 , P , F , j l , s l , ρ / λ = Λ ¯ j l + 1 / 2 , P , F , j l , s l , ρ / λ is the sum rule result at the leading order, and δ m j , P , F , j l , s l , ρ / λ is the sum rule result at the O ( 1 / m b ) order:
δ m j , P , F , j l , s l , ρ / λ = 1 4 m b ( K F , j l , s l , ρ / λ + d j , j l C m a g Σ F , j l , s l , ρ / λ ) .
Here C m a g = [ α s ( m b ) / α s ( μ ) ] 3 / β 0 with β 0 = 11 2 n f / 3 , and the coefficient d j , j l is
d j l 1 / 2 , j l = 2 j l + 2 , d j l + 1 / 2 , j l = 2 j l .
Hence, the Σ F , j l , s l , ρ / λ term is directly related to the mass splitting within the same multiplet:
Δ M F , j l , s l , ρ ρ / λ λ / ρ λ = m j l + 1 / 2 , P , F , j l , s l , ρ / λ m j l 1 / 2 , P , F , j l , s l , ρ / λ .
As an example, we use the bottom baryon doublet [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] to perform QCD sum rule analyses, through the field:
J 5 / 2 , + , Ξ b , 3 , 1 , ρ λ α 1 α 2 ( x ) = ϵ a b c [ D μ 1 t D μ 2 t u a T ( x ) ] C γ μ 3 t s b ( x ) u a T ( x ) C γ μ 3 t [ D μ 1 t D μ 2 t s b ( x ) ] × Γ J = 3 α 1 α 2 μ 4 , μ 1 μ 2 μ 3 × γ μ 4 t γ 5 h v c ( x ) .
From this field, we obtain:
Π Ξ b , 3 , 1 , ρ λ ( ω c , T ) = f Ξ b , 3 , 1 , ρ λ 2 e 2 Λ ¯ Ξ b , 3 , 1 , ρ λ / T = 2 m s ω c [ 1 12800 π 4 ω 9 3 m s 2 800 π 4 ω 7 + 63 m s s ¯ s 800 π 2 ω 5 21 m s q ¯ q 400 π 2 ω 5 21 g s 2 G G 3200 π 4 ω 5 + 21 m s g s q ¯ σ G q 80 π 2 ω 3 + 63 m s 2 g s 2 G G 1280 π 4 ω 3 63 m s g s 2 G G s ¯ s 320 π 2 ω ] e ω / T d ω ,
f Ξ b , 3 , 1 , ρ λ 2 K Ξ b , 3 , 1 , ρ λ e 2 Λ ¯ Ξ b , 3 , 1 , ρ λ / T = 2 m s ω c [ 223 9856000 π 4 ω 11 + 1759 m s 2 1209600 π 4 ω 9 543 m s s ¯ s 11200 π 2 ω 7 + 17 m s q ¯ q 672 π 2 ω 7 + 80147 g s 2 G G 38707200 π 4 ω 7 181 m s g s q ¯ σ G q 800 π 2 ω 5 1091 m s 2 g s 2 G G 38400 π 4 ω 5 307 m s g s 2 G G q ¯ q 4320 π 2 ω 3 + 779 m s g s 2 G G s ¯ s 3456 π 2 ω 3 + 59 m s g s 2 G G g s q ¯ σ G q 2880 π 2 ω ] e ω / T d ω ,
f Ξ b , 3 , 1 , ρ λ 2 Σ Ξ b , 3 , 1 , ρ λ e 2 Λ ¯ Ξ b , 3 , 1 , ρ λ / T = 2 m s ω c [ g s 2 G G 4800 π 4 ω 7 7 m s 2 g s 2 G G 2400 π 4 ω 5 + 7 m s g s 2 G G s ¯ s 240 π 2 ω 3 ] e ω / T d ω .
Sum rules for other multiplets are listed in Appendix A.

4. Numerical Analyses

We use the following values for the s t r a n g e quark mass and various quark and gluon condensates [1,84,85,86,87,88,89,90,91]:
m s ( 2 GeV ) = 95 3 + 9 MeV , q ¯ q = ( 0.24 ± 0.01 ) 3 G e V 3 , s ¯ s = 0.8 × q ¯ q , g s q ¯ σ G q = M 0 2 × q ¯ q , g s s ¯ σ G s = M 0 2 × s ¯ s , M 0 2 = 0.8 G e V 2 , g s 2 G G = ( 0.48 ± 0.14 ) G e V 4 .
We also need the b o t t o m quark mass. In the present study we use the PDG value m b ( m b ) = 4.18 0.03 + 0.04 GeV [1] in the MS ¯ scheme, instead of the pole mass m b = 4.78 ± 0.06 GeV [92]. By doing this, we intend to verify whether the masses extracted from the [ 3 ¯ F , 3 , 1 , ρ λ ] multiplet can be consistent with the LHCb and CMS experiments [7,12].
There are two free parameters in Equations (27)–(29), the threshold value ω c and the Borel mass T, and we use three criteria to constrain them: (a) The convergence of the Operator Product Expansion (OPE), (b) the Pole Contribution (PC), and (c) the mass dependence on M B and s 0 . We refer to [51,52] for detailed discussions, and here we just use the bottom baryon doublet [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] as an example.
The first criterion is the OPE convergence, which is the cornerstone of a reliable QCD sum rule analysis. In the present study we have calculated the sum rules at the leading order up to the eighth dimension, as shown in Equation (27); we have calculated the sum rules at the O ( 1 / m b ) order up to the tenth dimension, as shown in Equations (28) and (29). We investigate its convergence by requiring the high-order corrections of Equation (27) ( D = 4 + 6 + 8 terms) to be less than 10%:
CVG Π Ξ b , 3 , 1 , ρ λ D = 4 + 6 + 8 ( , T ) Π Ξ b , 3 , 1 , ρ λ ( , T ) 10 % .
We show its variation with respect to the Borel mass T in Figure 2 using the solid curve when setting ω c = 4.6 GeV. We find that this condition is satisfied when T > 0.638 GeV. Besides, it is also important to check the convergence of Equations (28) and (29). To see this, we show:
CVG K Ξ b , 3 , 1 , ρ λ D = 4 + 6 + 8 + 10 ( , T ) K Ξ b , 3 , 1 , ρ λ ( , T ) ,
CVG Σ Ξ b , 3 , 1 , ρ λ D = 4 + 6 + 8 + 10 ( , T ) Σ Ξ b , 3 , 1 , ρ λ ( , T ) ,
in Figure 2 using the short-dashed and long-dashed curves. We find that their convergence is even better.
The second criterion is requires the PC to be larger than 10%:
P C Π Ξ b , 3 , 1 , ρ λ ( ω c , T ) Π Ξ b , 3 , 1 , ρ λ ( , T ) 10 % .
This condition is satisfied when T < 0.685 GeV. Altogether, we choose ω c = 4.6 GeV and extract the Borel window to be 0.638 GeV < T < 0.685 GeV, from which we obtain:
Λ ¯ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ = 2.117 GeV , K Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ = 4.483 GeV 2 , Σ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ = 0.018 GeV 2 .
Their variations are shown in Figure 3 as functions of the Borel mass T, where their T dependence is weak and acceptable inside the Borel window 0.638 GeV < T < 0.685 GeV.
Then we use Equations (22) and (23) to further obtain:
m Ξ b ( 5 / 2 + ) = 6.56 GeV , m Ξ b ( 7 / 2 + ) = 6.57 GeV , Δ m [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] = 12.2 MeV ,
where m Ξ b ( 5 / 2 + ) and m Ξ b ( 7 / 2 + ) are the masses of the Ξ b ( 5 / 2 + ) and Ξ b ( 7 / 2 + ) belonging to the [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] multiplet, with Δ m [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] their mass splitting. The variation of m Ξ b ( 5 / 2 + ) is shown in the left panel of Figure 4 as a function of the Borel mass T, where its T dependence is also weak and acceptable inside the Borel window 0.638 GeV < T < 0.685 GeV.
We change the threshold value ω c and redo the above procedures. The variation of m Ξ b ( 5 / 2 + ) is shown in the right panel of Figure 4 as a function of the threshold value ω c . We find that there exist non-vanishing Borel windows as long as ω c 4.4 GeV, and the ω c dependence is weak and acceptable in the region 4.4 GeV < ω c < 4.8 GeV. This is just the working region for ω c , where both the mass m Ξ b ( 5 / 2 + ) as well as its uncertainty can be evaluated reliably.
Hence, we fix our working regions to be 4.4 GeV < ω c < 4.8 GeV and 0.638 GeV < T < 0.685 GeV, and obtain:
m Ξ b ( 5 / 2 + ) = 6.56 0 . 10 + 0.12 GeV , m Ξ b ( 7 / 2 + ) = 6.57 0.10 + 0.12 GeV , Δ m [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] = 12.2 4.8 + 6.3 MeV ,
where the central values correspond to ω c = 4.6 GeV and T = 0.662 GeV, and the uncertainties are due to the threshold value ω c , the Borel mass T, the s t r a n g e and b o t t o m quark masses, and various quark and gluon condensates.
Following the same procedures, we study the bottom baryon doublet [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] , which contains the Λ b ( 5 / 2 + ) and Λ b ( 7 / 2 + ) . They are the partner states of the Ξ b ( 5 / 2 + ) and Ξ b ( 7 / 2 + ) belonging to the [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] multiplet, and their masses are extracted to be:
m Λ b ( 5 / 2 + ) = 6.42 0.11 + 0.15 GeV , m Λ b ( 7 / 2 + ) = 6.43 0.11 + 0.15 GeV , Δ m [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] = 14.6 6.2 + 8.8 MeV .
For completeness, we show the variation of m Λ b ( 5 / 2 + ) in Figure 5 as a function of the Borel mass T (left) and the threshold value ω c (right).
Similarly, we study the [ 3 ¯ F , 2 , 0 , ρ ρ ] , [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , and [ 3 ¯ F , 2 , 1 , ρ λ ] multiplets. The latter three lead to reasonable sum rule results, and the extracted masses are shown in Figure 6 as functions of the threshold value ω c . We summarize all the above results in Table 1, which will be discussed in the next section.

5. Summary and Discussions

In this paper we apply the method of QCD sum rules within the heavy quark effective theory to study D-wave bottom baryons of the S U ( 3 ) flavor 3 ¯ F . We investigate five bottom baryon doublets, [ 3 ¯ F , 2 , 0 , ρ ρ ] , [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , [ 3 ¯ F , 2 , 1 , ρ λ ] , and [ 3 ¯ F , 3 , 1 , ρ λ ] . Their masses are calculated up to the order O ( 1 / m b ) , and the results are summarized in Table 1, including the masses m j , P , F , j l , s l , ρ / λ , mass splittings Δ M F , j l , s l , ρ ρ / λ λ / ρ λ , and decay constants f F , j l , s l , ρ ρ / λ λ / ρ λ evaluated in the present study. Before discussing these results, we note that there is a considerable uncertainty in our results for the absolute value of the mass, because it depends significantly on the bottom quark mass, as shown in Equation (22) however, the mass difference within the same doublet does not depend much on the bottom quark mass, so it is produced quite well with much less (theoretical) uncertainty and gives more useful information.
Based on Table 1, we conclude the present study:
  • The masses of Λ b ( 3 / 2 + ) and Λ b ( 5 / 2 + ) calculated using the [ 3 ¯ F , 2 , 0 , λ λ ] multiplet are:
    m Λ b ( 3 / 2 + ) = 6.12 0.11 + 0.10 G e V , m Λ b ( 5 / 2 + ) = 6.13 0.11 + 0.10 G e V , Δ m [ Λ b ( 3 ¯ F ) , 2 , 0 , λ λ ] = 5.4 1.9 + 2.3 M e V .
    These two mass values as well as their difference are well consistent with the LHCb and CMS measurements [7,12], so our results support the interpretation of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 as D-wave bottom baryons of J P = 3 / 2 + and 5 / 2 + respectively, both of which contain two λ -mode excitations. We call it λ λ -mode in the present study, and its relevant multiplet is the bottom baryon doublet [ 3 ¯ F , 2 , 0 , λ λ ] .
    This conclusion is the same as [79,80,81,82], so faces the same serious problem: The lower state Λ b ( 3 / 2 + ) would decay both into the P-wave Σ b π channel and the P-wave Σ b π channel, while the higher state Λ b ( 5 / 2 + ) would dominantly decay only into the P-wave Σ b π channel, which behaviors are just opposite to the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 observed by LHCb [7], as stated in the introduction (in other words, “face a serious problem of mass reverse” [79]);
  • The masses of Λ b ( 5 / 2 + ) and Λ b ( 7 / 2 + ) calculated using the [ 3 ¯ F , 3 , 1 , ρ λ ] multiplet are:
    m Λ b ( 5 / 2 + ) = 6.42 0.11 + 0.15 G e V , m Λ b ( 7 / 2 + ) = 6.43 0.11 + 0.15 G e V , Δ m [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] = 14.6 6.2 + 8.8 M e V ,
    These two mass values as well as their difference are all significantly larger than, but not too far from, the LHCb and CMS measurements [7,12].
    The advantage of this assignment is: The lower state Λ b ( 5 / 2 + ) would dominantly decay only into the P-wave Σ b π channel, while the higher state Λ b ( 7 / 2 + ) would decay both into the F-wave Σ b π channel and the F-wave Σ b π channel, which behaviors are consistent with the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 observed by LHCb [7]. Note that M Λ b ( 6146 ) 0 2 M Σ b 2 M Λ b ( 6152 ) 0 2 M Σ b 2 M Λ b ( 6152 ) 0 2 M Σ b 2 2 GeV, so that the F-wave decay widths might not be suppressed too much. Anyway, we still need to explicitly study their decay properties to verify this possibility;
  • The masses of Λ b ( 1 / 2 + ) and Λ b ( 3 / 2 + ) calculated using the [ 3 ¯ F , 1 , 1 , ρ λ ] multiplet are:
    m Λ b ( 1 / 2 + ) = 6.13 0.09 + 0.10 G e V , m Λ b ( 3 / 2 + ) = 6.13 0.09 + 0.10 G e V , Δ m [ Λ b ( 3 ¯ F ) , 1 , 1 , ρ λ ] = 1.5 0.5 + 0.6 M e V .
    This mass difference is smaller (negative) than the LHCb measurement [7]. Moreover, the decay behaviors of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 observed by LHCb [7] can not be well explained by this multiplet. Hence, our results do not favor the interpretation of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 as D-wave bottom baryons of J P = 1 / 2 + and 3 / 2 + belonging to the [ 3 ¯ F , 1 , 1 , ρ λ ] multiplet.
  • The masses of Λ b ( 3 / 2 + ) and Λ b ( 5 / 2 + ) calculated using the [ 3 ¯ F , 2 , 1 , ρ λ ] multiplet are:
    m Λ b ( 3 / 2 + ) = 6.17 0.10 + 0.12 G e V , m Λ b ( 5 / 2 + ) = 6.19 0.10 + 0.12 G e V , Δ m [ Λ b ( 3 ¯ F ) , 2 , 1 , ρ λ ] = 13.5 5.6 + 7.5 M e V .
    This mass difference is a bit larger than the LHCb experiment [7]. Hence, our results do not favor the interpretation of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 as D-wave bottom baryons of J P = 3 / 2 + and 5 / 2 + belonging to the [ 3 ¯ F , 2 , 1 , ρ λ ] multiplet;
  • The sum rule results extracted from the [ 3 ¯ F , 2 , 0 , ρ ρ ] multiplet are a bit strange, because the Borel windows become larger as the threshold value ω c decreases, which behavior has already been found in Figure 9 of Ref. [51]. Hence, we do not use them to draw any conclusion.
Summarizing the above analyses, our results obtained using the method of QCD sum rules within the heavy quark effective theory support to interpret the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 as D-wave bottom baryons of J P = 3 / 2 + and 5 / 2 + , respectively. They both contain two λ -mode excitations, and belong to the bottom baryon doublet [ 3 ¯ F , 2 , 0 , λ λ ] . This doublet contains two other bottom baryons, Ξ b ( 3 / 2 + ) and Ξ b ( 5 / 2 + ) , whose masses are extracted to be:
m Ξ b ( 3 / 2 + ) = 6.26 0.14 + 0.11 GeV , m Ξ b ( 5 / 2 + ) = 6.26 0.14 + 0.11 GeV , Δ m [ Ξ b ( 3 ¯ F ) , 2 , 0 , λ λ ] = 4.5 1.5 + 1.9 MeV .
This conclusion is the same as [79,80,81,82], but it can not well explain the decay behaviors of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 observed by LHCb [7], as discussed above.
To solve this problem, we investigate another possible assignment, that is to interpret the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 as D-wave bottom baryons of J P = 5 / 2 + and 7 / 2 + respectively, both of which belong to the [ 3 ¯ F , 3 , 1 , ρ λ ] multiplet. The advantage of this assignment is that the decay behaviors of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 observed by LHCb [7] can be well explained, as discussed above. However, this assignment faces another serious problem: The masses of the Λ b ( 5 / 2 + ) and Λ b ( 7 / 2 + ) as well as their mass splitting are calculated in the present study to be significantly larger than, although not too far from, those of the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 measured by LHCb and CMS [7,12]. It is still required to explicitly study their decay properties to verify this possibility.
There exist many possible assignments for the Λ b ( 6072 ) 0 observed by CMS and LHCb [12,13], such as the Λ b ( 2 S ) state, while another possible assignment is to interpret it as the D-wave Λ b state. To verify this, one good choice is to further examine whether it has a nearby partner state in future CMS, EIC, and LHCb experiments.
To end this paper, we note that just investigating the mass spectra is not enough, and in order to well understand the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 [7] as well as the Λ b ( 6072 ) 0 [12], we still need to systematically study their decay properties. We have done this systematically for P-wave heavy baryons using the method of light-cone sum rules with the heavy quark effective theory [77,78,93,94] and are now doing this systematically for D-wave heavy baryons. The parameters obtained in the present study are necessary inputs.

Author Contributions

This work has been done in perfect collaboration among Q.M., H.-X.C., and H.-M.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China under Grant No. 11722540, the Fundamental Research Funds for the Central Universities, and the Foundation for Young Talents in College of Anhui Province (Grant No. gxyq2018103).

Acknowledgments

We thank Xian-Hui Zhong for their useful discussions.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Other Sum Rules

In this appendix we list the sum rules for the [ 3 ¯ F , 2 , 0 , ρ ρ ] , [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , [ 3 ¯ F , 2 , 1 , ρ λ ] , and [ 3 ¯ F , 3 , 1 , ρ λ ] multiplets. We refer to [51,52] for more discussions. Note that the sum rule equations for the [ 3 ¯ F , 2 , 0 , ρ ρ ] and [ 3 ¯ F , 2 , 0 , λ λ ] multiplets are the same as those obtained in [51,52]; the equations for the [ 3 ¯ F , 1 , 1 , ρ λ ] multiplet are different since we have explicitly used some projection operators in the present study; the equations for the [ 3 ¯ F , 2 , 1 , ρ λ ] and [ 3 ¯ F , 3 , 1 , ρ λ ] multiplets were not extracted in [51,52].
The sum rule equations obtained using the interpolating field J 3 / 2 , + , 3 ¯ F , 2 , 0 , ρ ρ α belonging to [ 3 ¯ F , 2 , 0 , ρ ρ ] are
Π Λ b , 2 , 0 , ρ ρ = f Λ b , 2 , 0 , ρ ρ 2 e 2 Λ ¯ Λ b , 2 , 0 , ρ ρ / T = 0 ω c [ 5 145152 π 4 ω 9 5 g s 2 G G 1728 π 4 ω 5 ] e ω / T d ω ,
f Λ b , 2 , 0 , ρ ρ 2 K Λ b , 2 , 0 , ρ ρ e 2 Λ ¯ Λ b , 2 , 0 , ρ ρ / T = 0 ω c [ 41 6386688 π 4 ω 11 + 59 g s 2 G G 90720 π 4 ω 7 ] e ω / T d ω ,
f Λ b , 2 , 0 , ρ ρ 2 Σ Λ b , 2 , 0 , ρ ρ e 2 Λ ¯ Λ b , 2 , 0 , ρ ρ / T = 0 ω c [ g s 2 G G 24192 π 4 ω 7 ] e ω / T d ω ,
and
Π Ξ b , 2 , 0 , ρ ρ = f Ξ b , 2 , 0 , ρ ρ 2 e 2 Λ ¯ Ξ b , 2 , 0 , ρ ρ / T = 2 m s ω c [ 5 145152 π 4 ω 9 m s 2 672 π 4 ω 7 m s q ¯ q 72 π 2 ω 5 + m s s ¯ s 48 π 2 ω 5 5 g s 2 G G 1728 π 4 ω 5 + 5 m s 2 g s 2 G G 192 π 4 ω 3 5 m s g s 2 G G s ¯ s 72 π 2 ω ] e ω / T d ω ,
f Ξ b , 2 , 0 , ρ ρ 2 K Ξ b , 2 , 0 , ρ ρ e 2 Λ ¯ Ξ b , 2 , 0 , ρ ρ / T = 2 m s ω c [ 41 6386688 π 4 ω 11 + 197 m s 2 483840 π 4 ω 9 + 37 m s q ¯ q 5040 π 2 ω 7 277 m s s ¯ s 20160 π 2 ω 7 11 m s g s q ¯ σ G q 180 π 2 ω 5 + 1921 g s 2 G G 2903040 π 4 ω 7 7169 m s 2 g s 2 G G 552960 π 4 ω 5 13 m s g s 2 G G q ¯ q 216 π 2 ω 3 + 2381 m s g s 2 G G s ¯ s 20736 π 2 ω 3 + 121 m s g s 2 G G g s q ¯ σ G q 1728 π 2 ω ] e ω / T d ω ,
f Ξ b , 2 , 0 , ρ ρ 2 Σ Ξ b , 2 , 0 , ρ ρ e 2 Λ ¯ Ξ b , 2 , 0 , ρ ρ / T = 2 m s ω c [ g s 2 G G 24192 π 4 ω 7 m s 2 g s 2 G G 1536 π 4 ω 5 + 5 m s g s 2 G G s ¯ s 864 π 2 ω 3 ] e ω / T d ω .
The sum rule equations obtained using the interpolating field J 3 / 2 , + , 3 ¯ F , 2 , 0 , λ λ α belonging to [ 3 ¯ F , 2 , 0 , λ λ ] are
Π Λ b , 2 , 0 , λ λ = f Λ b , 2 , 0 , λ λ 2 e 2 Λ ¯ Λ b , 2 , 0 , λ λ / T = 0 ω c [ 5 145152 π 4 ω 9 + g s 2 G G 1728 π 4 ω 5 ] e ω / T d ω ,
f Λ b , 2 , 0 , λ λ 2 K Λ b , 2 , 0 , λ λ e 2 Λ ¯ Λ b , 2 , 0 , λ λ / T = 0 ω c [ 127 10644480 π 4 ω 11 + g s 2 G G 17280 π 4 ω 7 ] e ω / T d ω ,
f Λ b , 2 , 0 , λ λ 2 Σ Λ b , 2 , 0 , λ λ e 2 Λ ¯ Λ b , 2 , 0 , λ λ / T = 0 ω c [ g s 2 G G 24192 π 4 ω 7 ] e ω / T d ω ,
and
Π Ξ b , 2 , 0 , λ λ = f Ξ b , 2 , 0 , λ λ 2 e 2 Λ ¯ Ξ b , 2 , 0 , λ λ / T = 2 m s ω c [ m s 2 672 π 4 ω 7 5 145152 π 4 ω 9 + 5 m s g s 2 G G s ¯ s 216 π 2 ω 5 m s 2 g s 2 G G 576 π 4 ω 3 + g s 2 G G 1728 π 4 ω 5 + m s q ¯ q 72 π 2 ω 5 m s s ¯ s 48 π 2 ω 5 ] e ω / T d ω ,
f Ξ b , 2 , 0 , λ λ 2 K Ξ b , 2 , 0 , λ λ e 2 Λ ¯ Ξ b , 2 , 0 , λ λ / T = 2 m s ω c [ 307 m s 2 483840 π 4 ω 9 + 127 10644480 π 4 ω 11 + 13 m s g s 2 G G q ¯ q 648 π 2 ω 3 67 m s g s 2 G G s ¯ s 2304 π 2 ω 3 + 1019 m s 2 g s 2 G G 184320 π 4 ω 5 + g s 2 G G 17280 π 4 ω 7 37 m s q ¯ q 5040 π 2 ω 7 + 233 m s s ¯ s 20160 π 2 ω 7 ] e ω / T d ω ,
f Ξ b , 2 , 0 , λ λ 2 Σ Ξ b , 2 , 0 , λ λ e 2 Λ ¯ Ξ b , 2 , 0 , λ λ / T = 2 m s ω c [ 5 m s g s 2 G G s ¯ s 864 π 2 ω 3 + m s 2 g s 2 G G 1536 π 4 ω 5 g s 2 G G 24192 π 4 ω 7 ] e ω / T d ω .
The sum rule equations obtained using the interpolating field J 1 / 2 , + , 3 ¯ F , 1 , 1 , ρ λ belonging to [ 3 ¯ F , 1 , 1 , ρ λ ] are
Π Λ b , 1 , 1 , ρ λ = f Λ b , 1 , 1 , ρ λ 2 e 2 Λ ¯ Λ b , 1 , 1 , ρ λ / T = 0 ω c [ 1 16128 π 4 ω 9 + g s 2 G G 512 π 4 ω 5 ] e ω / T d ω ,
f Λ b , 1 , 1 , ρ λ 2 K Λ b , 1 , 1 , ρ λ e 2 Λ ¯ Λ b , 1 , 1 , ρ λ / T = 0 ω c [ 29 1520640 π 4 ω 11 443 g s 2 G G 580608 π 4 ω 7 ] e ω / T d ω ,
f Λ b , 1 , 1 , ρ λ 2 Σ Λ b , 1 , 1 , ρ λ e 2 Λ ¯ Λ b , 1 , 1 , ρ λ / T = 0 ω c [ g s 2 G G 48384 π 4 ω 7 ] e ω / T d ω ,
and
Π Ξ b , 1 , 1 , ρ λ = f Ξ b , 1 , 1 , ρ λ 2 e 2 Λ ¯ Ξ b , 1 , 1 , ρ λ / T = 2 m s ω c [ 1 16128 π 4 ω 9 + m s 2 336 π 4 ω 7 m s s ¯ s 16 π 2 ω 5 + m s q ¯ q 24 π 2 ω 5 + g s 2 G G 512 π 4 ω 5 65 m s 2 g s 2 G G 2304 π 4 ω 3 5 m s g s q ¯ σ G q 24 π 2 ω 3 + 65 m s g s 2 G G s ¯ s 576 π 2 ω ] e ω / T d ω ,
f Ξ b , 1 , 1 , ρ λ 2 K Ξ b , 1 , 1 , ρ λ e 2 Λ ¯ Ξ b , 1 , 1 , ρ λ / T = 2 m s ω c [ 29 1520640 π 4 ω 11 179 m s 2 145152 π 4 ω 9 443 g s 2 G G 580608 π 4 ω 7 m s q ¯ q 48 π 2 ω 7 + 167 m s s ¯ s 4032 π 2 ω 7 + 2287 m s 2 g s 2 G G 110592 π 4 ω 5 + 3 m s g s q ¯ σ G q 16 π 2 ω 5 + 25 m s g s 2 G G q ¯ q 432 π 2 ω 3 425 m s g s 2 G G s ¯ s 2592 π 2 ω 3 5 m s g s 2 G G g s q ¯ σ G q 288 π 2 ω ] e ω / T d ω ,
f Ξ b , 1 , 1 , ρ λ 2 Σ Ξ b , 1 , 1 , ρ λ e 2 Λ ¯ Ξ b , 1 , 1 , ρ λ / T = 2 m s ω c [ g s 2 G G 48384 π 4 ω 7 + m s 2 g s 2 G G 2304 π 4 ω 5 5 m s g s 2 G G s ¯ s 432 π 2 ω 3 ] e ω / T d ω .
The sum rule equations obtained using the interpolating field J 1 / 2 , + , 3 ¯ F , 2 , 1 , ρ λ belonging to [ 3 ¯ F , 2 , 1 , ρ λ ] are
Π Λ b , 2 , 1 , ρ λ = f Λ b , 2 , 1 , ρ λ 2 e 2 Λ ¯ Λ b , 2 , 1 , ρ λ / T = 0 ω c [ g s 2 G G 144 π 4 ω 5 + 5 36288 π 4 ω 9 ] e ω / T d ω ,
f Λ b , 2 , 1 , ρ λ 2 K Λ b , 2 , 1 , ρ λ e 2 Λ ¯ Λ b , 2 , 1 , ρ λ / T = 0 ω c [ 217453 g s 2 G G 78382080 π 4 ω 7 163 3592512 π 4 ω 11 ] e ω / T d ω ,
f Λ b , 2 , 1 , ρ λ 2 Σ Λ b , 2 , 1 , ρ λ e 2 Λ ¯ Λ b , 2 , 1 , ρ λ / T = 0 ω c [ 17 g s 2 G G 54432 π 4 ω 7 ] e ω / T d ω ,
and
Π Ξ b , 2 , 1 , ρ λ = f Ξ b , 2 , 1 , ρ λ 2 e 2 Λ ¯ Ξ b , 2 , 1 , ρ λ / T = 2 m s ω c [ 185 m s g s 2 G G s ¯ s 648 π 2 ω + 185 m s 2 g s 2 G G 2592 π 4 ω 3 + 25 m s g s q ¯ σ G q 54 π 2 ω 3 g s 2 G G 144 π 4 ω 5 5 m s q ¯ q 54 π 2 ω 5 + 5 m s s ¯ s 36 π 2 ω 5 5 m s 2 756 π 4 ω 7 + 5 36288 π 4 ω 9 ] e ω / T d ω ,
f Ξ b , 2 , 1 , ρ λ 2 K Ξ b , 2 , 1 , ρ λ e 2 Λ ¯ Ξ b , 2 , 1 , ρ λ / T = 2 m s ω c [ 385 m s g s 2 G G g s q ¯ σ G q 7776 π 2 ω 835 m s g s 2 G G q ¯ q 5832 π 2 ω 3 + 13693 m s g s 2 G G s ¯ s 34992 π 2 ω 3 9277 m s 2 g s 2 G G 186624 π 4 ω 5 107 m s g s q ¯ σ G q 216 π 2 ω 5 + 217453 g s 2 G G 78382080 π 4 ω 7 + 61 m s q ¯ q 1134 π 2 ω 7 170 m s s ¯ s 1701 π 2 ω 7 + 5749 m s 2 1959552 π 4 ω 9 163 3592512 π 4 ω 11 ] e ω / T d ω ,
f Ξ b , 2 , 1 , ρ λ 2 Σ Ξ b , 2 , 1 , ρ λ e 2 Λ ¯ Ξ b , 2 , 1 , ρ λ / T = 2 m s ω c [ 65 m s g s 2 G G s ¯ s 1944 π 2 ω 3 5 m s 2 g s 2 G G 1296 π 4 ω 5 + 17 g s 2 G G 54432 π 4 ω 7 ] e ω / T d ω .
The sum rule equations obtained using the interpolating field J 1 / 2 , + , 3 ¯ F , 3 , 1 , ρ λ belonging to [ 3 ¯ F , 3 , 1 , ρ λ ] are
Π Λ b , 3 , 1 , ρ λ = f Λ b , 3 , 1 , ρ λ 2 e 2 Λ ¯ Λ b , 3 , 1 , ρ λ / T = 0 ω c [ 21 g s 2 G G 3200 π 4 ω 5 + 1 12800 π 4 ω 9 ] e ω / T d ω ,
f Λ b , 3 , 1 , ρ λ 2 K Λ b , 3 , 1 , ρ λ e 2 Λ ¯ Λ b , 3 , 1 , ρ λ / T = 0 ω c [ 80147 g s 2 G G 38707200 π 4 ω 7 223 9856000 π 4 ω 11 ] e ω / T d ω ,
f Λ b , 3 , 1 , ρ λ 2 Σ Λ b , 3 , 1 , ρ λ e 2 Λ ¯ Λ b , 3 , 1 , ρ λ / T = 0 ω c [ g s 2 G G 4800 π 4 ω 7 ] e ω / T d ω ,
and
Π Ξ b , 3 , 1 , ρ λ = f Ξ b , 3 , 1 , ρ λ 2 e 2 Λ ¯ Ξ b , 3 , 1 , ρ λ / T = 2 m s ω c [ 1 12800 π 4 ω 9 3 m s 2 800 π 4 ω 7 + 63 m s s ¯ s 800 π 2 ω 5 21 m s q ¯ q 400 π 2 ω 5 21 g s 2 G G 3200 π 4 ω 5 + 21 m s g s q ¯ σ G q 80 π 2 ω 3 + 63 m s 2 g s 2 G G 1280 π 4 ω 3 63 m s g s 2 G G s ¯ s 320 π 2 ω ] e ω / T d ω ,
f Ξ b , 3 , 1 , ρ λ 2 K Ξ b , 3 , 1 , ρ λ e 2 Λ ¯ Ξ b , 3 , 1 , ρ λ / T = 2 m s ω c [ 223 9856000 π 4 ω 11 + 1759 m s 2 1209600 π 4 ω 9 543 m s s ¯ s 11200 π 2 ω 7 + 17 m s q ¯ q 672 π 2 ω 7 + 80147 g s 2 G G 38707200 π 4 ω 7 181 m s g s q ¯ σ G q 800 π 2 ω 5 1091 m s 2 g s 2 G G 38400 π 4 ω 5 307 m s g s 2 G G q ¯ q 4320 π 2 ω 3 + 779 m s g s 2 G G s ¯ s 3456 π 2 ω 3 + 59 m s g s 2 G G g s q ¯ σ G q 2880 π 2 ω ] e ω / T d ω ,
f Ξ b , 3 , 1 , ρ λ 2 Σ Ξ b , 3 , 1 , ρ λ e 2 Λ ¯ Ξ b , 3 , 1 , ρ λ / T = 2 m s ω c [ g s 2 G G 4800 π 4 ω 7 7 m s 2 g s 2 G G 2400 π 4 ω 5 + 7 m s g s 2 G G s ¯ s 240 π 2 ω 3 ] e ω / T d ω .

References

  1. Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
  2. Aaij, R.; Abellán Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Ales, F.; et al. [LHCb Collaboration] Observation of excited Λ b 0 baryons. Phys. Rev. Lett. 2012, 109, 172003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Aaltonen, T.A.; Amerio, S.; Amidei, D.E.; Anastassov, A.I.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artiko, A.M.; et al. [CDF Collaboration] Evidence for a Bottom Baryon Resonance Λ b 0 in CDF Data. Phys. Rev. D 2013, 88, 071101. [Google Scholar] [CrossRef]
  4. Aaij, R.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; Alexander, M.; et al. [LHCb Collaboration] Observation of a new Ξ b resonance. Phys. Rev. Lett. 2018, 121, 072002. [Google Scholar] [CrossRef] [Green Version]
  5. Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. [LHCb Collaboration] Observation of Two Resonances in the Λ b 0 π± Systems and Precise Measurement of Σ b ± and Σ b ± properties. Phys. Rev. Lett. 2019, 122, 012001. [Google Scholar] [CrossRef] [Green Version]
  6. Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. [LHCb Collaboration] First observation of excited Ω b states. Phys. Rev. Lett. 2020, 124, 082002. [Google Scholar]
  7. Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. [LHCb Collaboration] Observation of New Resonances in the Λ b 0 π+π System. Phys. Rev. Lett. 2019, 123, 152001. [Google Scholar] [CrossRef] [Green Version]
  8. Capstick, S.; Isgur, N. Baryons in a Relativized Quark Model with Chromodynamics. Phys. Rev. D 1986, 34, 2809. [Google Scholar] [CrossRef]
  9. Ebert, D.; Faustov, R.N.; Galkin, V.O. Masses of excited heavy baryons in the relativistic quark model. Phys. Lett. B 2008, 659, 612–620. [Google Scholar] [CrossRef] [Green Version]
  10. Roberts, W.; Pervin, M. Heavy baryons in a quark model. Int. J. Mod. Phys. A 2008, 23, 2817–2860. [Google Scholar] [CrossRef] [Green Version]
  11. Chen, B.; Wei, K.W.; Zhang, A. Assignments of ΛQ and ΞQ baryons in the heavy quark-light diquark picture. Eur. Phys. J. A 2015, 51, 82. [Google Scholar] [CrossRef] [Green Version]
  12. Sirunyan, A.M.; Tumasyan, A.; Adam,W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Erö, J.; Del Valle, A.E.; Flechl, M.; Fruehwirth, R.; et al. [CMS Collaboration] Study of excited Λ b 0 states decaying to Λ b 0 π+π in proton-proton collisions at s = 13 TeV. Phys. Lett. B 2020, 803, 135345. [Google Scholar] [CrossRef]
  13. Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. [LHCb Collaboration] Observation of a new baryon state in the Λ b 0 π+π mass spectrum. arXiv 2020, arXiv:2002.05112. [Google Scholar]
  14. Garcilazo, H.; Vijande, J.; Valcarce, A. Faddeev study of heavy baryon spectroscopy. J. Phys. G 2007, 34, 961. [Google Scholar] [CrossRef] [Green Version]
  15. Ortega, P.G.; Entem, D.R.; Fernandez, F. Quark model description of the Λc(2940)+ as a molecular DN state and the possible existence of the Λb(6248). Phys. Lett. B 2013, 718, 1381. [Google Scholar] [CrossRef] [Green Version]
  16. Yoshida, T.; Hiyama, E.; Hosaka, A.; Oka, M.; Sadato, K. Spectrum of heavy baryons in the quark model. Phys. Rev. D 2015, 92, 114029. [Google Scholar] [CrossRef] [Green Version]
  17. Gutierrez-Guerrero, L.X.; Bashir, A.; Bedolla, M.A.; Santopinto, E. Masses of Light and Heavy Mesons and Baryons: A Unified Picture. Phys. Rev. D 2019, 100, 114032. [Google Scholar] [CrossRef] [Green Version]
  18. Wang, K.L.; Lü, Q.F.; Zhong, X.H. Interpretation of the newly observed Σb(6097)± and Ξb(6227) states as the P-wave bottom baryons. Phys. Rev. D 2019, 99, 014011. [Google Scholar] [CrossRef] [Green Version]
  19. Kawakami, Y.; Harada, M. Singly heavy baryons with chiral partner structure in a three-flavor chiral model. Phys. Rev. D 2019, 99, 094016. [Google Scholar] [CrossRef] [Green Version]
  20. Xiao, L.Y.; Wang, K.L.; Liu, M.S.; Zhong, X.H. Possible interpretation of the newly observed Ωb states. Eur. Phys. J. C 2020, 80, 279. [Google Scholar] [CrossRef] [Green Version]
  21. Chen, B.; Wei, K.W.; Liu, X.; Zhang, A. Role of newly discovered Ξb(6227) for constructing excited bottom baryon family. Phys. Rev. D 2018, 98, 031502(R). [Google Scholar] [CrossRef] [Green Version]
  22. Chen, B.; Liu, X. Assigning the newly reported Σb(6097) as a P-wave excited state and predicting its partners. Phys. Rev. D 2018, 98, 074032. [Google Scholar] [CrossRef] [Green Version]
  23. Yang, P.; Guo, J.J.; Zhang, A. Identification of the newly observed Σb(6097)± baryons from their strong decays. Phys. Rev. D 2019, 99, 034018. [Google Scholar] [CrossRef] [Green Version]
  24. Liang, W.; Lü, Q.F. Strong decays of the newly observed narrow Ωb structures. Eur. Phys. J. C 2020, 80, 198. [Google Scholar] [CrossRef] [Green Version]
  25. Karliner, M.; Keren-Zur, B.; Lipkin, H.J.; Rosner, J.L. The Quark Model and b Baryons. Ann. Phys. 2009, 324, 2–15. [Google Scholar] [CrossRef] [Green Version]
  26. Karliner, M.; Rosner, J.L. Prospects for observing the lowest-lying odd-parity Σc and Σb baryons. Phys. Rev. D 2015, 92, 074026. [Google Scholar] [CrossRef] [Green Version]
  27. Lu, J.X.; Zhou, Y.; Chen, H.X.; Xie, J.J.; Geng, L.S. Dynamically generated JP=1/2(3/2) singly charmed and bottom heavy baryons. Phys. Rev. D 2015, 92, 014036. [Google Scholar] [CrossRef] [Green Version]
  28. Cheng, H.Y.; Chua, C.K. Strong Decays of Charmed Baryons in Heavy Hadron Chiral Perturbation Theory: An Update. Phys. Rev. D 2015, 92, 074014. [Google Scholar] [CrossRef] [Green Version]
  29. Padmanath, M.; Edwards, R.G.; Mathur, N.; Peardon, M. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD. arXiv 2013, arXiv:1311.4806. [Google Scholar]
  30. Padmanath, M.; Mathur, N. Quantum Numbers of Recently Discovered Ω c 0 Baryons from Lattice QCD. Phys. Rev. Lett. 2017, 119, 042001. [Google Scholar] [CrossRef] [Green Version]
  31. Burch, T. Heavy hadrons on Nf=2 and 2+1 improved clover-Wilson lattices. arXiv 2015, arXiv:1502.00675. [Google Scholar]
  32. Garcia-Recio, C.; Nieves, J.; Romanets, O.; Salcedo, L.L.; Tolos, L. Odd parity bottom-flavored baryon resonances. Phys. Rev. D 2013, 87, 034032. [Google Scholar] [CrossRef] [Green Version]
  33. Liang, W.H.; Xiao, C.W.; Oset, E. Baryon states with open beauty in the extended local hidden gauge approach. Phys. Rev. D 2014, 89, 054023. [Google Scholar] [CrossRef] [Green Version]
  34. An, C.S.; Chen, H. Observed Ω c 0 resonances as pentaquark states. Phys. Rev. D 2017, 96, 034012. [Google Scholar] [CrossRef] [Green Version]
  35. Montana, G.; Feijoo, A.; Ramos, A. A meson-baryon molecular interpretation for some Ωc excited states. Eur. Phys. J. A 2018, 54, 64. [Google Scholar] [CrossRef] [Green Version]
  36. Debastiani, V.R.; Dias, J.M.; Liang, W.H.; Oset, E. Molecular Ωc states generated from coupled meson-baryon channels. Phys. Rev. D 2018, 97, 094035. [Google Scholar] [CrossRef] [Green Version]
  37. Chen, R.; Hosaka, A.; Liu, X. Searching for possible Ωc-like molecular states from meson-baryon interaction. Phys. Rev. D 2018, 97, 036016. [Google Scholar] [CrossRef] [Green Version]
  38. Nieves, J.; Pavao, R.; Tolos, L. Ωc excited states within a SU(6)lsf× HQSS model. Eur. Phys. J. C 2018, 78, 114. [Google Scholar] [CrossRef] [Green Version]
  39. Huang, Y.; Xiao, C.J.; Lü, Q.F.; Wang, R.; He, J.; Geng, L. Strong and radiative decays of DΞ molecular state and newly observed Ωc states. Phys. Rev. D 2018, 97, 094013. [Google Scholar] [CrossRef] [Green Version]
  40. Yu, Q.X.; Pavao, R.; Debastiani, V.R.; Oset, E. Description of the Ξc and Ξb states as molecular states. Eur. Phys. J. C 2019, 79, 167. [Google Scholar] [CrossRef]
  41. Nieves, J.; Pavao, R.; Tolos, L. Ξc and Ξb excited states within a SU(6)lsf× HQSS model. Eur. Phys. J. C 2020, 80, 22. [Google Scholar] [CrossRef] [Green Version]
  42. Liang, W.H.; Oset, E. Observed Ωb spectrum and meson-baryon molecular states. Phys. Rev. D 2020, 101, 054033. [Google Scholar] [CrossRef] [Green Version]
  43. Chen, H.X.; Chen, W.; Liu, X.; Liu, Y.R.; Zhu, S.L. A review of the open charm and open bottom systems. Rept. Prog. Phys. 2017, 80, 076201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Cheng, H.Y. Charmed baryons circa 2015. Front. Phys. (Beijing) 2015, 10, 101406. [Google Scholar] [CrossRef] [Green Version]
  45. Crede, V.; Roberts, W. Progress towards understanding baryon resonances. Rept. Prog. Phys. 2013, 76, 076301. [Google Scholar] [CrossRef] [PubMed]
  46. Klempt, E.; Richard, J.M. Baryon spectroscopy. Rev. Mod. Phys. 2010, 82, 1095. [Google Scholar] [CrossRef] [Green Version]
  47. Bianco, S.; Fabbri, F.L.; Benson, D.; Bigi, I. A Cicerone for the physics of charm. Riv. Nuovo Cim. 2003, 26N7, 1. [Google Scholar]
  48. Körner, J.G.; Kramer, M.; Pirjol, D. Heavy baryons. Prog. Part. Nucl. Phys. 1994, 33, 787–868. [Google Scholar] [CrossRef] [Green Version]
  49. Chen, H.X.; Chen, W.; Mao, Q.; Hosaka, A.; Liu, X.; Zhu, S.L. P-wave charmed baryons from QCD sum rules. Phys. Rev. D 2015, 91, 054034. [Google Scholar] [CrossRef] [Green Version]
  50. Mao, Q.; Chen, H.X.; Chen, W.; Hosaka, A.; Liu, X.; Zhu, S.L. QCD sum rule calculation for P-wave bottom baryons. Phys. Rev. D 2015, 92, 114007. [Google Scholar] [CrossRef] [Green Version]
  51. Chen, H.X.; Mao, Q.; Hosaka, A.; Liu, X.; Zhu, S.L. D-wave charmed and bottomed baryons from QCD sum rules. Phys. Rev. D 2016, 94, 114016. [Google Scholar] [CrossRef] [Green Version]
  52. Mao, Q.; Chen, H.X.; Hosaka, A.; Liu, X.; Zhu, S.L. D-wave heavy baryons of the SU(3) flavor 6F. Phys. Rev. D 2017, 96, 074021. [Google Scholar] [CrossRef] [Green Version]
  53. Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. QCD and Resonance Physics. Theoretical Foundations. Nucl. Phys. B 1979, 147, 385–447. [Google Scholar] [CrossRef]
  54. Reinders, L.J.; Rubinstein, H.; Yazaki, S. Hadron Properties from QCD Sum Rules. Phys. Rept. 1985, 127, 1–97. [Google Scholar] [CrossRef]
  55. Grinstein, B. The Static Quark Effective Theory. Nucl. Phys. B 1990, 339, 253–268. [Google Scholar] [CrossRef]
  56. Eichten, E.; Hill, B.R. An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks. Phys. Lett. B 1990, 234, 511–516. [Google Scholar] [CrossRef]
  57. Falk, A.F.; Georgi, H.; Grinstein, B.; Wise, M.B. Heavy Meson Form-factors From QCD. Nucl. Phys. B 1990, 343, 1–13. [Google Scholar] [CrossRef]
  58. Bagan, E.; Ball, P.; Braun, V.M.; Dosch, H.G. QCD sum rules in the effective heavy quark theory. Phys. Lett. B 1992, 278, 457–464. [Google Scholar] [CrossRef] [Green Version]
  59. Neubert, M. Heavy meson form-factors from QCD sum rules. Phys. Rev. D 1992, 45, 2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  60. Broadhurst, D.J.; Grozin, A.G. Operator product expansion in static quark effective field theory: Large perturbative correction. Phys. Lett. B 1992, 274, 421–427. [Google Scholar] [CrossRef] [Green Version]
  61. Ball, P.; Braun, V.M. Next-to-leading order corrections to meson masses in the heavy quark effective theory. Phys. Rev. D 1994, 49, 2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Huang, T.; Luo, C.W. Light quark dependence of the Isgur-Wise function from QCD sum rules. Phys. Rev. D 1994, 50, 5775. [Google Scholar] [CrossRef] [Green Version]
  63. Dai, Y.B.; Huang, C.S.; Huang, M.Q.; Liu, C. QCD sum rules for masses of excited heavy mesons. Phys. Lett. B 1997, 390, 350–358. [Google Scholar] [CrossRef] [Green Version]
  64. Colangelo, P.; Fazio, F.D.; Paver, N. Universal τ1/2(y) Isgur-Wise function at the next-to-leading order in QCD sum rules. Phys. Rev. D 1998, 58, 116005. [Google Scholar] [CrossRef] [Green Version]
  65. Groote, S.; Körner, J.G.; Yakovlev, O.I. QCD sum rules for heavy baryons at next-to-leading order in αs. Phys. Rev. D 1997, 55, 3016. [Google Scholar] [CrossRef] [Green Version]
  66. Zhu, S.L. Strong and electromagnetic decays of p wave heavy baryons Λc1, Λ c 1 . Phys. Rev. D 2000, 61, 114019. [Google Scholar] [CrossRef] [Green Version]
  67. Lee, J.P.; Liu, C.; Song, H.S. QCD sum rule analysis of excited Λc mass parameter. Phys. Lett. B 2000, 476, 303–308. [Google Scholar] [CrossRef] [Green Version]
  68. Huang, C.S.; Zhang, A.L.; Zhu, S.L. Excited heavy baryon masses in HQET QCD sum rules. Phys. Lett. B 2000, 492, 288. [Google Scholar] [CrossRef] [Green Version]
  69. Wang, D.W.; Huang, M.Q. Excited heavy baryon masses to order ΛQCD/mQ from QCD sum rules. Phys. Rev. D 2003, 68, 034019. [Google Scholar] [CrossRef] [Green Version]
  70. Duraes, F.O.; Nielsen, M. QCD sum rules study of Ξc and Ξb baryons. Phys. Lett. B 2007, 658, 40–44. [Google Scholar] [CrossRef] [Green Version]
  71. Liu, X.; Chen, H.X.; Liu, Y.R.; Hosaka, A.; Zhu, S.L. Bottom baryons. Phys. Rev. D 2008, 77, 014031. [Google Scholar] [CrossRef] [Green Version]
  72. Zhou, D.; Cui, E.L.; Chen, H.X.; Geng, L.S.; Liu, X.; Zhu, S.L. D-wave heavy-light mesons from QCD sum rules. Phys. Rev. D 2014, 90, 114035. [Google Scholar] [CrossRef] [Green Version]
  73. Zhou, D.; Chen, H.X.; Geng, L.S.; Liu, X.; Zhu, S.L. F-wave heavy-light meson spectroscopy in QCD sum rules and heavy quark effective theory. Phys. Rev. D 2015, 92, 114015. [Google Scholar] [CrossRef] [Green Version]
  74. Aliev, T.M.; Azizi, K.; Sarac, Y.; Sundu, H. Determination of the quantum numbers of Σb(6097)± via their strong decays. Phys. Rev. D 2019, 99, 094003. [Google Scholar] [CrossRef] [Green Version]
  75. Aliev, T.M.; Azizi, K.; Sarac, Y.; Sundu, H. Structure of the Ξb(6227) resonance. Phys. Rev. D 2018, 98, 094014. [Google Scholar] [CrossRef] [Green Version]
  76. Wang, Z.G. Analysis of the Ωb(6316), Ωb(6330), Ωb(6340) and Ωb(6350) with QCD sum rules. Int. J. Mod. Phys. A 2020, 35, 2050043. [Google Scholar] [CrossRef]
  77. Cui, E.L.; Yang, H.M.; Chen, H.X.; Hosaka, A. Identifying the Ξb(6227) and Σb(6097) as P-wave bottom baryons of JP=3/2. Phys. Rev. D 2019, 99, 094021. [Google Scholar] [CrossRef] [Green Version]
  78. Chen, H.X.; Cui, E.L.; Hosaka, A.; Mao, Q.; Yang, H.M. Excited Ωb baryons and fine structure of strong interaction. Eur. Phys. J. C 2020, 80, 256. [Google Scholar] [CrossRef] [Green Version]
  79. Wang, K.L.; Lü, Q.F.; Zhong, X.H. Interpretation of the newly observed Λb(6146)0 and Λb(6152)0 states in a chiral quark model. Phys. Rev. D 2019, 100, 114035. [Google Scholar] [CrossRef] [Green Version]
  80. Liang, W.; Lü, Q.F.; Zhong, X.H. Canonical interpretation of the newly observed Λb(6146)0 and Λb(6152)0 via strong decay behaviors. Phys. Rev. D 2019, 100, 054013. [Google Scholar] [CrossRef] [Green Version]
  81. Chen, B.; Luo, S.Q.; Liu, X.; Matsuki, T. Interpretation of the observed Λb(6146)0 and Λb(6152)0 states as 1D bottom baryons. Phys. Rev. D 2019, 100, 094032. [Google Scholar] [CrossRef] [Green Version]
  82. Azizi, K.; Sarac, Y.; Sundu, H. Λb(6146)0 state newly observed by LHCb. Phys. Rev. D 2020, 101, 074026. [Google Scholar] [CrossRef] [Green Version]
  83. Chen, C.; Chen, X.L.; Liu, X.; Deng, W.Z.; Zhu, S.L. Strong decays of charmed baryons. Phys. Rev. D 2007, 75, 094017. [Google Scholar] [CrossRef] [Green Version]
  84. Yang, K.C.; Hwang, W.Y.P.; Henley, E.M.; Kisslinger, L.S. QCD sum rules and neutron proton mass difference. Phys. Rev. D 1993, 47, 3001. [Google Scholar] [CrossRef] [PubMed]
  85. Hwang, W.Y.P.; Yang, K.C. QCD sum rules: Δ-N and Σ0-Λ mass splittings. Phys. Rev. D 1994, 49, 460. [Google Scholar] [CrossRef] [PubMed]
  86. Narison, S. QCD as a theory of hadrons from partons to confinement. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2002, 17, 1. [Google Scholar]
  87. Gimenez, V.; Lubicz, V.; Mescia, F.; Porretti, V.; Reyes, J. Operator product expansion and quark condensate from lattice QCD in coordinate space. Eur. Phys. J. C 2005, 41, 535–544. [Google Scholar] [CrossRef] [Green Version]
  88. Jamin, M. Flavor symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation. Phys. Lett. B 2002, 538, 71. [Google Scholar] [CrossRef] [Green Version]
  89. Ioffe, B.L.; Zyablyuk, K.N. Gluon condensate in charmonium sum rules with three loop corrections. Eur. Phys. J. C 2003, 27, 229. [Google Scholar] [CrossRef]
  90. Ovchinnikov, A.A.; Pivovarov, A.A. QCD Sum Rule Calculation Of The Quark Gluon Condensate. Sov. J. Nucl. Phys. 1988, 48, 721. [Google Scholar]
  91. Colangelo, P.; Khodjamirian, A. At the Frontier of Particle Physics/Handbook of QCD; World Scientific: Singapore, 2001; Volume 3, p. 1495. [Google Scholar]
  92. Olive, K.A.; Agashe, K.; Amsler, C.; Antonelli, M.; Arguin, J.-F.; Asner, D.M.; Baer, H.; Band, H.R.; Barnett, R.M.; Basaglia, T.; et al. [Particle Data Group] Review of Particle Physics. Chin. Phys. C 2014, 38, 090001. [Google Scholar] [CrossRef]
  93. Chen, H.X.; Mao, Q.; Chen, W.; Hosaka, A.; Liu, X.; Zhu, S.L. Decay properties of P-wave charmed baryons from light-cone QCD sum rules. Phys. Rev. D 2017, 95, 094008. [Google Scholar] [CrossRef] [Green Version]
  94. Yang, H.M.; Chen, H.X.; Cui, E.L.; Hosaka, A.; Mao, Q. Decay properties of P-wave heavy baryons accompanied by vector mesons within light-cone sum rules. Eur. Phys. J. C 2020, 80, 80. [Google Scholar] [CrossRef]
Figure 1. Categorization of D-wave bottom baryons belonging to the S U ( 3 ) flavor 3 ¯ F representation.
Figure 1. Categorization of D-wave bottom baryons belonging to the S U ( 3 ) flavor 3 ¯ F representation.
Universe 06 00086 g001
Figure 2. Variations of CVG ( , ) , defined in Equations (31)–(33), as functions of the Borel mass T, shown as the solid, short-dashed and long-dashed curves, respectively.
Figure 2. Variations of CVG ( , ) , defined in Equations (31)–(33), as functions of the Borel mass T, shown as the solid, short-dashed and long-dashed curves, respectively.
Universe 06 00086 g002
Figure 3. Variations of Λ ¯ Ξ b , 3 , 1 , ρ λ (left), K Ξ b , 3 , 1 , ρ λ (middle), and Σ Ξ b , 3 , 1 , ρ λ (right) as functions of the Borel mass T, where the short-dashed, solid, and long-dashed curves are obtained by fixing ω c = 4.4 , 4.6 , and 4.8 GeV, respectively. These figures are plotted for the bottom baryon doublet [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] .
Figure 3. Variations of Λ ¯ Ξ b , 3 , 1 , ρ λ (left), K Ξ b , 3 , 1 , ρ λ (middle), and Σ Ξ b , 3 , 1 , ρ λ (right) as functions of the Borel mass T, where the short-dashed, solid, and long-dashed curves are obtained by fixing ω c = 4.4 , 4.6 , and 4.8 GeV, respectively. These figures are plotted for the bottom baryon doublet [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] .
Universe 06 00086 g003
Figure 4. The variation of m Ξ b ( 5 / 2 + ) as a function of the Borel mass T (left) and the threshold value ω c (right). In the left panel, the short-dashed, solid, and long-dashed curves are obtained by setting ω c = 4.4 , 4.6, and 4.8 GeV, respectively. In the right panel the shady band is obtained by varying T within the Borel window. These figures are plotted for the bottom baryon doublet [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] .
Figure 4. The variation of m Ξ b ( 5 / 2 + ) as a function of the Borel mass T (left) and the threshold value ω c (right). In the left panel, the short-dashed, solid, and long-dashed curves are obtained by setting ω c = 4.4 , 4.6, and 4.8 GeV, respectively. In the right panel the shady band is obtained by varying T within the Borel window. These figures are plotted for the bottom baryon doublet [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] .
Universe 06 00086 g004
Figure 5. The variation of m Λ b ( 5 / 2 + ) as a function of the Borel mass T (left) and the threshold value ω c (right). In the left panel, the short-dashed, solid, and long-dashed curves are obtained by setting ω c = 4.4 , 4.3, and 4.5 GeV, respectively. In the right panel the shady band is obtained by varying T within the Borel window. These figures are plotted for the bottom baryon doublet [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] .
Figure 5. The variation of m Λ b ( 5 / 2 + ) as a function of the Borel mass T (left) and the threshold value ω c (right). In the left panel, the short-dashed, solid, and long-dashed curves are obtained by setting ω c = 4.4 , 4.3, and 4.5 GeV, respectively. In the right panel the shady band is obtained by varying T within the Borel window. These figures are plotted for the bottom baryon doublet [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] .
Universe 06 00086 g005
Figure 6. Masses as functions of the Borel mass T, extracted from the bottom baryon doublets: [ Λ b ( 3 ¯ F ) , 2 , 0 , λ λ ] (upper-left), [ Ξ b ( 3 ¯ F ) , 2 , 0 , λ λ ] (upper-right), [ Λ b ( 3 ¯ F ) , 1 , 1 , ρ λ ] (middle-left), [ Ξ b ( 3 ¯ F ) , 1 , 1 , ρ λ ] (middle-right), [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] (lower-left), and [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] (lower-right). The shady bands are obtained by varying T within the Borel window.
Figure 6. Masses as functions of the Borel mass T, extracted from the bottom baryon doublets: [ Λ b ( 3 ¯ F ) , 2 , 0 , λ λ ] (upper-left), [ Ξ b ( 3 ¯ F ) , 2 , 0 , λ λ ] (upper-right), [ Λ b ( 3 ¯ F ) , 1 , 1 , ρ λ ] (middle-left), [ Ξ b ( 3 ¯ F ) , 1 , 1 , ρ λ ] (middle-right), [ Λ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] (lower-left), and [ Ξ b ( 3 ¯ F ) , 3 , 1 , ρ λ ] (lower-right). The shady bands are obtained by varying T within the Borel window.
Universe 06 00086 g006
Table 1. Masses of the D-wave bottom baryons belonging to the S U ( 3 ) flavor 3 ¯ F representation, obtained using the bottom baryon multiplets [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , [ 3 ¯ F , 2 , 1 , ρ λ ] , and [ 3 ¯ F , 3 , 1 , ρ λ ] . There still exists one doublet, the [ 3 ¯ F , 2 , 0 , ρ ρ ] doublet, but its sum rule results are a bit strange (the Borel windows become larger as the threshold value ω c decreases), so we do not list it here. In the third and fourth columns we list the two QCD sum rule parameters, the threshold value ω c and the Borel mass T; in the fifth, sixth, and seventh columns we list the QCD sum rule results, Λ ¯ F , j l , s l , ρ / λ at the leading order as well as K F , j l , s l , ρ / λ and Σ F , j l , s l , ρ / λ at the O ( 1 / m b ) order; in the ninth, tenth, and eleventh columns we list the masses m j , P , F , j l , s l , ρ / λ , decay constants f F , j l , s l , ρ ρ / λ λ / ρ λ , and mass splittings Δ M F , j l , s l , ρ ρ / λ λ / ρ λ = m j l + 1 / 2 , P , F , j l , s l , ρ / λ m j l 1 / 2 , P , F , j l , s l , ρ / λ evaluated within the QCD sum rule method.
Table 1. Masses of the D-wave bottom baryons belonging to the S U ( 3 ) flavor 3 ¯ F representation, obtained using the bottom baryon multiplets [ 3 ¯ F , 2 , 0 , λ λ ] , [ 3 ¯ F , 1 , 1 , ρ λ ] , [ 3 ¯ F , 2 , 1 , ρ λ ] , and [ 3 ¯ F , 3 , 1 , ρ λ ] . There still exists one doublet, the [ 3 ¯ F , 2 , 0 , ρ ρ ] doublet, but its sum rule results are a bit strange (the Borel windows become larger as the threshold value ω c decreases), so we do not list it here. In the third and fourth columns we list the two QCD sum rule parameters, the threshold value ω c and the Borel mass T; in the fifth, sixth, and seventh columns we list the QCD sum rule results, Λ ¯ F , j l , s l , ρ / λ at the leading order as well as K F , j l , s l , ρ / λ and Σ F , j l , s l , ρ / λ at the O ( 1 / m b ) order; in the ninth, tenth, and eleventh columns we list the masses m j , P , F , j l , s l , ρ / λ , decay constants f F , j l , s l , ρ ρ / λ λ / ρ λ , and mass splittings Δ M F , j l , s l , ρ ρ / λ λ / ρ λ = m j l + 1 / 2 , P , F , j l , s l , ρ / λ m j l 1 / 2 , P , F , j l , s l , ρ / λ evaluated within the QCD sum rule method.
MultipletsB ω c Working Region Λ ¯ K Σ BaryonsMassf Δ M
(GeV)(GeV)(GeV)(GeV 2 )(GeV 2 )( j P )(GeV)(GeV 5 )(MeV)
[ 3 ¯ F , 2 , 0 , λ λ ] Λ b 4.0 0.412 < T < 0.632 1.680 0.082 + 0.073 4.398 0.0112 Λ b ( 3 / 2 + ) 6.12 0.11 + 0.10 0.114 0.026 + 0.029 5.4 1.9 + 2.3
Λ b ( 5 / 2 + ) 6.13 0.11 + 0.10 0.048 0.011 + 0.012
Ξ b 4.3 0.414 < T < 0.678 1.792 0.109 + 0.079 4.846 0.0095 Ξ b ( 3 / 2 + ) 6.26 0.14 + 0.11 0.158 0.041 + 0.038 4.5 1.5 + 1.9
Ξ b ( 5 / 2 + ) 6.26 0.14 + 0.11 0.067 0.017 + 0.016
[ 3 ¯ F , 1 , 1 , ρ λ ] Λ b 4.0 0.483 < T < 0.621 1.732 0.069 + 0.071 3.555 0.0050 Λ b ( 1 / 2 + ) 6.13 0.09 + 0.10 0.159 0.034 + 0.040 1.5 0.5 + 0.6
Λ b ( 3 / 2 + ) 6.13 0.09 + 0.10 0.075 0.016 + 0.019
Ξ b 4.3 0.532 < T < 0.661 1.902 0.060 + 0.064 3.732 0.0053 Ξ b ( 1 / 2 + ) 6.31 0.09 + 0.09 0.235 0.046 + 0.054 1.5 0.6 + 0.6
Ξ b ( 3 / 2 + ) 6.31 0.09 + 0.09 0.111 0.022 + 0.026
[ 3 ¯ F , 2 , 1 , ρ λ ] Λ b 3.9 0.543 < T < 0.585 1.772 0.076 + 0.096 3.819 0.0283 Λ b ( 3 / 2 + ) 6.17 0.10 + 0.12 0.219 0.048 + 0.059 13.5 5.6 + 7.5
Λ b ( 5 / 2 + ) 6.19 0.10 + 0.12 0.079 0.017 + 0.021
Ξ b 4.2 0.576 < T < 0.626 1.938 0.063 + 0.078 3.853 0.0247 Ξ b ( 3 / 2 + ) 6.34 0.09 + 0.10 0.327 0.065 + 0.078 11.8 4.6 + 5.8
Ξ b ( 5 / 2 + ) 6.35 0.09 + 0.11 0.118 0.023 + 0.028
[ 3 ¯ F , 3 , 1 , ρ λ ] Λ b 4.3 0.617 < T < 0.637 1.986 0.089 + 0.122 4.336 0.0218 Λ b ( 5 / 2 + ) 6.42 0.11 + 0.15 0.388 0.078 + 0.096 14.6 6.2 + 8.8
Λ b ( 7 / 2 + ) 6.43 0.11 + 0.15 0.143 0.029 + 0.035
Ξ b 4.6 0.638 < T < 0.685 0.117 0.076 + 0.096 4.483 0.0182 Ξ b ( 5 / 2 + ) 6.56 0.10 + 0.12 0.543 0.101 + 0.120 12.2 4.8 + 6.3
Ξ b ( 7 / 2 + ) 6.57 0.10 + 0.12 0.200 0.037 + 0.044

Share and Cite

MDPI and ACS Style

Mao, Q.; Chen, H.-X.; Yang, H.-M. Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons. Universe 2020, 6, 86. https://doi.org/10.3390/universe6060086

AMA Style

Mao Q, Chen H-X, Yang H-M. Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons. Universe. 2020; 6(6):86. https://doi.org/10.3390/universe6060086

Chicago/Turabian Style

Mao, Qiang, Hua-Xing Chen, and Hui-Min Yang. 2020. "Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons" Universe 6, no. 6: 86. https://doi.org/10.3390/universe6060086

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop