Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons
Abstract
:1. Introduction
- In 2020 the LHCb Collaboration discovered four excited states, , , , and , at the same time in the invariant mass spectrum [6];
- In 2019 the LHCb Collaboration reported their discovery of two excited bottom baryons and in the invariant mass distribution [7]:During this experiment, they observed significant , , and signals, but no significant signals were observed. The LHCb Collaboration suggested these two states to be the baryons, by comparing with the masses predicted by the constituent quark model [8,9,10,11].Besides, they further observed a broad excess of events in the mass distribution in the region of 6040-6100 MeV, whose mass and width were later measured by LHCb to be [13]:
2. Interpolating Fields for the -Wave Bottom Baryon
- Color structure of the two light quarks is antisymmetric ();
- Flavor structure of the two light quarks is either antisymmetric () or symmetric ();
- Spin structure of the two light quarks is either antisymmetric () or symmetric ();
- Orbital structure of the two light quarks is either antisymmetric () or symmetric ();
- Totally, the two light quarks are antisymmetric due to the Pauli principle.
- The bottom baryon doublet contains two bottom baryons of and , whose interpolating fields are:In the above expressions: are color indices, and is the totally antisymmetric tensor; is the charge-conjugation operator; is the light quark field, and is the quark field; , , , , and v is the velocity of the bottom quark; and and are the and projection operators:
- The bottom baryon doublet contains two bottom baryons of and , whose interpolating fields are:
- The bottom baryon doublet contains two bottom baryons of and , whose interpolating fields are:
- The bottom baryon doublet contains two bottom baryons of and , whose interpolating fields are:
- The bottom baryon doublet contains two bottom baryons of and , whose interpolating fields are:
3. QCD Sum Rule Analyses
4. Numerical Analyses
5. Summary and Discussions
- The masses of and calculated using the multiplet are:These two mass values as well as their difference are well consistent with the LHCb and CMS measurements [7,12], so our results support the interpretation of the and as D-wave bottom baryons of and respectively, both of which contain two -mode excitations. We call it -mode in the present study, and its relevant multiplet is the bottom baryon doublet .This conclusion is the same as [79,80,81,82], so faces the same serious problem: The lower state would decay both into the P-wave channel and the P-wave channel, while the higher state would dominantly decay only into the P-wave channel, which behaviors are just opposite to the and observed by LHCb [7], as stated in the introduction (in other words, “face a serious problem of mass reverse” [79]);
- The masses of and calculated using the multiplet are:These two mass values as well as their difference are all significantly larger than, but not too far from, the LHCb and CMS measurements [7,12].The advantage of this assignment is: The lower state would dominantly decay only into the P-wave channel, while the higher state would decay both into the F-wave channel and the F-wave channel, which behaviors are consistent with the and observed by LHCb [7]. Note that GeV, so that the F-wave decay widths might not be suppressed too much. Anyway, we still need to explicitly study their decay properties to verify this possibility;
- The masses of and calculated using the multiplet are:This mass difference is smaller (negative) than the LHCb measurement [7]. Moreover, the decay behaviors of the and observed by LHCb [7] can not be well explained by this multiplet. Hence, our results do not favor the interpretation of the and as D-wave bottom baryons of and belonging to the multiplet.
- The masses of and calculated using the multiplet are:This mass difference is a bit larger than the LHCb experiment [7]. Hence, our results do not favor the interpretation of the and as D-wave bottom baryons of and belonging to the multiplet;
- The sum rule results extracted from the multiplet are a bit strange, because the Borel windows become larger as the threshold value decreases, which behavior has already been found in Figure 9 of Ref. [51]. Hence, we do not use them to draw any conclusion.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Other Sum Rules
References
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Aaij, R.; Abellán Beteta, C.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Ales, F.; et al. [LHCb Collaboration] Observation of excited baryons. Phys. Rev. Lett. 2012, 109, 172003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, T.A.; Amerio, S.; Amidei, D.E.; Anastassov, A.I.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artiko, A.M.; et al. [CDF Collaboration] Evidence for a Bottom Baryon Resonance in CDF Data. Phys. Rev. D 2013, 88, 071101. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; Alexander, M.; et al. [LHCb Collaboration] Observation of a new resonance. Phys. Rev. Lett. 2018, 121, 072002. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. [LHCb Collaboration] Observation of Two Resonances in the π± Systems and Precise Measurement of and properties. Phys. Rev. Lett. 2019, 122, 012001. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. [LHCb Collaboration] First observation of excited states. Phys. Rev. Lett. 2020, 124, 082002. [Google Scholar]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. [LHCb Collaboration] Observation of New Resonances in the π+π− System. Phys. Rev. Lett. 2019, 123, 152001. [Google Scholar] [CrossRef] [Green Version]
- Capstick, S.; Isgur, N. Baryons in a Relativized Quark Model with Chromodynamics. Phys. Rev. D 1986, 34, 2809. [Google Scholar] [CrossRef]
- Ebert, D.; Faustov, R.N.; Galkin, V.O. Masses of excited heavy baryons in the relativistic quark model. Phys. Lett. B 2008, 659, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Roberts, W.; Pervin, M. Heavy baryons in a quark model. Int. J. Mod. Phys. A 2008, 23, 2817–2860. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wei, K.W.; Zhang, A. Assignments of ΛQ and ΞQ baryons in the heavy quark-light diquark picture. Eur. Phys. J. A 2015, 51, 82. [Google Scholar] [CrossRef] [Green Version]
- Sirunyan, A.M.; Tumasyan, A.; Adam,W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Erö, J.; Del Valle, A.E.; Flechl, M.; Fruehwirth, R.; et al. [CMS Collaboration] Study of excited states decaying to π+π− in proton-proton collisions at = 13 TeV. Phys. Lett. B 2020, 803, 135345. [Google Scholar] [CrossRef]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. [LHCb Collaboration] Observation of a new baryon state in the π+π− mass spectrum. arXiv 2020, arXiv:2002.05112. [Google Scholar]
- Garcilazo, H.; Vijande, J.; Valcarce, A. Faddeev study of heavy baryon spectroscopy. J. Phys. G 2007, 34, 961. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.G.; Entem, D.R.; Fernandez, F. Quark model description of the Λc(2940)+ as a molecular D∗N state and the possible existence of the Λb(6248). Phys. Lett. B 2013, 718, 1381. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Hiyama, E.; Hosaka, A.; Oka, M.; Sadato, K. Spectrum of heavy baryons in the quark model. Phys. Rev. D 2015, 92, 114029. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Guerrero, L.X.; Bashir, A.; Bedolla, M.A.; Santopinto, E. Masses of Light and Heavy Mesons and Baryons: A Unified Picture. Phys. Rev. D 2019, 100, 114032. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.; Lü, Q.F.; Zhong, X.H. Interpretation of the newly observed Σb(6097)± and Ξb(6227)− states as the P-wave bottom baryons. Phys. Rev. D 2019, 99, 014011. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, Y.; Harada, M. Singly heavy baryons with chiral partner structure in a three-flavor chiral model. Phys. Rev. D 2019, 99, 094016. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.Y.; Wang, K.L.; Liu, M.S.; Zhong, X.H. Possible interpretation of the newly observed Ωb states. Eur. Phys. J. C 2020, 80, 279. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wei, K.W.; Liu, X.; Zhang, A. Role of newly discovered Ξb(6227)− for constructing excited bottom baryon family. Phys. Rev. D 2018, 98, 031502(R). [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, X. Assigning the newly reported Σb(6097) as a P-wave excited state and predicting its partners. Phys. Rev. D 2018, 98, 074032. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Guo, J.J.; Zhang, A. Identification of the newly observed Σb(6097)± baryons from their strong decays. Phys. Rev. D 2019, 99, 034018. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Lü, Q.F. Strong decays of the newly observed narrow Ωb structures. Eur. Phys. J. C 2020, 80, 198. [Google Scholar] [CrossRef] [Green Version]
- Karliner, M.; Keren-Zur, B.; Lipkin, H.J.; Rosner, J.L. The Quark Model and b Baryons. Ann. Phys. 2009, 324, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Karliner, M.; Rosner, J.L. Prospects for observing the lowest-lying odd-parity Σc and Σb baryons. Phys. Rev. D 2015, 92, 074026. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.X.; Zhou, Y.; Chen, H.X.; Xie, J.J.; Geng, L.S. Dynamically generated JP=1/2−(3/2−) singly charmed and bottom heavy baryons. Phys. Rev. D 2015, 92, 014036. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.Y.; Chua, C.K. Strong Decays of Charmed Baryons in Heavy Hadron Chiral Perturbation Theory: An Update. Phys. Rev. D 2015, 92, 074014. [Google Scholar] [CrossRef] [Green Version]
- Padmanath, M.; Edwards, R.G.; Mathur, N.; Peardon, M. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD. arXiv 2013, arXiv:1311.4806. [Google Scholar]
- Padmanath, M.; Mathur, N. Quantum Numbers of Recently Discovered Baryons from Lattice QCD. Phys. Rev. Lett. 2017, 119, 042001. [Google Scholar] [CrossRef] [Green Version]
- Burch, T. Heavy hadrons on Nf=2 and 2+1 improved clover-Wilson lattices. arXiv 2015, arXiv:1502.00675. [Google Scholar]
- Garcia-Recio, C.; Nieves, J.; Romanets, O.; Salcedo, L.L.; Tolos, L. Odd parity bottom-flavored baryon resonances. Phys. Rev. D 2013, 87, 034032. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.H.; Xiao, C.W.; Oset, E. Baryon states with open beauty in the extended local hidden gauge approach. Phys. Rev. D 2014, 89, 054023. [Google Scholar] [CrossRef] [Green Version]
- An, C.S.; Chen, H. Observed resonances as pentaquark states. Phys. Rev. D 2017, 96, 034012. [Google Scholar] [CrossRef] [Green Version]
- Montana, G.; Feijoo, A.; Ramos, A. A meson-baryon molecular interpretation for some Ωc excited states. Eur. Phys. J. A 2018, 54, 64. [Google Scholar] [CrossRef] [Green Version]
- Debastiani, V.R.; Dias, J.M.; Liang, W.H.; Oset, E. Molecular Ωc states generated from coupled meson-baryon channels. Phys. Rev. D 2018, 97, 094035. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Hosaka, A.; Liu, X. Searching for possible Ωc-like molecular states from meson-baryon interaction. Phys. Rev. D 2018, 97, 036016. [Google Scholar] [CrossRef] [Green Version]
- Nieves, J.; Pavao, R.; Tolos, L. Ωc excited states within a SU(6)lsf× HQSS model. Eur. Phys. J. C 2018, 78, 114. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Xiao, C.J.; Lü, Q.F.; Wang, R.; He, J.; Geng, L. Strong and radiative decays of DΞ molecular state and newly observed Ωc states. Phys. Rev. D 2018, 97, 094013. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.X.; Pavao, R.; Debastiani, V.R.; Oset, E. Description of the Ξc and Ξb states as molecular states. Eur. Phys. J. C 2019, 79, 167. [Google Scholar] [CrossRef]
- Nieves, J.; Pavao, R.; Tolos, L. Ξc and Ξb excited states within a SU(6)lsf× HQSS model. Eur. Phys. J. C 2020, 80, 22. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.H.; Oset, E. Observed Ωb spectrum and meson-baryon molecular states. Phys. Rev. D 2020, 101, 054033. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Chen, W.; Liu, X.; Liu, Y.R.; Zhu, S.L. A review of the open charm and open bottom systems. Rept. Prog. Phys. 2017, 80, 076201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.Y. Charmed baryons circa 2015. Front. Phys. (Beijing) 2015, 10, 101406. [Google Scholar] [CrossRef] [Green Version]
- Crede, V.; Roberts, W. Progress towards understanding baryon resonances. Rept. Prog. Phys. 2013, 76, 076301. [Google Scholar] [CrossRef] [PubMed]
- Klempt, E.; Richard, J.M. Baryon spectroscopy. Rev. Mod. Phys. 2010, 82, 1095. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Fabbri, F.L.; Benson, D.; Bigi, I. A Cicerone for the physics of charm. Riv. Nuovo Cim. 2003, 26N7, 1. [Google Scholar]
- Körner, J.G.; Kramer, M.; Pirjol, D. Heavy baryons. Prog. Part. Nucl. Phys. 1994, 33, 787–868. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Chen, W.; Mao, Q.; Hosaka, A.; Liu, X.; Zhu, S.L. P-wave charmed baryons from QCD sum rules. Phys. Rev. D 2015, 91, 054034. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Chen, H.X.; Chen, W.; Hosaka, A.; Liu, X.; Zhu, S.L. QCD sum rule calculation for P-wave bottom baryons. Phys. Rev. D 2015, 92, 114007. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Mao, Q.; Hosaka, A.; Liu, X.; Zhu, S.L. D-wave charmed and bottomed baryons from QCD sum rules. Phys. Rev. D 2016, 94, 114016. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Chen, H.X.; Hosaka, A.; Liu, X.; Zhu, S.L. D-wave heavy baryons of the SU(3) flavor 6F. Phys. Rev. D 2017, 96, 074021. [Google Scholar] [CrossRef] [Green Version]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. QCD and Resonance Physics. Theoretical Foundations. Nucl. Phys. B 1979, 147, 385–447. [Google Scholar] [CrossRef]
- Reinders, L.J.; Rubinstein, H.; Yazaki, S. Hadron Properties from QCD Sum Rules. Phys. Rept. 1985, 127, 1–97. [Google Scholar] [CrossRef]
- Grinstein, B. The Static Quark Effective Theory. Nucl. Phys. B 1990, 339, 253–268. [Google Scholar] [CrossRef]
- Eichten, E.; Hill, B.R. An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks. Phys. Lett. B 1990, 234, 511–516. [Google Scholar] [CrossRef]
- Falk, A.F.; Georgi, H.; Grinstein, B.; Wise, M.B. Heavy Meson Form-factors From QCD. Nucl. Phys. B 1990, 343, 1–13. [Google Scholar] [CrossRef]
- Bagan, E.; Ball, P.; Braun, V.M.; Dosch, H.G. QCD sum rules in the effective heavy quark theory. Phys. Lett. B 1992, 278, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Neubert, M. Heavy meson form-factors from QCD sum rules. Phys. Rev. D 1992, 45, 2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broadhurst, D.J.; Grozin, A.G. Operator product expansion in static quark effective field theory: Large perturbative correction. Phys. Lett. B 1992, 274, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Ball, P.; Braun, V.M. Next-to-leading order corrections to meson masses in the heavy quark effective theory. Phys. Rev. D 1994, 49, 2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Luo, C.W. Light quark dependence of the Isgur-Wise function from QCD sum rules. Phys. Rev. D 1994, 50, 5775. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.B.; Huang, C.S.; Huang, M.Q.; Liu, C. QCD sum rules for masses of excited heavy mesons. Phys. Lett. B 1997, 390, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, P.; Fazio, F.D.; Paver, N. Universal τ1/2(y) Isgur-Wise function at the next-to-leading order in QCD sum rules. Phys. Rev. D 1998, 58, 116005. [Google Scholar] [CrossRef] [Green Version]
- Groote, S.; Körner, J.G.; Yakovlev, O.I. QCD sum rules for heavy baryons at next-to-leading order in αs. Phys. Rev. D 1997, 55, 3016. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.L. Strong and electromagnetic decays of p wave heavy baryons Λc1, . Phys. Rev. D 2000, 61, 114019. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.P.; Liu, C.; Song, H.S. QCD sum rule analysis of excited Λc mass parameter. Phys. Lett. B 2000, 476, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.S.; Zhang, A.L.; Zhu, S.L. Excited heavy baryon masses in HQET QCD sum rules. Phys. Lett. B 2000, 492, 288. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.W.; Huang, M.Q. Excited heavy baryon masses to order ΛQCD/mQ from QCD sum rules. Phys. Rev. D 2003, 68, 034019. [Google Scholar] [CrossRef] [Green Version]
- Duraes, F.O.; Nielsen, M. QCD sum rules study of Ξc and Ξb baryons. Phys. Lett. B 2007, 658, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, H.X.; Liu, Y.R.; Hosaka, A.; Zhu, S.L. Bottom baryons. Phys. Rev. D 2008, 77, 014031. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Cui, E.L.; Chen, H.X.; Geng, L.S.; Liu, X.; Zhu, S.L. D-wave heavy-light mesons from QCD sum rules. Phys. Rev. D 2014, 90, 114035. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Chen, H.X.; Geng, L.S.; Liu, X.; Zhu, S.L. F-wave heavy-light meson spectroscopy in QCD sum rules and heavy quark effective theory. Phys. Rev. D 2015, 92, 114015. [Google Scholar] [CrossRef] [Green Version]
- Aliev, T.M.; Azizi, K.; Sarac, Y.; Sundu, H. Determination of the quantum numbers of Σb(6097)± via their strong decays. Phys. Rev. D 2019, 99, 094003. [Google Scholar] [CrossRef] [Green Version]
- Aliev, T.M.; Azizi, K.; Sarac, Y.; Sundu, H. Structure of the Ξb(6227)− resonance. Phys. Rev. D 2018, 98, 094014. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.G. Analysis of the Ωb(6316), Ωb(6330), Ωb(6340) and Ωb(6350) with QCD sum rules. Int. J. Mod. Phys. A 2020, 35, 2050043. [Google Scholar] [CrossRef]
- Cui, E.L.; Yang, H.M.; Chen, H.X.; Hosaka, A. Identifying the Ξb(6227) and Σb(6097) as P-wave bottom baryons of JP=3/2−. Phys. Rev. D 2019, 99, 094021. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.X.; Cui, E.L.; Hosaka, A.; Mao, Q.; Yang, H.M. Excited Ωb baryons and fine structure of strong interaction. Eur. Phys. J. C 2020, 80, 256. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.; Lü, Q.F.; Zhong, X.H. Interpretation of the newly observed Λb(6146)0 and Λb(6152)0 states in a chiral quark model. Phys. Rev. D 2019, 100, 114035. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Lü, Q.F.; Zhong, X.H. Canonical interpretation of the newly observed Λb(6146)0 and Λb(6152)0 via strong decay behaviors. Phys. Rev. D 2019, 100, 054013. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Luo, S.Q.; Liu, X.; Matsuki, T. Interpretation of the observed Λb(6146)0 and Λb(6152)0 states as 1D bottom baryons. Phys. Rev. D 2019, 100, 094032. [Google Scholar] [CrossRef] [Green Version]
- Azizi, K.; Sarac, Y.; Sundu, H. Λb(6146)0 state newly observed by LHCb. Phys. Rev. D 2020, 101, 074026. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, X.L.; Liu, X.; Deng, W.Z.; Zhu, S.L. Strong decays of charmed baryons. Phys. Rev. D 2007, 75, 094017. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.C.; Hwang, W.Y.P.; Henley, E.M.; Kisslinger, L.S. QCD sum rules and neutron proton mass difference. Phys. Rev. D 1993, 47, 3001. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.Y.P.; Yang, K.C. QCD sum rules: Δ-N and Σ0-Λ mass splittings. Phys. Rev. D 1994, 49, 460. [Google Scholar] [CrossRef] [PubMed]
- Narison, S. QCD as a theory of hadrons from partons to confinement. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2002, 17, 1. [Google Scholar]
- Gimenez, V.; Lubicz, V.; Mescia, F.; Porretti, V.; Reyes, J. Operator product expansion and quark condensate from lattice QCD in coordinate space. Eur. Phys. J. C 2005, 41, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Jamin, M. Flavor symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation. Phys. Lett. B 2002, 538, 71. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, B.L.; Zyablyuk, K.N. Gluon condensate in charmonium sum rules with three loop corrections. Eur. Phys. J. C 2003, 27, 229. [Google Scholar] [CrossRef]
- Ovchinnikov, A.A.; Pivovarov, A.A. QCD Sum Rule Calculation Of The Quark Gluon Condensate. Sov. J. Nucl. Phys. 1988, 48, 721. [Google Scholar]
- Colangelo, P.; Khodjamirian, A. At the Frontier of Particle Physics/Handbook of QCD; World Scientific: Singapore, 2001; Volume 3, p. 1495. [Google Scholar]
- Olive, K.A.; Agashe, K.; Amsler, C.; Antonelli, M.; Arguin, J.-F.; Asner, D.M.; Baer, H.; Band, H.R.; Barnett, R.M.; Basaglia, T.; et al. [Particle Data Group] Review of Particle Physics. Chin. Phys. C 2014, 38, 090001. [Google Scholar] [CrossRef]
- Chen, H.X.; Mao, Q.; Chen, W.; Hosaka, A.; Liu, X.; Zhu, S.L. Decay properties of P-wave charmed baryons from light-cone QCD sum rules. Phys. Rev. D 2017, 95, 094008. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.M.; Chen, H.X.; Cui, E.L.; Hosaka, A.; Mao, Q. Decay properties of P-wave heavy baryons accompanied by vector mesons within light-cone sum rules. Eur. Phys. J. C 2020, 80, 80. [Google Scholar] [CrossRef]
Multiplets | B | Working Region | K | Baryons | Mass | f | ||||
---|---|---|---|---|---|---|---|---|---|---|
(GeV) | (GeV) | (GeV) | (GeV) | (GeV) | () | (GeV) | (GeV) | (MeV) | ||
4.0 | ||||||||||
4.3 | ||||||||||
4.0 | ||||||||||
4.3 | ||||||||||
3.9 | ||||||||||
4.2 | ||||||||||
4.3 | ||||||||||
4.6 | ||||||||||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Q.; Chen, H.-X.; Yang, H.-M. Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons. Universe 2020, 6, 86. https://doi.org/10.3390/universe6060086
Mao Q, Chen H-X, Yang H-M. Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons. Universe. 2020; 6(6):86. https://doi.org/10.3390/universe6060086
Chicago/Turabian StyleMao, Qiang, Hua-Xing Chen, and Hui-Min Yang. 2020. "Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons" Universe 6, no. 6: 86. https://doi.org/10.3390/universe6060086
APA StyleMao, Q., Chen, H.-X., & Yang, H.-M. (2020). Identifying the Λb(6146)0 and Λb(6152)0 as D-Wave Bottom Baryons. Universe, 6(6), 86. https://doi.org/10.3390/universe6060086