Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions
Abstract
:1. Introduction
2. Preliminaries
2.1. Lorentz Transformations
2.2. Quaternions
3. Combining Two 3-Velocities
3.1. Velocities in the (x,y)-Plane
3.2. General 3-Velocities
3.2.1. Algorithm
3.2.2. Example: Parallel Velocities
3.2.3. Example: Perpendicular Velocities in the x–y Plane
3.2.4. Example: Perpendicular Velocities in General
3.2.5. Example: Reduction to Giust–Vigoureux–Lages Result in the x–y Plane
3.2.6. Example: Composition in General Directions
3.2.7. Uniqueness of the Composition Law
3.3. Calculating the Wigner Angle
4. Combining Three 3-Velocities
4.1. Combining 3 Half-Velocities:
4.2. Combining 3 Half-Velocities:
4.3. Combining 3 Half-Velocities: (Non)-Associativity
4.4. Specific Non-Coplanar Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silberstein, L. Quaternionic form of relativity. Philisophical Mag. 1912, 23, 790–809. [Google Scholar] [CrossRef] [Green Version]
- Silberstein, L. The Theory of Relativity; Macmillan and Co.: London, UK, 1914. [Google Scholar]
- Silberstein, L. Available online: https://en.wikipedia.org/wiki/Ludwik_Silberstein (accessed on 8 December 2020).
- Dirac, P.A.M. Application of quaternions to Lorentz transformations. Proc. R. Ir. Acad. 1944, 50, 261–270. [Google Scholar]
- Rastall, P. Quaternions in Relativity. Rev. Mod. Phys. 1964, 36, 820. [Google Scholar] [CrossRef]
- Girard, P.R. The quaternion group and modern physics. Eur. J. Phys. 1984, 5, 25–32. [Google Scholar] [CrossRef]
- Ungar, A.A. The relativistic velocity composition paradox and the Thomas rotation. Found. Phys. 1989, 19, 1385–1396. [Google Scholar] [CrossRef]
- Mocanu, C.I. On the relativistic velocity composition paradox and the Thomas rotation. Found. Phys. Lett. 1992, 5, 443–456. [Google Scholar] [CrossRef]
- De Leo, S. Quaternions and Special Relativity. J. Math. Phys. 1996, 37, 2955–2968. [Google Scholar] [CrossRef] [Green Version]
- Friedman, Y. Physical Applications of Homogeneous Balls; Progress in Mathematical Physics; Springer: Birkhäuser, Basel, 2005; Volume 40. [Google Scholar] [CrossRef]
- Friedman, Y.; Semon, M.D. Relativistic acceleration of charged particles in uniform and mutually perpendicular electric and magnetic fields as viewed in the laboratory frame. Phys. Rev. E 2005, 72, 026603. [Google Scholar] [CrossRef]
- Greiter, M.; Schuricht, D. Imaginary in all directions: An Elegant formulation of special relativity and classical electrodynamics. Eur. J. Phys. 2003, 24, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Yefremov, A.P. Theory of relativity in quaternion spinors. Gravit. Cosmol. 2016, 22, 97–106. [Google Scholar] [CrossRef]
- Wigner, E. On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 1939, 40, 149–204. [Google Scholar] [CrossRef]
- Giust, R.; Vigoureux, J.-M.; Lages, J. Generalized composition law from 2 × 2 matrices. Am. J. Phys. 2009, 77, 1068–1073. [Google Scholar] [CrossRef]
- Lages, J.; Giust, R.; Vigoureux, J.-M. Composition law for polarizers. Phys. Rev. 2008, 78, 033810. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.H. The motion of the spinning electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Fisher, G.P. Thomas precession. Am. J. Phys. 1972, 40, 1772. [Google Scholar] [CrossRef]
- Ferraro, M.; Thibeault, R. Generic composition of boosts: An elementary derivation of the Wigner rotation. Eur. J. Phys. 1999, 20, 143. [Google Scholar] [CrossRef] [Green Version]
- Malykin, G.B. Thomas precession: Correct and incorrect solutions. Phys. Uspekhi 2006, 49, 837–853. [Google Scholar] [CrossRef]
- Ritus, V.I. On the difference between Wigner’s and Møller’s approaches to the description of Thomas precession. Phys. Uspekhi 2007, 50, 95–101. [Google Scholar] [CrossRef]
- O’Donnell, K.; Visser, M. Elementary analysis of the special relativistic combination of velocities, Wigner rotation, and Thomas precession. Eur. J. Phys. 2011, 32, 1033–1047. [Google Scholar] [CrossRef] [Green Version]
- Achilles, R.; Bonfiglioli, A. The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin. Arch. Hist. Exact Sci. 2012, 66, 295–358. [Google Scholar] [CrossRef]
- Goldberg, K. The formal power series for log(ex ey). Duke Math. J. 1956, 23, 13–21. [Google Scholar] [CrossRef]
- Van-Brunt, A.; Visser, M. Special-case closed form of the Baker-Campbell-Hausdorff formula. J. Phys. A 2015, 48, 225207. [Google Scholar] [CrossRef] [Green Version]
- Van-Brunt, A.; Visser, M. Simplifying the Reinsch algorithm for the Baker-Campbell-Hausdorff series. J. Math. Phys. 2016, 57, 023507. [Google Scholar] [CrossRef] [Green Version]
- Van-Brunt, A.; Visser, M. Explicit Baker-Campbell-Hausdorff Expansions. Mathematics 2018, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- Ungar, A.A. Thomas precession: A kinematic effect of the algebra of Einstein’s velocity addition law. Comments on ‘Deriving relativistic momentum and energy: II. Three-dimensional case’. Eur. J. Phys. 2006, 27, L17. [Google Scholar] [CrossRef]
- Sonego, S.; Pin, M. Deriving relativistic momentum and energy: II. Three-dimensional case. Eur. J. Phys. 2005, 26, 851–856, Correction in 2006, 27, 685. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berry, T.; Visser, M. Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions. Universe 2020, 6, 237. https://doi.org/10.3390/universe6120237
Berry T, Visser M. Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions. Universe. 2020; 6(12):237. https://doi.org/10.3390/universe6120237
Chicago/Turabian StyleBerry, Thomas, and Matt Visser. 2020. "Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions" Universe 6, no. 12: 237. https://doi.org/10.3390/universe6120237
APA StyleBerry, T., & Visser, M. (2020). Relativistic Combination of Non-Collinear 3-Velocities Using Quaternions. Universe, 6(12), 237. https://doi.org/10.3390/universe6120237