Neutron Star Properties: Quantifying the Effect of the Crust–Core Matching Procedure
Abstract
1. Introduction
2. EoS Parametrization
Crust Matching Procedure
3. Results
3.1. Empirical Parameters Distribution
3.2. Isolating the Matching Procedure Effect
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NS | Neutron Star |
EoS | Equation of State |
NICER | Neutron star Interior Composition Explorer |
GW | Gravitational Waves |
eXTP | enhanced X-ray Timing and Polarimetry |
neutron-proton-electron-muon |
References
- Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S.; Chatterjee, S.; Christy, B.; Cordes, J.M.; Cornish, N.J.; Crawford, F. The NANOGrav 11-year Data Set: High-precision timing of 45 Millisecond Pulsars. Astrophys. J. Suppl. 2018, 235, 37. [Google Scholar] [CrossRef]
- Fonseca, E.; Pennucci, T.T.; Ellis, J.A.; Stairs, I.H.; Nice, D.J.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Crowter, K.; Dolch, T. The NANOGrav Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars. Astrophys. J. 2016, 832, 167. [Google Scholar] [CrossRef]
- Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 448. [Google Scholar] [CrossRef]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellisothers, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2019. [Google Scholar] [CrossRef]
- Vidana, I.; Logoteta, D.; Providencia, C.; Polls, A.; Bombaci, I. Estimation of the effect of hyperonic three-body forces on the maximum mass of neutron stars. EPL 2011, 94, 11002. [Google Scholar] [CrossRef]
- Bednarek, I.; Haensel, P.; Zdunik, J.; Bejger, M.; Manka, R. Hyperons in neutron-star cores and two-solar-mass pulsar. Astron. Astrophys. 2012, 543, A157. [Google Scholar] [CrossRef]
- Weissenborn, S.; Chatterjee, D.; Schaffner-Bielich, J. Hyperons and massive neutron stars: Vector repulsion and SU(3) symmetry. Phys. Rev. C 2014, 85, 065802, Erratum in 2014, 90, 019904. [Google Scholar] [CrossRef]
- Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. Early appearance of Δ isobars in neutron stars. Phys. Rev. C 2014, 90, 065809. [Google Scholar] [CrossRef]
- Benic, S.; Blaschke, D.; Alvarez-Castillo, D.E.; Fischer, T.; Typel, S. A new quark-hadron hybrid equation of state for astrophysics—I. High-mass twin compact stars. Astron. Astrophys. 2015, 577, A40. [Google Scholar] [CrossRef]
- Câmara Pereira, R.; Costa, P.; Providência, C. Two-solar-mass hybrid stars: A two model description with the Nambu-Jona-Lasinio quark model. Phys. Rev. D 2016, 94, 094001. [Google Scholar] [CrossRef]
- Fortin, M.; Avancini, S.; Providência, C.; Vidaña, I. Hypernuclei and massive neutron stars. Phys. Rev. C 2017, 95, 065803. [Google Scholar] [CrossRef]
- Ferreira, M.; Câmara Pereira, R.; Providência, C. Neutron stars with large quark cores. Phys. Rev. D 2020, 101, 123030. [Google Scholar] [CrossRef]
- Ferreira, M.; Câmara Pereira, R.; Providência, C. Quark matter in light neutron stars. Phys. Rev. D 2020, 102, 083030. [Google Scholar] [CrossRef]
- Arzoumanian, Z.; Gendreau, K.C.; Baker, C.L.; Cazeau, T.; Hestnes, P.; Kellogg, J.W.; Kenyon, S.J.; Kozon, R.P.; Liu, K.C.; Manthripragada, S.S.; et al. The neutron star interior composition explorer (NICER): Mission definition. In Proceedings of the SPIE 2014, Montreal, QC, Canada, 25–27 June 2014; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 9144, p. 914420. [Google Scholar] [CrossRef]
- Motch, C.; Wilms, J.; Barret, D.; Becker, W.; Bogdanov, S.; Boirin, L.; Corbel, S.; Cackett, E.; Campana, S.; de Martino, D.; et al. The Hot and Energetic Universe: End points of stellar evolution. arXiv 2013, arXiv:1306.2334. [Google Scholar]
- Watts, A.L.; Yu, W.; Poutanen, J.; Zhang, S.; Bhattacharyya, S.; Bogdanov, S.; Ji, L.; Patruno, A.; Riley, T.E.; Bakala, P.; et al. Dense matter with eXTP. Sci. China Phys. Mech. Astron. 2019, 62, 29503. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. 2019, 887, L24. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. 2019, 887, L21. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Properties of the binary neutron star merger GW170817. Phys. Rev. 2019, X9, 011001. [Google Scholar] [CrossRef]
- Potekhin, A.; Fantina, A.; Chamel, N.; Pearson, J.; Goriely, S. Analytical representations of unified equations of state for neutron-star matter. Astron. Astrophys. 2013, 560, A48. [Google Scholar] [CrossRef]
- Sharma, B.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. Unified equation of state for neutron stars on a microscopic basis. Astron. Astrophys. 2015, 584, A103. [Google Scholar] [CrossRef]
- Pearson, J.; Chamel, N.; Potekhin, A.; Fantina, A.; Ducoin, C.; Dutta, A.; Goriely, S. Unified equations of state for cold non-accreting neutron stars with Brussels–Montreal functionals—I. Role of symmetry energy. Mon. Not. R. Astron. Soc. 2019, 481, 2994–3026, Erratum in 2019, 486, 768. [Google Scholar] [CrossRef]
- Pais, H.; Providência, C. Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state. Phys. Rev. C 2016, 94, 015808. [Google Scholar] [CrossRef]
- Fortin, M.; Providencia, C.; Raduta, A.R.; Gulminelli, F.; Zdunik, J.L.; Haensel, P.; Bejger, M. Neutron star radii and crusts: Uncertainties and unified equations of state. Phys. Rev. 2016, C94, 035804. [Google Scholar] [CrossRef]
- Ji, F.; Hu, J.; Bao, S.; Shen, H. Effects of nuclear symmetry energy and equation of state on neutron star properties. Phys. Rev. C 2019, 100, 045801. [Google Scholar] [CrossRef]
- Read, J.S.; Lackey, B.D.; Owen, B.J.; Friedman, J.L. Constraints on a phenomenologically parameterized neutron-star equation of state. Phys. Rev. 2009, D79, 124032. [Google Scholar] [CrossRef]
- Margueron, J.; Hoffmann Casali, R.; Gulminelli, F. Equation of state for dense nucleonic matter from metamodeling. II. Predictions for neutron star properties. Phys. Rev. 2018, C97, 025806. [Google Scholar] [CrossRef]
- Carson, Z.; Steiner, A.W.; Yagi, K. Constraining nuclear matter parameters with GW170817. Phys. Rev. D 2019, 99, 043010. [Google Scholar] [CrossRef]
- Raithel, C.; Özel, F.; Psaltis, D. Tidal deformability from GW170817 as a direct probe of the neutron star radius. Astrophys. J. 2018, 857, L23. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett. 2018, 120, 172703. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102, Erratum in 2018, 121, 259902. [Google Scholar] [CrossRef] [PubMed]
- Tews, I.; Margueron, J.; Reddy, S. Critical examination of constraints on the equation of state of dense matter obtained from GW170817. Phys. Rev. 2018, C98, 045804. [Google Scholar] [CrossRef]
- Most, E.R.; Weih, L.R.; Rezzolla, L.; Schaffner-Bielich, J. New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. Phys. Rev. Lett. 2018, 120, 261103. [Google Scholar] [CrossRef]
- Douchin, F.; Haensel, P. A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 2001, 380, 151. [Google Scholar] [CrossRef]
- Margueron, J.; Hoffmann Casali, R.; Gulminelli, F. Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects. Phys. Rev. 2018, C97, 025805. [Google Scholar] [CrossRef]
- Margueron, J.; Gulminelli, F. Effect of high-order empirical parameters on the nuclear equation of state. Phys. Rev. 2019, C99, 025806. [Google Scholar] [CrossRef]
- Ferreira, M.; Fortin, M.; Malik, T.; Agrawal, B.; Providência, C. Empirical constraints on the high-density equation of state from multimessenger observables. Phys. Rev. D 2020, 101, 043021. [Google Scholar] [CrossRef]
- Ducoin, C.; Margueron, J.; Providencia, C.; Vidana, I. Core-crust transition in neutron stars: Predictivity of density developments. Phys. Rev. 2011, C83, 045810. [Google Scholar] [CrossRef]
- Ferreira, M.; Providência, C. Effect of the crust on neutron star empirical relations. Phys. Rev. D 2020, 102, 103003. [Google Scholar] [CrossRef]
- Piekarewicz, J.; Fattoyev, F. Impact of the neutron star crust on the tidal polarizability. Phys. Rev. C 2019, 99, 045802. [Google Scholar] [CrossRef]
- Perot, L.; Chamel, N.; Sourie, A. Role of the crust in the tidal deformability of a neutron star within a unified treatment of dense matter. Phys. Rev. C 2020, 101, 015806. [Google Scholar] [CrossRef]
- Zhang, N.B.; Li, B.A.; Xu, J. Combined Constraints on the Equation of State of Dense Neutron-rich Matter from Terrestrial Nuclear Experiments and Observations of Neutron Stars. Astrophys. J. 2018, 859, 90. [Google Scholar] [CrossRef]
32 | 60 | 230 | −100 | 300 | |
2 | 15 | 20 | 100 | 400 |
mean | std | mean | std | |
---|---|---|---|---|
225.32 | 17.47 | 227.75 | 19.24 | |
−83.20 | 30.26 | −83.69 | 34.93 | |
33.18 | 1.84 | 31.41 | 1.90 | |
61.89 | 8.14 | 77.70 | 7.47 | |
−26.63 | 30.45 | −32.32 | 37.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.; Providência, C. Neutron Star Properties: Quantifying the Effect of the Crust–Core Matching Procedure. Universe 2020, 6, 220. https://doi.org/10.3390/universe6110220
Ferreira M, Providência C. Neutron Star Properties: Quantifying the Effect of the Crust–Core Matching Procedure. Universe. 2020; 6(11):220. https://doi.org/10.3390/universe6110220
Chicago/Turabian StyleFerreira, Márcio, and Constança Providência. 2020. "Neutron Star Properties: Quantifying the Effect of the Crust–Core Matching Procedure" Universe 6, no. 11: 220. https://doi.org/10.3390/universe6110220
APA StyleFerreira, M., & Providência, C. (2020). Neutron Star Properties: Quantifying the Effect of the Crust–Core Matching Procedure. Universe, 6(11), 220. https://doi.org/10.3390/universe6110220