# Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Nariai Spacetime in Horndeski Gravity

## 3. Reconstructing the Gravitational Action in Horndeski Gravity

#### 3.1. Case with ${\mathcal{L}}_{2}$

#### 3.2. Case ${\mathcal{L}}_{3}$

#### 3.3. Case ${\mathcal{L}}_{4}$

## 4. Anti-Evaporation Regime in Horndeski Gravity

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D
**1977**, 15, 2738. [Google Scholar] [CrossRef] [Green Version] - Lake, K.; Roeder, R.C. Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold. Phys. Rev. D
**1977**, 15, 3513. [Google Scholar] [CrossRef] - Hawking, S.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys.
**1983**, 87, 577. [Google Scholar] [CrossRef] - Nariai, H. On a New Cosmological Solution of Einstein’s Field Equations of Gravitation. Sci. Rep. Tohoku Univ. Ser. I
**1951**, 35, 62, reprinted in Gen. Relativ. Gravit.**1999**, 31, 963–971. [Google Scholar] [CrossRef] - Podolsky, J. The Structure of the extreme Schwarzschild-de Sitter space-time. Gen. Rel. Grav.
**1999**, 31, 1703. [Google Scholar] [CrossRef] - van den Brink, A.M. Approach to the extremal limit of the Schwarzschild-de sitter black hole. Phys. Rev. D
**2003**, 68, 047501. [Google Scholar] [CrossRef] [Green Version] - Ginsparg, P.; Perry, M.J. Semiclassical Perdurance of de Sitter Space. Nucl. Phys. B
**1983**, 222, 245. [Google Scholar] [CrossRef] - Bousso, R.; Hawking, S.W. (Anti)evaporation of Schwarzschild-de Sitter black holes. Phys. Rev. D
**1998**, 57, 2436. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S.D. Effective action for conformal scalars and anti-evaporation of black holes. Int. J. Mod. Phys. A
**1999**, 14, 1293. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S.D. Anti-Evaporation of Schwarzschild-de Sitter Black Holes in F(R) gravity. Class. Quant. Grav.
**2013**, 30, 125003. [Google Scholar] [CrossRef] [Green Version] - Sebastiani, L.; Momeni, D.; Myrzakulov, R.; Odintsov, S.D. Instabilities and (anti)-evaporation of Schwarzschild–de Sitter black holes in modified gravity. Phys. Rev. D
**2013**, 88, 104022. [Google Scholar] [CrossRef] [Green Version] - Katsuragawa, T. Anti-Evaporation of Black Holes in Bigravity. Universe
**2015**, 1, 158–172. [Google Scholar] [CrossRef] [Green Version] - Katsuragawa, T.; Nojiri, S. Stability and antievaporation of the Schwarzschild–de Sitter black holes in bigravity. Phys. Rev. D
**2015**, 91, 084001. [Google Scholar] [CrossRef] [Green Version] - Nashed, G.G.L. Spherically symmetric black hole solution in mimetic gravity and anti-evaporation. Int. J. Geom. Meth. Mod. Phys.
**2018**, 15, 1850154. [Google Scholar] [CrossRef] - Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci.
**2012**, 342, 155. [Google Scholar] [CrossRef] [Green Version] - Huterer, D.; Shafer, D.L. Dark energy two decades after: Observables, probes, consistency tests. Rept. Prog. Phys.
**2018**, 81, 016901. [Google Scholar] [CrossRef] [Green Version] - Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys.
**2008**, 46, 385. [Google Scholar] [CrossRef] [Green Version] - Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rept.
**2019**, 796, 1–113. [Google Scholar] [CrossRef] [Green Version] - Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept.
**2015**, 568, 1–98. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D
**2006**, 74, 046004. [Google Scholar] [CrossRef] [Green Version] - Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields. Phys. Rev. D
**2008**, 77, 106005. [Google Scholar] [CrossRef] [Green Version] - Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett.
**2000**, 85, 4438. [Google Scholar] [CrossRef] [Green Version] - Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k essence. Phys. Rev. D
**2001**, 63, 103510. [Google Scholar] [CrossRef] - Nicolis, A.; Rattazzi, R.; Trincherini, E. The Galileon as a local modification of gravity. Phys. Rev. D
**2009**, 79, 064036. [Google Scholar] [CrossRef] [Green Version] - Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys.
**1974**, 10, 363–384. [Google Scholar] [CrossRef] - Kobayashi, T. Horndeski theory and beyond: A review. Rept. Prog. Phys.
**2019**, 82, 086901. [Google Scholar] [CrossRef] [Green Version] - Deffayet, C.; Steer, D.A. A formal introduction to Horndeski and Galileon theories and their generalizations. Class. Quant. Grav.
**2013**, 30, 214006. [Google Scholar] [CrossRef] - Deffayet, C.; Esposito-Farese, G.; Vikman, A. Covariant Galileon. Phys. Rev. D
**2009**, 79, 084003. [Google Scholar] [CrossRef] - Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalised Galileons. Phys. Rev. D
**2011**, 84, 064039. [Google Scholar] [CrossRef] [Green Version] - Zumalacarregui, M.; Garcia-Bellido, J. Transforming gravity: From derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D
**2014**, 89, 064046. [Google Scholar] [CrossRef] [Green Version] - Achour, J.B.; Langlois, D.; Noui, K. Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations. Phys. Rev. D
**2016**, 93, 124005. [Google Scholar] [CrossRef] [Green Version] - Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Healthy theories beyond Horndeski. Phys. Rev. Lett.
**2015**, 114, 211101. [Google Scholar] [CrossRef] [PubMed] - Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys.
**2011**, 126, 511–529. [Google Scholar] [CrossRef] - Felice, A.D.; Tsujikawa, S. Inflationary non-Gaussianities in the most general second-order scalar-tensor theories. Phys. Rev. D
**2011**, 84, 083504. [Google Scholar] [CrossRef] [Green Version] - Gao, X.; Steer, D.A. Inflation and primordial non-Gaussianities of ‘generalized Galileons’. JCAP
**2011**, 12, 019. [Google Scholar] [CrossRef] [Green Version] - Felice, A.D.; Kobayashi, T.; Tsujikawa, S. Effective gravitational couplings for cosmological perturbations in the most general scalar-tensor theories with second-order field equations. Phys. Lett. B
**2011**, 706, 123. [Google Scholar] [CrossRef] [Green Version] - Gao, X.; Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model. Phys. Rev. Lett.
**2011**, 107, 211301. [Google Scholar] [CrossRef] [Green Version] - Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett.
**2012**, 108, 051101. [Google Scholar] [CrossRef] [Green Version] - Copeland, E.J.; Padilla, A.; Saffin, P.M. The cosmology of the Fab-Four. JCAP
**2012**, 1212, 026. [Google Scholar] [CrossRef] [Green Version] - Kobayashi, T. Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem. Phys. Rev. D
**2016**, 94, 043511. [Google Scholar] [CrossRef] [Green Version] - Amendola, L.; Kunz, M.; Motta, M.; Saltas, I.D.; Sawicki, I. Observables and unobservables in dark energy cosmologies. Phys. Rev. D
**2013**, 87, 023501. [Google Scholar] [CrossRef] [Green Version] - Zumalacarregui, M.; Bellini, E.; Sawicki, I.; Lesgourgues, J.; Ferreira, P.G. hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System. JCAP
**2017**, 1708, 019. [Google Scholar] [CrossRef] [Green Version] - Ezquiaga, J.M.; Zumalacarregui, M. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett.
**2017**, 119, 251304. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. [LIGO Scientific and Virgo]. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett.
**2017**, 119, 161101. [Google Scholar] [CrossRef] [Green Version] - Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. [LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL]. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J.
**2017**, 848, L13. [Google Scholar] [CrossRef] - Deffayet, C.; Esposito-Farese, G.; Steer, D.A. Counting the degrees of freedom of generalized Galileons. Phys. Rev. D
**2015**, 92, 084013. [Google Scholar] [CrossRef] [Green Version] - Bettoni, D.; Ezquiaga, J.M.; Hinterbichler, K.; Zumalacarregui, M. Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity. Phys. Rev. D
**2017**, 95, 084029. [Google Scholar] [CrossRef] [Green Version] - Deffayet, C.; Pujolas, O.; Sawicki, I.; Vikman, A. Imperfect Dark Energy from Kinetic Gravity Braiding. JCAP
**2010**, 10, 026. [Google Scholar] [CrossRef] - Bartolo, N.; Karmakar, P.; Matarrese, S.; Scomparin, M. Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity. JCAP
**2018**, 5, 048. [Google Scholar] [CrossRef] [Green Version] - Kase, R.; Tsujikawa, S. Dark energy in Horndeski theories after GW170817: A review. Int. J. Mod. Phys. D
**2019**, 28, 1942005. [Google Scholar] [CrossRef] [Green Version] - de la Cruz-Dombriz, A.; Dobado, A.; Maroto, A. Black Holes in f(R) theories. Phys. Rev. D
**2009**, 80, 124011. [Google Scholar] [CrossRef] [Green Version] - Olmo, G.J.; Rubiera-Garcia, D. Palatini f(R) Black Holes in Nonlinear Electrodynamics. Phys. Rev. D
**2011**, 84, 124059. [Google Scholar] [CrossRef] [Green Version] - Olmo, G.J.; Rubiera-Garcia, D.; Sanchis-Alepuz, H. Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity. Eur. Phys. J. C
**2014**, 74, 2804. [Google Scholar] [CrossRef] [PubMed] [Green Version] - de la Cruz-Dombriz, A.d.; Saez-Gomez, D. Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories. Entropy
**2012**, 14, 1717–1770. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Zhou, S. Black hole hair in generalized scalar-tensor gravity. Phys. Rev. Lett.
**2014**, 112, 251102. [Google Scholar] [CrossRef] [Green Version] - Clifton, T. Spherically Symmetric Solutions to Fourth-Order Theories of Gravity. Class. Quant. Grav.
**2006**, 23, 7445. [Google Scholar] [CrossRef] [Green Version] - Yunes, N.; Sopuerta, C.F. Perturbations of Schwarzschild Black Holes in Chern-Simons Modified Gravity. Phys. Rev. D
**2008**, 77, 064007. [Google Scholar] [CrossRef] [Green Version] - Cardoso, V.; Gualtieri, L. Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity. Phys. Rev. D
**2009**, 80, 064008. [Google Scholar] [CrossRef] [Green Version] - Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D
**2015**, 92, 044047. [Google Scholar] [CrossRef] [Green Version] - Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. Classical resolution of black hole singularities via wormholes. Eur. Phys. J. C
**2016**, 76, 143. [Google Scholar] [CrossRef] [Green Version] - Bejarano, C.; Olmo, G.J.; Rubiera-Garcia, D. What is a singular black hole beyond General Relativity? Phys. Rev. D
**2017**, 95, 064043. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D
**2017**, 96, 104008. [Google Scholar] [CrossRef] [Green Version] - Faraoni, V. The Jebsen-Birkhoff theorem in alternative gravity. Phys. Rev. D
**2010**, 81, 044002. [Google Scholar] [CrossRef] [Green Version] - Schleich, K.; Witt, D.M. A simple proof of Birkhoff’s theorem for cosmological constant. J. Math. Phys.
**2010**, 51, 112502. [Google Scholar] [CrossRef] - Capozziello, S.; Saez-Gomez, D. Scalar-tensor representation of f(R) gravity and Birkhoff’s theorem. Ann. Phys.
**2012**, 524, 279–285. [Google Scholar] [CrossRef] [Green Version] - Moffat, J. Modified Gravity Black Holes and their Observable Shadows. Eur. Phys. J. C
**2015**, 75, 130. [Google Scholar] [CrossRef] - Davis, A.; Gregory, R.; Jha, R.; Muir, J. Astrophysical black holes in screened modified gravity. JCAP
**2014**, 8, 033. [Google Scholar] [CrossRef] [Green Version] - Guo, M.; Obers, N.A.; Yan, H. Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D
**2018**, 98, 084063. [Google Scholar] [CrossRef] [Green Version] - Babichev, E.; Charmousis, C.; Lehebel, A. Asymptotically flat black holes in Horndeski theory and beyond. JCAP
**2017**, 4, 027. [Google Scholar] [CrossRef] [Green Version] - Tattersall, O.J.; Ferreira, P.G. Quasinormal modes of black holes in Horndeski gravity. Phys. Rev. D
**2018**, 97, 104047. [Google Scholar] [CrossRef] [Green Version] - Babichev, E.; Charmousis, C.; Lehebel, A. Black holes and stars in Horndeski theory. Class. Quant. Grav.
**2016**, 33, 154002. [Google Scholar] [CrossRef] - Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T. Black holes in a cubic Galileon universe. JCAP
**2016**, 9, 011. [Google Scholar] [CrossRef] [Green Version] - Tattersall, O.J.; Ferreira, P.G.; Lagos, M. Speed of gravitational waves and black hole hair. Phys. Rev. D
**2018**, 97, 084005. [Google Scholar] [CrossRef] [Green Version] - Babichev, E.; Charmousis, C.; Esposito-Farese, G.; Lehebel, A. Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models. Phys. Rev. Lett.
**2018**, 120, 241101. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ganguly, A.; Gannouji, R.; Gonzalez-Espinoza, M.; Pizarro-Moya, C. Black hole stability under odd-parity perturbations in Horndeski gravity. Class. Quant. Grav.
**2018**, 35, 145008. [Google Scholar] [CrossRef] [Green Version] - Sakstein, J.; Babichev, E.; Koyama, K.; Langlois, D.; Saito, R. Towards Strong Field Tests of Beyond Horndeski Gravity Theories. Phys. Rev. D
**2017**, 95, 064013. [Google Scholar] [CrossRef] [Green Version] - Ogawa, H.; Kobayashi, T.; Suyama, T. Instability of hairy black holes in shift-symmetric Horndeski theories. Phys. Rev. D
**2016**, 93, 064078. [Google Scholar] [CrossRef] [Green Version] - Lehébel, A.; Babichev, E.; Charmousis, C. A no-hair theorem for stars in Horndeski theories. JCAP
**2017**, 7, 037. [Google Scholar] [CrossRef] [Green Version] - Kovacs, A.D.; Reall, H.S. Well-posed formulation of Lovelock and Horndeski theories. Phys. Rev. D
**2020**, 101, 124003. [Google Scholar] [CrossRef] - Ijjas, A.; Pretorius, F.; Steinhardt, P.J. Stability and the Gauge Problem in Non-Perturbative Cosmology. JCAP
**2019**, 1, 015. [Google Scholar] [CrossRef] [Green Version] - Ijjas, A. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions. JCAP
**2018**, 2, 007. [Google Scholar] [CrossRef] [Green Version] - Martel, K.; Poisson, E. Gravitational perturbations of the Schwarzschild spacetime: A Practical covariant and gauge-invariant formalism. Phys. Rev. D
**2005**, 71, 104003. [Google Scholar] [CrossRef] [Green Version] - Kimura, M. Stability analysis of Schwarzschild black holes in dynamical Chern-Simons gravity. Phys. Rev. D
**2018**, 98, 024048. [Google Scholar] [CrossRef] [Green Version] - Hung, P.K.; Keller, J.; Wang, M.T. Linear Stability of Schwarzschild Spacetime: Decay of Metric Coefficients. arXiv
**2017**, arXiv:1702.02843. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ayuso, I.; Sáez-Chillón Gómez, D.
Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime. *Universe* **2020**, *6*, 210.
https://doi.org/10.3390/universe6110210

**AMA Style**

Ayuso I, Sáez-Chillón Gómez D.
Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime. *Universe*. 2020; 6(11):210.
https://doi.org/10.3390/universe6110210

**Chicago/Turabian Style**

Ayuso, Ismael, and Diego Sáez-Chillón Gómez.
2020. "Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime" *Universe* 6, no. 11: 210.
https://doi.org/10.3390/universe6110210