Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime
Abstract
:1. Introduction
2. Nariai Spacetime in Horndeski Gravity
3. Reconstructing the Gravitational Action in Horndeski Gravity
3.1. Case with
3.2. Case
3.3. Case
4. Anti-Evaporation Regime in Horndeski Gravity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738. [Google Scholar] [CrossRef] [Green Version]
- Lake, K.; Roeder, R.C. Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold. Phys. Rev. D 1977, 15, 3513. [Google Scholar] [CrossRef]
- Hawking, S.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [Google Scholar] [CrossRef]
- Nariai, H. On a New Cosmological Solution of Einstein’s Field Equations of Gravitation. Sci. Rep. Tohoku Univ. Ser. I 1951, 35, 62, reprinted in Gen. Relativ. Gravit. 1999, 31, 963–971. [Google Scholar] [CrossRef]
- Podolsky, J. The Structure of the extreme Schwarzschild-de Sitter space-time. Gen. Rel. Grav. 1999, 31, 1703. [Google Scholar] [CrossRef]
- van den Brink, A.M. Approach to the extremal limit of the Schwarzschild-de sitter black hole. Phys. Rev. D 2003, 68, 047501. [Google Scholar] [CrossRef] [Green Version]
- Ginsparg, P.; Perry, M.J. Semiclassical Perdurance of de Sitter Space. Nucl. Phys. B 1983, 222, 245. [Google Scholar] [CrossRef]
- Bousso, R.; Hawking, S.W. (Anti)evaporation of Schwarzschild-de Sitter black holes. Phys. Rev. D 1998, 57, 2436. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Effective action for conformal scalars and anti-evaporation of black holes. Int. J. Mod. Phys. A 1999, 14, 1293. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Anti-Evaporation of Schwarzschild-de Sitter Black Holes in F(R) gravity. Class. Quant. Grav. 2013, 30, 125003. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Momeni, D.; Myrzakulov, R.; Odintsov, S.D. Instabilities and (anti)-evaporation of Schwarzschild–de Sitter black holes in modified gravity. Phys. Rev. D 2013, 88, 104022. [Google Scholar] [CrossRef] [Green Version]
- Katsuragawa, T. Anti-Evaporation of Black Holes in Bigravity. Universe 2015, 1, 158–172. [Google Scholar] [CrossRef] [Green Version]
- Katsuragawa, T.; Nojiri, S. Stability and antievaporation of the Schwarzschild–de Sitter black holes in bigravity. Phys. Rev. D 2015, 91, 084001. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L. Spherically symmetric black hole solution in mimetic gravity and anti-evaporation. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850154. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef] [Green Version]
- Huterer, D.; Shafer, D.L. Dark energy two decades after: Observables, probes, consistency tests. Rept. Prog. Phys. 2018, 81, 016901. [Google Scholar] [CrossRef] [Green Version]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385. [Google Scholar] [CrossRef] [Green Version]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. Phys. Rept. 2019, 796, 1–113. [Google Scholar] [CrossRef] [Green Version]
- Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept. 2015, 568, 1–98. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D 2006, 74, 046004. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Saez-Gomez, D.; Faraoni, V. Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields. Phys. Rev. D 2008, 77, 106005. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R.; Trincherini, E. The Galileon as a local modification of gravity. Phys. Rev. D 2009, 79, 064036. [Google Scholar] [CrossRef] [Green Version]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Kobayashi, T. Horndeski theory and beyond: A review. Rept. Prog. Phys. 2019, 82, 086901. [Google Scholar] [CrossRef] [Green Version]
- Deffayet, C.; Steer, D.A. A formal introduction to Horndeski and Galileon theories and their generalizations. Class. Quant. Grav. 2013, 30, 214006. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Vikman, A. Covariant Galileon. Phys. Rev. D 2009, 79, 084003. [Google Scholar] [CrossRef]
- Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalised Galileons. Phys. Rev. D 2011, 84, 064039. [Google Scholar] [CrossRef] [Green Version]
- Zumalacarregui, M.; Garcia-Bellido, J. Transforming gravity: From derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D 2014, 89, 064046. [Google Scholar] [CrossRef] [Green Version]
- Achour, J.B.; Langlois, D.; Noui, K. Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations. Phys. Rev. D 2016, 93, 124005. [Google Scholar] [CrossRef] [Green Version]
- Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Healthy theories beyond Horndeski. Phys. Rev. Lett. 2015, 114, 211101. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. Inflationary non-Gaussianities in the most general second-order scalar-tensor theories. Phys. Rev. D 2011, 84, 083504. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Steer, D.A. Inflation and primordial non-Gaussianities of ‘generalized Galileons’. JCAP 2011, 12, 019. [Google Scholar] [CrossRef] [Green Version]
- Felice, A.D.; Kobayashi, T.; Tsujikawa, S. Effective gravitational couplings for cosmological perturbations in the most general scalar-tensor theories with second-order field equations. Phys. Lett. B 2011, 706, 123. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model. Phys. Rev. Lett. 2011, 107, 211301. [Google Scholar] [CrossRef] [Green Version]
- Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett. 2012, 108, 051101. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Padilla, A.; Saffin, P.M. The cosmology of the Fab-Four. JCAP 2012, 1212, 026. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T. Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem. Phys. Rev. D 2016, 94, 043511. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Kunz, M.; Motta, M.; Saltas, I.D.; Sawicki, I. Observables and unobservables in dark energy cosmologies. Phys. Rev. D 2013, 87, 023501. [Google Scholar] [CrossRef] [Green Version]
- Zumalacarregui, M.; Bellini, E.; Sawicki, I.; Lesgourgues, J.; Ferreira, P.G. hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System. JCAP 2017, 1708, 019. [Google Scholar] [CrossRef] [Green Version]
- Ezquiaga, J.M.; Zumalacarregui, M. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. [LIGO Scientific and Virgo]. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. [LIGO Scientific, Virgo, Fermi-GBM and INTEGRAL]. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Steer, D.A. Counting the degrees of freedom of generalized Galileons. Phys. Rev. D 2015, 92, 084013. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, D.; Ezquiaga, J.M.; Hinterbichler, K.; Zumalacarregui, M. Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity. Phys. Rev. D 2017, 95, 084029. [Google Scholar] [CrossRef] [Green Version]
- Deffayet, C.; Pujolas, O.; Sawicki, I.; Vikman, A. Imperfect Dark Energy from Kinetic Gravity Braiding. JCAP 2010, 10, 026. [Google Scholar] [CrossRef]
- Bartolo, N.; Karmakar, P.; Matarrese, S.; Scomparin, M. Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity. JCAP 2018, 5, 048. [Google Scholar] [CrossRef] [Green Version]
- Kase, R.; Tsujikawa, S. Dark energy in Horndeski theories after GW170817: A review. Int. J. Mod. Phys. D 2019, 28, 1942005. [Google Scholar] [CrossRef] [Green Version]
- de la Cruz-Dombriz, A.; Dobado, A.; Maroto, A. Black Holes in f(R) theories. Phys. Rev. D 2009, 80, 124011. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. Palatini f(R) Black Holes in Nonlinear Electrodynamics. Phys. Rev. D 2011, 84, 124059. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Sanchis-Alepuz, H. Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity. Eur. Phys. J. C 2014, 74, 2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Cruz-Dombriz, A.d.; Saez-Gomez, D. Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories. Entropy 2012, 14, 1717–1770. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Zhou, S. Black hole hair in generalized scalar-tensor gravity. Phys. Rev. Lett. 2014, 112, 251102. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T. Spherically Symmetric Solutions to Fourth-Order Theories of Gravity. Class. Quant. Grav. 2006, 23, 7445. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Sopuerta, C.F. Perturbations of Schwarzschild Black Holes in Chern-Simons Modified Gravity. Phys. Rev. D 2008, 77, 064007. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, V.; Gualtieri, L. Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity. Phys. Rev. D 2009, 80, 064008. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D 2015, 92, 044047. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A. Classical resolution of black hole singularities via wormholes. Eur. Phys. J. C 2016, 76, 143. [Google Scholar] [CrossRef] [Green Version]
- Bejarano, C.; Olmo, G.J.; Rubiera-Garcia, D. What is a singular black hole beyond General Relativity? Phys. Rev. D 2017, 95, 064043. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 2017, 96, 104008. [Google Scholar] [CrossRef] [Green Version]
- Faraoni, V. The Jebsen-Birkhoff theorem in alternative gravity. Phys. Rev. D 2010, 81, 044002. [Google Scholar] [CrossRef] [Green Version]
- Schleich, K.; Witt, D.M. A simple proof of Birkhoff’s theorem for cosmological constant. J. Math. Phys. 2010, 51, 112502. [Google Scholar] [CrossRef]
- Capozziello, S.; Saez-Gomez, D. Scalar-tensor representation of f(R) gravity and Birkhoff’s theorem. Ann. Phys. 2012, 524, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J. Modified Gravity Black Holes and their Observable Shadows. Eur. Phys. J. C 2015, 75, 130. [Google Scholar] [CrossRef]
- Davis, A.; Gregory, R.; Jha, R.; Muir, J. Astrophysical black holes in screened modified gravity. JCAP 2014, 8, 033. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Obers, N.A.; Yan, H. Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D 2018, 98, 084063. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Charmousis, C.; Lehebel, A. Asymptotically flat black holes in Horndeski theory and beyond. JCAP 2017, 4, 027. [Google Scholar] [CrossRef] [Green Version]
- Tattersall, O.J.; Ferreira, P.G. Quasinormal modes of black holes in Horndeski gravity. Phys. Rev. D 2018, 97, 104047. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Charmousis, C.; Lehebel, A. Black holes and stars in Horndeski theory. Class. Quant. Grav. 2016, 33, 154002. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T. Black holes in a cubic Galileon universe. JCAP 2016, 9, 011. [Google Scholar] [CrossRef] [Green Version]
- Tattersall, O.J.; Ferreira, P.G.; Lagos, M. Speed of gravitational waves and black hole hair. Phys. Rev. D 2018, 97, 084005. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Charmousis, C.; Esposito-Farese, G.; Lehebel, A. Stability of Black Holes and the Speed of Gravitational Waves within Self-Tuning Cosmological Models. Phys. Rev. Lett. 2018, 120, 241101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly, A.; Gannouji, R.; Gonzalez-Espinoza, M.; Pizarro-Moya, C. Black hole stability under odd-parity perturbations in Horndeski gravity. Class. Quant. Grav. 2018, 35, 145008. [Google Scholar] [CrossRef] [Green Version]
- Sakstein, J.; Babichev, E.; Koyama, K.; Langlois, D.; Saito, R. Towards Strong Field Tests of Beyond Horndeski Gravity Theories. Phys. Rev. D 2017, 95, 064013. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Kobayashi, T.; Suyama, T. Instability of hairy black holes in shift-symmetric Horndeski theories. Phys. Rev. D 2016, 93, 064078. [Google Scholar] [CrossRef] [Green Version]
- Lehébel, A.; Babichev, E.; Charmousis, C. A no-hair theorem for stars in Horndeski theories. JCAP 2017, 7, 037. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, A.D.; Reall, H.S. Well-posed formulation of Lovelock and Horndeski theories. Phys. Rev. D 2020, 101, 124003. [Google Scholar] [CrossRef]
- Ijjas, A.; Pretorius, F.; Steinhardt, P.J. Stability and the Gauge Problem in Non-Perturbative Cosmology. JCAP 2019, 1, 015. [Google Scholar] [CrossRef] [Green Version]
- Ijjas, A. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions. JCAP 2018, 2, 007. [Google Scholar] [CrossRef] [Green Version]
- Martel, K.; Poisson, E. Gravitational perturbations of the Schwarzschild spacetime: A Practical covariant and gauge-invariant formalism. Phys. Rev. D 2005, 71, 104003. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M. Stability analysis of Schwarzschild black holes in dynamical Chern-Simons gravity. Phys. Rev. D 2018, 98, 024048. [Google Scholar] [CrossRef] [Green Version]
- Hung, P.K.; Keller, J.; Wang, M.T. Linear Stability of Schwarzschild Spacetime: Decay of Metric Coefficients. arXiv 2017, arXiv:1702.02843. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayuso, I.; Sáez-Chillón Gómez, D. Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime. Universe 2020, 6, 210. https://doi.org/10.3390/universe6110210
Ayuso I, Sáez-Chillón Gómez D. Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime. Universe. 2020; 6(11):210. https://doi.org/10.3390/universe6110210
Chicago/Turabian StyleAyuso, Ismael, and Diego Sáez-Chillón Gómez. 2020. "Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime" Universe 6, no. 11: 210. https://doi.org/10.3390/universe6110210
APA StyleAyuso, I., & Sáez-Chillón Gómez, D. (2020). Extremal Cosmological Black Holes in Horndeski Gravity and the Anti-Evaporation Regime. Universe, 6(11), 210. https://doi.org/10.3390/universe6110210