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Abstract: We review properties of solutions in bigravity theory for a specific case where
two metric tensors, gµν and fµν , satisfy proportional relation fµν = C2gµν . For this
condition, we find that the solutions describing the asymptotically de Sitter space-time can be
obtained and investigate the perturbation around the Schwarzschild–de Sitter solutions and
corresponding anti-evaporation. We discuss the stability under special perturbations related
to the anti-evaporation and the importance of the non-diagonal components of the metric
in bigravity.
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1. Introduction

Recently, much attention has been paid to bigravity theory [1,2], which includes two independent
metric tensor fields, gµν and fµν . Bigravity contains a massive spin-2 propagating mode in addition to
the ordinary massless spin-2 graviton, and it has been successfully constructed as the generalization of
de Rham–Gabadadze–Tolley (dRGT) massive gravity [3–5], which describes a ghost-free massive spin-2
field theory. In this section, we review the history from free massive spin-2 field theory to bigravity [6,7].

The basics of the massive spin-2 field theory were established by Fierz and Pauli [8]. They constructed
the consistent free massive spin-2 theory by adding a tuned mass term to free massless spin-2 field
theory on flat space-time. However, it was shown that the Fierz–Pauli theory cannot recover general
relativity in the massless limit, known as the van Dam–Veltman–Zakharov (vDVZ) discontinuity [9,10].
Here, arbitrary interactions can be added to the theory because the massive spin-2 theory does not have
any gauge symmetry. Since the massless spin-2 theory is given by the perturbative expansion of the
Einstein–Hilbert action, a straightforward way to extend the Fierz–Pauli theory to interacting theory is to
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use the Ricci scalar instead of the kinetic terms by Fierz and Pauli. As a result, the vDVZ discontinuity
can be screened by a non-linear effect coming from the Ricci scalar, which is called the Vainshtein
mechanism [11]. On the other hand, the non-linear terms leads to ghost called the Boulware–Deser (BD)
ghost [12]. This problem of the ghost mode had been discussed for a long time (see, for instance, [13]),
and the problem was solved finally as dRGT massive gravity by introducing a new form of mass terms.

Next, we consider interacting theory, which includes several spin-2 fields. It has been shown that
there is no consistent interacting theory where all of the spin-2 fields are massless [14]; thus, the massive
spin-2 field always appears in the interacting theory. The theory describing the interaction between two
spin-2 fields, where one field is massless and another should be massive, is called bi-metric or bigravity
theory. This theory was probably first proposed by Rosen [15–17] and had been studied as f-g gravity or
strong gravity theory [18–20]. Finally, the ghost-free interaction between massless and massive spin-2
fields was established as a generalization of ghost-free massive spin-2 field theory, that is the dRGT
massive gravity. The dRGT massive gravity is formulated with two metric tensors, where one is a
dynamical metric and another is non-dynamical. When we extend the theory to make both of the two
metrics dynamical, the bigravity theory can be obtained [1,2].

Extensions of the massive gravity and bigravity were under lively discussion while the fundamental
idea was established. The ghost-free interaction in the massive gravity might be generalized to add new
interaction terms without generating any ghost mode. New models with derivative and non-derivative
interaction terms have been proposed [21–25]. There is also another extension that modifies the kinetic
term of the gravitational action. The Einstein–Hilbert action is used to generate the kinetic term of the
massive spin-2 propagating mode in the massive gravity and bigravity. On the other hand, it has been
proposed that the Ricci scalar can be generalized to the function of it, from the point of view of F (R)

gravity [26,27]. Some cosmological models in F (R) bigravity have been argued [28–31].
Some people expect that the new degrees of freedom introduced by another metric can solve

remaining problems in cosmology, that is dark energy and dark matter problems. The cosmological
constant could be effectively produced from the interactions between two metric tensors [32–36],
and the massive spin-2 fields and matter fields coupled to the metric fµν can be candidates for dark
matter [37–40]. If we regard the bigravity as an alternative theory of gravity, it is interesting and
significant that we apply this theory to other phenomena in cosmology or astrophysics and find the
differences from general relativity. For instance, many kinds of cosmological solutions have been
investigated, and some people expect that the difference of gravitational waves in bigravity from that
in general relativity could be constrained by forthcoming experiments [41]. In this paper, I review
some properties of a special class of solutions in bigravity [42] and show that the specific family of
Schwarzschild–de Sitter is stable for a special class of perturbation [43].

2. Bigravity Theory

2.1. The Action and Equation of Motion

In this section, I give a brief review of bigravity theory. The action of the bigravity is given by:
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Sbigravity = M2
g

∫
d4x
√
−det(g)R(g) +M2

f

∫
d4x
√
−det(f)R(f)

− 2m2
0M

2
eff

∫
d4x
√
−det(g)

4∑
n=0

βnen

(√
g−1f

)
(1)

Here, g and f are dynamical variables and rank-two tensor fields, which have properties as metrics,
R(g) and R(f) are the Ricci scalars for gµν and fµν , respectively, Mg and Mf are the two Plank
mass scales for gµν and fµν , as well, and the scale Meff is the effective Plank mass scale defined by
1/M2

eff = 1/M2
g + 1/M2

f . The constants βn’s and m0 are free parameters; the former defines the form of
interactions, and the latter expresses the mass of the massive spin-2 field. The matrix

√
g−1f is defined

by the square root of gµρfρν . For general matrix X, en(X)’s are polynomials of the eigenvalues of X:

e0(X) =1 , e1(X) = [X] , e2(X) =
1

2

(
[X]2 − [X2]

)
e3(X) =

1

6

(
[X]3 − 3[X][X2] + 2[X3]

)
, e4(X) = det(X) , ek(X) = 0 for k > 4 (2)

where the square brackets denote the traces of the matrices, that is [X] = Xµ
µ .

Here, we show that there appear one massless spin-2 mode and one massive spin-2 mode in this theory
by following the paper by Hassan and Rosen [1]. For simplicity, we assume the minimal model, where
the parameters in the interaction term βn are chosen as:

β0 = 3, β1 = −1, β2 = 0, β3 = 0, β4 = 1 (3)

and the interaction terms are given by:

2m2M2
eff

∫
d4x
√
−g
(

3− tr
√
g−1f + det

√
g−1f

)
(4)

When we expand both gµν and fµν around the same fixed background ηµν :

gµν = ηµν +
1

Mg

hµν , fµν = ηµν +
1

Mf

lµν (5)

we obtain the linearized action up to second order,

S =

∫
d4x

(
hµν Êµναβhαβ + lµν Êµναβlαβ

)
− m2

0M
2
eff

4

∫
d4x

[(
hµν
Mg

− lµν
Mf

)2

−
(
h

Mg

− l

Mf

)2
]

(6)

Here, Êµναβ is an operator for massless spin-2 propagating mode. In order to diagonalize the action, we
redefine the fields hµν and lµν as follows:

1

Meff

uµν =
1

Mf

hµν +
1

Mg

lµν ,
1

Meff

vµν =
1

Mg

hµν −
1

Mf

lµν (7)
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Then, linearized Action (6) can be rewritten as:

S =

∫
d4xuµν Êµναβuαβ +

∫
d4x

[
vµν Êµναβvαβ −

1

4
m2

0

(
vµνvµν − v2

)]
(8)

This shows that uµν is the massless spin-2 mode, and vµν is the massive spin-2 mode. Additionally, if
we regard the massless spin-2 mode as the usual graviton, bigravity describes the interaction between
gravitational force and the massive spin-2 field. Note that we can find that there is no BD ghost, even at
the non-linear level, if we study Hamiltonian constraints by using the ADM formalism.

Now, we consider the variation of Action (1) with respect to gµν and fµν . The obtained equations of
motion are given by:

0 =Rµν(g)− 1

2
R(g)gµν +

1

2

(
m0Meff

Mg

)2 3∑
n=0

(−1)nβn

{
gµλY

λ
(n)ν(

√
g−1f) + gνλY

λ
(n)µ(

√
g−1f)

}
(9)

0 =Rµν(f)− 1

2
R(f)fµν +

1

2

(
m0Meff

Mf

)2 3∑
n=0

(−1)nβ4−n

{
fµλY

λ
(n)ν(

√
f−1g) + fνλY

λ
(n)µ(

√
f−1g)

}
(10)

Here, for a matrix X, Yn(X)’s are defined by:

Y0(X) =1 , Y1(X) = X− 1[X] , Y2(X) = X2 −X[X] +
1

2
1
(
[X]2 − [X2]

)
Y3(X) =X3 −X2[X] +

1

2
X
(
[X]2 − [X2]

)
− 1

6
1
(
[X]3 − 3[X][X2] + 2[X3]

)
(11)

In the above case, we do not consider the energy-momentum tensor for the ordinary matter fields.
Matter coupling is usually considered to be a minimal one with respect to two metrics [1], since
the non-minimal couplings could lead to the ghost propagating mode again. Appropriate degrees of
freedom in massive gravity or bigravity are supported by constraints on the system, and the non-minimal
couplings would break the constraint. There is much discussion about non-minimal coupling and the
ghost problem [44,45].

2.2. Proportional Solutions

Now, we consider the specific solutions under the following ansatz,

fµν(x) = C2gµν(x) (12)

where C is a constant. The ansatz of this form is implied by the equations of motion, Equations (9)
and (10), since

√
f−1g in the interaction terms is reduced to just an identity matrix, and also, this

assumption makes it simple to solve the equations of motion, because we have only to determine one
tensor field and one constant, rather than two tensor fields. Furthermore, considering the interaction
between two metric tensors, it might be reasonable to assume that the metrics could be dynamically
proportional to each other.

By using Assumption (12), we obtain two Einstein equations with cosmological constant as follows:

0 =Rµν(g)− 1

2
R(g)gµν + Λg(C)gµν (13)

0 =Rµν(f)− 1

2
R(f)fµν + Λf (C)fµν (14)
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and two cosmological constants are defined as follows:

Λg(C) =

(
m0Meff

Mg

)2 [
β0 + 3|C|β1 + 3C2β2 + C2|C|β3

]
(15)

Λf (C) =

(
m0Meff

Mf

)2
1

C2|C|
[
β1 + 3|C|β2 + 3C2β3 + C2|C|β4

]
(16)

Here, the dynamics of two metric tensors gµν and fµν are separated from each other, and the Bianchi
identity is automatically satisfied. This structure of dynamics means that if fµν = C2gµν , the solutions
of bigravity are those of general relativity, and we can use the solutions in general relativity. Note that
the metric can be diagonalized simultaneously because of the assumption.

Now, we express five βn’s in terms of two free parameters α3 and α4 as follows:

β0 = 6− 4α3 + α4, β1 = −3 + 3α3 − α4, β2 = 1− 2α3 + α4, β3 = α3 − α4, β4 = α4 (17)

The interaction terms are equivalently written by another matrix defined as K ≡
√
g−1f − 1,

4∑
n=0

βnen(
√
g−1f) =

4∑
n=0

αnen(K) (18)

If we use Equation (17), the interaction terms are given by:

−2m2
0M

2
eff

∫
d4x
√
−det(g) [e2(K) + α3e3(K) + α4e4(K)] (19)

Note that five parameters βn can be reduced to two parameters α3, α4 by requiring two conditions. The
first condition is that the theory has the solution that describes the massive spin-2 field on the Minkowski
space-time in the massive gravity limit, corresponding to α0 = α1 = 0. The second condition is that
the interaction terms produce the Fierz–Pauli mass term for small fluctuation around the background
space-time, corresponding to α2 = 1. One of the reasons that we chose the above parametrization is
merely to make the analysis simpler than the case of the five-parameter family. However, as we will see
later, there are rich pictures, even if we restrict the five parameters to two parameters, which gives us
better understanding of the theory and results in interesting properties of the solutions.

Furthermore, we can take C > 0 without loss of generality, because Equations (15) and (16) remain
invariant under changing C to −C. For consistency, both Equations (13) and (14) should be identical to
each other. By putting fµν = C2gµν , we find Rµν(f) = Rµν(g), R(f)fµν = R(g)gµν . Then, we find
Λg = C2Λf , and this leads to the quartic equation as follows:

0 =(C − 1)
[
M2

ratio(α3 − α4)C3 + {−5M2
ratioα3 + (2M2

ratio − 1)α4 + 3M2
ratio}C2

+ {(4M2
ratio − 3)α3 − (M2

ratio − 2)α4 − 6M2
ratio}C + (3α3 − α4 − 3)

]
(20)

where we define Mratio ≡Mf/Mg.
Apparently, we can find that the general model with arbitrary α3 and α4 has solution where fµν = gµν ,

that is C = 1, and therefore, two cosmological constants vanish, which tells us that the model in the
two-parameter family of bigravity has the solution gµν = fµν , which is asymptotically flat solution in
general relativity. Now, we concentrate on the cubic part in Equation (20) and classify two parameters α3
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and α4 when C 6= 1. If there is no solution that satisfies C > 0 and C 6= 1, we do not have a non-trivial
solution in bigravity.

In order to classify the parameter region corresponding to the non-trivial solution, we assume
Mratio = 1 for simplicity. Then, we find the non-trivial solutions and corresponding parameter region
(Figure 1). For instance, the minimal model (α3, α4) = (1, 1) has only asymptotically flat solutions
although the next to the minimal models (α3, α4) = (1,−1), (−1, 1), (−1,−1) have asymptotically de
Sitter solutions. Note that the combination (α3, α4) for non-trivial solutions deviates when we consider
the case Mratio 6= 1 [42]. The magnitude of cosmological constants is proportional to the square of the
mass, m2

0, and the sign depends on α3, α4 and corresponding C. Furthermore, the two cosmological
constants are related to each other by the equation Λg = C2Λf , and they have the same sign.

Α4

Α3

only trivial

solution

non-trivial

solutions

-2 -1 0 1 2 3 4

0

2

4

6

Figure 1. Classification of the parameters α3 and α4 is shown. We obtain only
asymptotically-flat solutions in the region “only trivial solution”, although asymptotically
non-flat (de Sitter and/or anti-de Sitter) solutions are realized in “non-trivial solutions”. The
black line is the border of the two regions, and the dashed lines relate to criteria for the
number of non-trivial solutions (see the Appendix in [42]).

3. Stability and Anti-Evaporation of the Schwarzschild–de Sitter Space-Time

3.1. Nariai Space-Time and Anti-Evaporation

It is well known that the horizon radius of a black hole in a vacuum usually decreases by the Hawking
radiation, which is called the black hole evaporation. However, Bousso and Hawking have observed
a phenomenon that a perturbation around the specific Nariai space-time leads to the increase of the
black hole horizon in general relativity if one takes the quantum corrections from the radiation into
account [46]. This phenomenon is called anti-evaporation of black holes, and it has been implied that
the phenomenon relates to the abundance of primordial black holes in the current Universe, because the
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increase of the black hole horizon extends the lifetime of the black hole. Note that the origin of the
anti-evaporation is the modification of the equation of motion caused by the quantum correction from
the radiation.

On the other hand, it has been shown that the anti-evaporation may occur even on the classical level
in F (R) gravity theories [47–49], although the quantum corrections play an important role in general
relativity. The anti-evaporation without the quantum corrections could be due to the change of field
equations from the Einstein equation, because the behavior of perturbations depends on the equations
of motion. F (R) gravity indeed modifies the classical Einstein–Hilbert action, as well as the quantum
corrections in general relativity; thus, it might be interesting if the anti-evaporation at the classical level
were a general phenomenon in modified gravity.

Therefore, we consider the possibility of anti-evaporation in bigravity at the classical level, because
the contribution from the interaction between two metric tensors is not so trivial. In the previous section,
we found that the dynamics of two metric tensors gµν and fµν are described by the Einstein equations
under the assumption that fµν = C2gµν . Note that, however, this picture is just for the background
solution, and perturbations can be free from the proportional relation. In other words, the perturbations
of fµν are independent of those of gµν . Therefore, it could be important to analyze the stability of
perturbation even at the classical level, In this section, I give a brief review of the anti-evaporation in
general relativity, following the paper by Bousso and Hawking.

At first, we introduce the Nariai space-time as a family of the Schwarzschild–de Sitter space-time.
The Schwarzschild–de Sitter solution is expressed in the following form:

ds2 = −V (r)dt2 + V (r)−1dr2 + r2dΩ2 , V (r) = 1− 2µ

r
− Λ

3
r2 (21)

Here, µ is a mass parameter, and Λ is a positive cosmological constant. For 0 < µ < 1
3
Λ−1/2, V (r) has

two positive roots rc and rb, corresponding to the cosmological and black hole horizon, respectively. In
the limit µ → 1

3
Λ−1/2, the radius of the black hole horizon coincides with that of the cosmological

horizon. Here, the coordinate system in Equation (21) becomes inappropriate because V (r) → 0

between the two horizons. Then, it is useful to introduce a new coordinate system as follows,

t =
1

ε
√

Λ
ψ , r =

1√
Λ

(
1− ε cosχ− 1

6
ε2
)

(22)

where ε is the parameter defined as 9µ2Λ = 1 − 3ε2, and ε → 0 corresponds to the degeneracy of the
two horizons. In the above coordinate, the black hole horizon corresponds to χ = 0; the cosmological
horizon corresponds to χ = π; and the metric takes the following form:

ds2 =− 1

Λ

(
1 +

2

3
ε cosχ

)
sin2 χdψ2 +

1

Λ

(
1− 2

3
ε cosχ

)
dχ2 +

1

Λ
(1− 2ε cosχ)dΩ2 (23)

In the degenerate case, ε = 0, the space-time is called the Nariai solution. Note that the topology of the
space-like sections of the Schwarzschild–de Sitter space-time (and the Nariai space-time) is S1 × S2,
while that of the ordinary black hole solution is S2 in four dimensions.

Next, we introduce the Hawking radiation from the black hole horizon. It is well known that there
is radiation by the quantum effects of matter fields around the black hole horizon, which is called the



Universe 2015, 1 165

Hawking radiation. For the massless scalar field as the radiation around black hole horizon, we consider
the following action,

S =
1

16πG

∫
d4x
√
−g

[
R− 2Λ− 1

2

n∑
i=1

(∇fi)2

]
(24)

where fi are N scalar fields that carry the quantum radiation. The quantum corrections by the scalar
field lead to the trace anomaly of the energy-momentum tensor. When we reduce the four-dimensional
space-time to the two-dimensional one in a spherically-symmetric way,

ds2 =
∑
µ,ν=t,r

gµνdx
µdxν + e−2φdΩ2 (25)

the trace anomaly can be expressed by the following effective action [50,51],

Seff =− 1

48πG

∫
d2x
√
−g
[

1

2
R

1

�
R− 6(∇φ)2 1

�
R− ωφR

]
(26)

Here, ω is the redundant parameter corresponding to the renormalization scheme. We can render the
effective Action (26) local by introducing the scalar field Z [52] and integrate out the classical solution,
fi = 0. Then, the action with the trace anomaly can be expressed by the following effective action:

S =
1

16πG

∫
d2x
√
−g
[(
e−2φ +

κ

2
(Z + ωφ)

)
R− κ

4
(∇Z)2 + 2 + 2e−2φ(∇φ)2 − 2e−2φΛ

]
(27)

Here, κ ≡ 2N/3.
We now consider the large N limit, κ � 1, where the quantum fluctuations of metric are dominated

by the contribution from the N scalar fields. We also assume that the quantum correction itself should
be small, that is b ≡ κΛ � 1. Then, we consider the perturbation around the Nariai space-time in
general relativity. According to the topology, S1 × S2, we make a spherically-symmetric metric ansatz
as follows,

gµνdx
µdxν = e2ρ(t,x)

(
−dt2 + dx2

)
+ e−2φ(t,x)dΩ2 (28)

Here, the two-dimensional metric, corresponding to t and x components, is written in the conformal
gauge, and x is the coordinate system on the one-sphere and has the period of 2π. One can obtain the
equations of motion for ρ, φ and Z by substituting Ansatz (28) into Action (27) and then finding the
following solution:

e2ρ =
1

Λ1

1

cos2 t
, e2φ = Λ2 where

1

Λ1

=
1

Λ

(
1− ωb

4

)
, Λ2 = Λ

(
1− b

2

)
(29)

until the first order of b.
Finally, we perturb this solution, so that the two-sphere radius, e−φ, varies along the one-sphere

coordinate, x. We assume the perturbation in the following form:

e2φ = Λ2 [1 + 2εσ(t) cosx] , |ε| � 1 (30)
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We now trace the time evolution of the black hole horizon, The condition for a horizon is (∇δϕ)2 = 0,
which requires that the gradient of the two-sphere size is null. Here, perturbation Ansatz (28) yields:

δφ̇ = εσ̇ cosx , δφ′ = −εσ sinx (31)

From the above conditions, the locations of the black hole horizon xb and cosmological horizon xc are
found as follows:

xb = arctan

∣∣∣∣ σ̇σ
∣∣∣∣ , xc = π − xb (32)

Therefore, the radius of the black hole horizon, rb, is given by:

r−2
b (t) = e2φ(t,xb) = Λ2 {1 + 2εδ(t)} (33)

where we define the perturbation for the horizon δ(t),

δ(t) ≡ σ(t) cosxb = σ

{
1 +

(
σ̇

σ

)2
}−1/2

(34)

For the semi-classical case, κ > 0, one cannot find the analytic solution, because the quantum
corrections from the matter field lead to the modification of the equation for σ(t). However, one can
solve the equation of motion as a power series in t for the early Universe. The horizon perturbation is
given by:

δ(t) ≈ σ0

(
1− 1

2
bt2
)

(35)

This result implies that the black hole perturbation shrinks from its initial value, and the size of black
hole horizon increases at least initially. This phenomenon is called anti-evaporation.

3.2. Perturbations and Stability of Bi-Diagonal Narial Solution

As we discussed in Section 2.2, we obtain the asymptotically de Sitter solution for the specific
combinations of parameters under Ansatz (12). Therefore, the Schwarzschild–de Sitter space-time can
be the solutions if we impose spherical symmetry, and we can obtain the Nariai black hole solution by the
degeneracy limit. In the following analysis, we assume that the background solutions for both metrics
are the Nariai space-time.

At first, we consider the spherically-symmetric metric ansatz for two metrics,

gµνdx
µdxν =e2ρ1(t,x)

(
−dt2 + dx2

)
+ e−2ϕ1(t,x)

(
dθ2 + sin2 θdφ2

)
(36)

fµνdx
µdxν =e2ρ2(t,x)

(
−dt2 + dx2

)
+ e−2ϕ2(t,x)

(
dθ2 + sin2 θdφ2

)
(37)

Here, the black hole and cosmological horizons are located at the same place, respectively. In the
coordinate system of Equations (36) and (37), ρ(t, x)’s and ϕ(t, x)’s corresponding to the Nariai
solutions are given by:

ρ1 = −1

2
log Λ− log(cos t) , ϕ1 =

1

2
log Λ

ρ2 = logC − 1

2
log Λ− log(cos t) , ϕ2 = −logC +

1

2
log Λ (38)
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Here, we choose Mg = Mf , and the effective Plank mass scale is given by M2
eff = 1

2
M2

g = 1
2
M2

f .
Additionally, we assume that the βn’s are chosen to realize the asymptotically de Sitter space-time.

Next, we define the perturbations as follows:

ρ1 ≡ ρ̄1 + δρ1(t, x) , ϕ1 ≡ ϕ̄1 + δϕ1(t, x) , ρ2 ≡ ρ̄2 + δρ2(t, x) , ϕ2 ≡ ϕ̄2 + δϕ2(t, x) (39)

Here, ρ̄’s and ϕ̄’s correspond to the unperturbed Nariai space-time Equation (38) , and δρ’s and δϕ’s
are the perturbations. Note that these perturbations are not general, but keep the space-time isometry
to be S1 × S2. By substituting the above expressions into Equations (36) and (37), we find the metric
perturbations δgµν and δfµν in the first order,

δgµν ≡diag
(
−2e2ρ̄1δρ1, 2e

2ρ̄1δρ1,−2e−2ϕ̄1δϕ1,−2e−2ϕ̄1δϕ1 sin2 θ
)

δfµν ≡diag
(
−2e2ρ̄2δρ2, 2e

2ρ̄2δρ2 ,−2e−2ϕ̄2δϕ2,−2e−2ϕ̄2δϕ2 sin2 θ
)

(40)

We now evaluate the equations of motion for the perturbation. For the convention, we express the
equations of motion, (9) and (10), as follows:

Gµν(g) + Iλν(A)gµλ = 0 (41)

Gµν(f) + Iλν(B)fµλ = 0 (42)

where Gµν is the Einstein tensor and Iλν’s are the sum of Yn’s. When we consider the perturbation up to
first order, the above equations are divided by the background part and deviation part, and the equations
for the deviation take the following forms:

δGµν(g) + δIλν(A)gµλ + Iλν(B)δgµλ = 0 (43)

δGµν(f) + δIλν(B)fµλ + Iλν(A)δfµλ = 0 (44)

Here, we define A =
√
g−1f and B =

√
f−1g. These two matrices are expressed as follows:

A = diag
(
e−ζ , e−ζ , eξ, eξ

)
, B = diag

(
eζ , eζ , e−ξ, e−ξ

)
(45)

where ζ ≡ ρ1 − ρ2, ξ ≡ ϕ1 − ϕ2. Additionally, the deviations of ζ and ξ are given by δζ = δρ1 − δρ2

and δξ = δϕ1−δϕ2, respectively. After the short calculation, we can obtain the deviation of the Einstein
tensor δGµν . Regarding the interaction terms δIλν , we find:

δI(A) =− 1

2
m2

0

[
β1C + 2β2C

2 + β3C
3
]
Z (46)

δI(B) =
1

2
m2

0

[
β3C

−1 + 2β2C
−2 + β1C

−3
]
Z (47)

where we define the tensor Z as follows,

Z = diag (δζ − 2δξ, δζ − 2δξ, 2δζ − δξ, 2δζ − δξ) (48)

Finally, we determine the evolution of black holes due to the perturbations. In the following, we
consider the black hole horizon for gµν at first. Let us specify the form of perturbations according to the
original procedure by Hawking and Bousso:

e2ϕ1 = Λ {1 + 2εσ1(t) cosx} , δϕ1 ≡ εσ1(t) cosx (49)
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Substituting the above form of perturbation into the (t, x) component of (43), we obtain:

σ̇1 = σ1 tan t (50)

With the boundary condition, σ̇1 = 0 at t = 0, the solution is:

σ1(t) =
σg

cos t
(51)

Then, we find the horizon perturbation Equation (34) as follows:

δ(t) = σg = const (52)

This result means that no anti-evaporation takes place, as well as in the classical case in general relativity.
Furthermore, if we consider the perturbation in the same form for δϕ2 as that for δϕ1, we obtain the same
results, because the equations have the same form as that of ϕ1. Then, one can find that anti-evaporation
does not occur for two metrics gµν and fµν at the classical level.

We now focus on the problem of how we can identify the difference between the case in general
relativity and in bigravity. When we substitute the perturbations into the (t, t) and (x, x) components of
Equation (43), we obtain δζ − 2δξ = 0. Thus, the contributions from the interaction terms in the (t, t),
(x, x) and (t, x) components vanish, and the equations for δϕ’s are the same as that in general relativity.
The deviations of the interaction term Equations (46) and (47) exactly vanish if δζ = 0 or δξ = 0. When
we define the perturbation for fµν as:

e2ϕ2 =
Λ

C2
{1 + 2εσ2(t) cosx} , σ2(t) =

σf
cos t

(53)

δξ vanishes in the case where the amplitude of the perturbations are identical, σg = σf . This means
that the two sets of metric perturbations are proportional to each other, and the relation between the
perturbations is not changed from the background, δfµν = C2δgµν . In this case, whole metrics,
including the perturbations, are proportional, and this does not lead to a difference from general relativity.
Therefore, we cannot distinguish bigravity theory from general relativity for this case.

4. Results and Discussion

We have studied the possibility of the anti-evaporation at the classical level in the bigravity. For
the assumption fµν = C2gµν , particular parameters βn’s and the Plank mass scales Mg = Mf , we
obtained the asymptotically de Sitter space-time. When we considered the perturbations around the
Nariai space-time, the size of the black hole horizon does not change, which implies that the Nariai
space-time is stable. Additionally, we have found that the anti-evaporation does not take place at the
classical level, although the equations of motion are different from general relativity.

We may expect that there could occur anti-evaporation if we include the quantum correction of matter
fields, as in the case of the general relativity. The explicit calculation could be pretty complicated, but
an interesting problem could be to study if we need to introduce the quantum corrections only for one
of the two metrics or both of them. In the bigravity, we may assume two kinds of matter fields Ψg(x)

and Ψf (x) coupled to gµν and fµν , respectively. Thus, there are potentially quantum radiations and the
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corrections from the two kinds of matter. For instance, if we were to find that the anti-evaporation occurs
by including the quantum corrections only coupled to fµν , the black hole radius could increases even
though the dynamics of gµν is exactly classical. The abundance of primordial black holes can also be an
important problem if we can find the way to realize anti-evaporation in bigravity.

There could be another way to realize anti-evaporation by modification to F (R) bigravity
theory [28–31]. This theory modify the kinetic terms of bigravity, from the Ricci scalar to the function
of it. In F (R) bigravity, we find a similar problem to introducing the quantum corrections. That is, we
need to study if the modification is required for only one metric or both metrics.

In contrast to our result, it has been shown that the bi-Schwarzschild solutions are classically
unstable [53,54]. In these papers, the authors concluded that spherically-symmetric perturbation leads
to the instability even in Schwarzschild de–Sitter spacetime. The perturbations that we considered are,
however, not general spherically symmetric, but the specific one restricted to keeping the background
space-time isometry S1 × S2. Thus, the stability of the Nariai solution in our work could relate to the
symmetry of the space-time.

When we assume the perturbation (49), Equation (51) is derived from the (t, x) component of
Equation (43). However, the non-diagonal components of Equation (43) take the forms identical to
those in general relativity, because the interaction terms do not modify the non-diagonal components.
Note that this outcome depends on the special configuration of background solutions, that is
simultaneously-diagonalized metrics. In this condition, the non-diagonal components of Yn’s vanish,
and as a result, the size of the black hole horizon does not increase, as is the case in general relativity.

It is interesting that our approach may be generalized to the case of other background solutions.
As I mentioned above, we took the background ḡµν and f̄µν as the Nariai space-time, and these
metrics are diagonalized because of the proportional relation between two metrics fµν = C2gµν . In
general, however, two metrics cannot be simultaneously diagonalized, because we have only one set of
diffeomorphism for two independent metrics in the bigravity [55,56]. If we remove the assumption
fµν = C2gµν and we can find the non-diagonal solution for gµν and/or fµν , the interaction terms
modify the non-diagonal components for the equations of perturbations, and these modifications lead
to nontrivial contributions.

From the point of view of specifying the difference from general relativity, non-diagonal
components of the metric are of great interest. For instance, non-diagonal solutions, even for the
spherically-symmetric space-time, are permitted, because of one set of diffeomorphisms for two
metrics. Therefore, if we can detect the phenomena that stem from such solutions in the cosmological
and astrophysical observation, this leads us to the possibility of distinguishing or restricting the
bigravity theory.
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