New Physics of Strong Interaction and Dark Universe
Abstract
:1. Introduction
2. New Physics from QCD and QCD-Like Models
2.1. General Features of New Physics of Strong Interactions in Dark Cosmology
2.1.1. New Stable Quarks
2.1.2. QCD-Like Models
- The chiral symmetry ;
- SU(4) subgroup corresponding to the two-flavor model without singlet H-quark S;
- Two-flavor chiral group , which is a subgroup of both former subgroups.
- Explicitly—by the electroweak and Yukawa interactions, (9) and (11), and the H-quark masses;
2.2. Exotic States of New Colored Objects
2.2.1. Fractons
2.2.2. Fractionally Charged States in QCD-Like Models
2.2.3. Multiple Charged States in QCD and QCD-Like Models
2.3. Strongly Interacting Dark Matter Candidates
2.3.1. Stable Heavy Quark Hadrons
2.3.2. Dark Atoms with Primordial Helium
3. New Physics of Strong Interaction in the Galaxy
3.1. New Components of Cosmic Rays
3.1.1. UHECR Interaction with Dark Matter
3.1.2. Creation of New Components in the UHECR Sources
3.2. Multimessenger Probes for New Physics Effects
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Linde, A.D. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe. Cosmological Perturbations and Inflationary Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Hot Big Bang Theory; World Scientific: Singapore, 2011. [Google Scholar]
- Khlopov, M.Y. Cosmoparticle Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Khlopov, M.Y. Fundamentals of Cosmoparticle Physics; CISP-Springer: Cambridge, UK, 2012. [Google Scholar]
- Khlopov, M. Cosmological Reflection of Particle Symmetry. Symmetry 2016, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M. Fundamental particle structure in the cosmological dark matter. Int. J. Mod. Phys. A 2013, 28, 1330042. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Removing the conspiracy of BSM physics and BSM cosmology. Int. J. Mod. Phys. D 2019, 28, 1941012. [Google Scholar] [CrossRef]
- Beylin, V.; Khlopov, M.; Kuksa, V.; Volchanskiy, N. Hadronic and Hadron-Like Physics of Dark Matter. Symmetry 2019, 11, 587. [Google Scholar] [CrossRef] [Green Version]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; et al. (XENON Collab) First Dark Matter Search Results from the XENON1 Experiment. Phys. Rev. Lett. 2017, 119, 181301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, R.; Matsumoto, S.; Tsai, J.L.S.; Yanagida, T.T. A scenario of heavy but visible baryonic dark matter. JHEP 2016, 1609, 162. [Google Scholar] [CrossRef] [Green Version]
- Luca, V.; Mitridate, A.; Redi, M.; Smirnov, J.; Strumia, A. Colored Dark Matter. Phys. Rev. D 2018, 97, 115024. [Google Scholar] [CrossRef] [Green Version]
- Beylin, V.; Kuksa, V. Dark Matter in the Standard Model Extension with Singlet Quark. Adv. High Energy Phys. 2018, 18, 8670954. [Google Scholar] [CrossRef]
- Beylin, V.; Kuksa, V. Possibility of hadronic dark matter. Int. J. Mod. Phys. D 2019, 28, 1941001. [Google Scholar] [CrossRef]
- Bazhutov, Y.N.; Vereshkov, G.M.; Kuksa, V.I. Experimental and Theoretical Premises of New Stable Hadron Existence. Int. J. Mod. Phys. A 2017, 2, 1759188. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Physics of dark matter im the light of dark atoms. Mod. Phys. Lett. A 2011, 26, 2823–2839. [Google Scholar] [CrossRef]
- Khlopov, M.Y. Dark Atoms and Puzzles of Dark Matter Searches. Int. J. Mod. Phys. A 2014, 29, 1443002. [Google Scholar] [CrossRef] [Green Version]
- Cudell, J.R.; Khlopov, M. Dark atoms with nuclear shell: A status review. Int. J. Mod. Phys. D 2015, 24, 1545007. [Google Scholar] [CrossRef] [Green Version]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. The Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Cacciapaglia, G.; Pica, C.; Sannino, F. Fundamental Composite Dynamics: A Review. Phys. Rept. 2020, 877, 1–70. [Google Scholar] [CrossRef]
- Csáki, C.; Grojean, C.; Terning, J. Alternatives to an Elementary Higgs. Rev. Mod. Phys. 2016, 88, 045001. [Google Scholar] [CrossRef] [Green Version]
- DeGrand, T. Lattice tests of beyond Standard Model dynamics. Rev. Mod. Phys. 2016, 88, 015001. [Google Scholar] [CrossRef]
- Hill, C.T.; Simmons, E.H. Strong Dynamics and Electroweak Symmetry Breaking. Phys. Rep. 2003, 381, 235–402. [Google Scholar] [CrossRef] [Green Version]
- Bellazzini, B.; Csáki, C.; Serra, J. Composite Higgses. Eur. Phys. J. C 2014, 74, 2766. [Google Scholar] [CrossRef] [Green Version]
- Panico, G.; Wulzer, A. The Composite Nambu-Goldstone Higgs; Springer: Berlin/Heidelberg, Germany, 2016; Volume 913. [Google Scholar] [CrossRef] [Green Version]
- Schmaltz, M.; Tucker-Smith, D. Little Higgs review. Ann. Rev. Nucl. Part. Sci. 2005, 55, 229–270. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.C. Models of little Higgs and electroweak precision tests. Mod. Phys. Lett. A 2006, 21, 621–638. [Google Scholar] [CrossRef] [Green Version]
- Perelstein, M. Little Higgs models and their phenomenology. Prog. Part. Nucl. Phys. 2007, 58, 247–291. [Google Scholar] [CrossRef] [Green Version]
- Kilic, C.; Okui, T.; Sundrum, R. Vector-like Confinement at the LHC. J. High Energy Phys. 2010, 2010, 18. [Google Scholar] [CrossRef] [Green Version]
- Pasechnik, R.; Beylin, V.; Kuksa, V.; Vereshkov, G. Chiral-symmetric technicolor with standard model Higgs boson. Phys. Rev. D 2013, 88, 075009. [Google Scholar] [CrossRef] [Green Version]
- Pasechnik, R.; Beylin, V.; Kuksa, V.; Vereshkov, G. Vector-like technineutron Dark Matter: Is a QCD-type Technicolor ruled out by XENON100? Eur. Phys. J. C 2014, 74, 2728. [Google Scholar] [CrossRef] [Green Version]
- Lebiedowicz, P.; Pasechnik, R.; Szczurek, A. Search for technipions in exclusive production of diphotons with large invariant masses at the LHC. Nucl. Phys. B 2014, 881, 288–308. [Google Scholar] [CrossRef] [Green Version]
- Pasechnik, R.; Beylin, V.; Kuksa, V.; Vereshkov, G. Composite scalar Dark Matter from vector-like SU(2) confinement. Int. J. Mod. Phys. A 2016, 31, 1650036. [Google Scholar] [CrossRef] [Green Version]
- Beylin, V.; Bezuglov, M.; Kuksa, V. Analysis of scalar Dark Matter in a minimal vector-like Standard Model extension. Int. J. Mod. Phys. A 2017, 32, 1750042. [Google Scholar] [CrossRef]
- Antipin, O.; Redi, M. The half-composite two Higgs doublet model and the relaxion. J. High Energy Phys. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Agugliaro, A.; Antipin, O.; Becciolini, D.; De Curtis, S.; Redi, M. UV-complete composite Higgs models. Phys. Rev. D 2017, 95, 035019. [Google Scholar] [CrossRef] [Green Version]
- Barducci, D.; De Curtis, S.; Redi, M.; Tesi, A. An almost elementary Higgs: Theory and practice. J. High Energy Phys. 2018, 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Antipin, O.; Redi, M.; Strumia, A. Dynamical generation of the weak and Dark Matter scales from strong interactions. J. High Energy Phys. 2015, 2015, 157. [Google Scholar] [CrossRef] [Green Version]
- Mitridate, A.; Redi, M.; Smirnov, J.; Strumia, A. Dark matter as a weakly coupled dark baryon. J. High Energy Phys. 2017, 2017, 210. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Brower, R.C.; Buchoff, M.I.; Fleming, G.T.; Jin, X.Y.; Kiskis, J.; Kribs, G.D.; Neil, E.T.; Osborn, J.C.; Rebbi, C.; et al. Stealth dark matter: Dark scalar baryons through the Higgs portal. Phys. Rev. D 2015, 92, 075030. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Cacciapaglia, G.; Zhang, H.H. Vacuum alignment in a composite 2HDM. J. High Energy Phys. 2019, 2019, 130. [Google Scholar] [CrossRef]
- Beylin, V.; Bezuglov, M.; Kuksa, V.; Volchanskiy, N. An analysis of a minimal vector-like extension of the Standard Model. Adv. High Energy Phys. 2017, 2017, 1765340. [Google Scholar] [CrossRef] [Green Version]
- Low, I.; Skiba, W.; Tucker-Smith, D. Little Higgses from an antisymmetric condensate. Phys. Rev. D 2002, 66, 072001. [Google Scholar] [CrossRef] [Green Version]
- Csaki, C.; Hubisz, J.; Kribs, G.D.; Meade, P.; Terning, J. Variations of little Higgs models and their electroweak constraints. Phys. Rev. D 2003, 68, 035009. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, T.; Tucker-Smith, D.; Wacker, J.G. What precision electroweak physics says about the SU(6)/Sp(6) little Higgs. Phys. Rev. D 2004, 69, 115008. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Skiba, W. Little Higgs models and electroweak measurements. Phys. Rev. D 2005, 72, 035005. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.; Frugiuele, C.; Gregoire, T. UV friendly T-parity in the SU(6)/Sp(6) little Higgs model. J. High Energy Phys. 2011, 2011, 108. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishna, S.; Mukherjee, T.S.; Sadhukhan, S. Status and Prospects of the Two-Higgs-Doublet SU(6)/Sp(6) little-Higgs Model and the Alignment Limit. Phys. Rev. D 2016, 94, 015034. [Google Scholar] [CrossRef] [Green Version]
- Pauli, W. On the conservation of the lepton charge. Nuovo C. 1957, 6, 204–215. [Google Scholar] [CrossRef]
- Gürsey, F. Relation of charge independence and baryon conservation to Pauli’s transformation. Nuovo C. 1958, 7, 411–415. [Google Scholar] [CrossRef]
- Vysotskii, M.I.; Kogan, Y.I.; Shifman, M.A. Spontaneous breakdown of chiral symmetry for real fermions and the N = 2 supersymmetric Yang–Mills theory. Sov. J. Nucl. Phys. 1985, 42, 318. [Google Scholar]
- Verbaarschot, J. The Supersymmetric Method in Random Matrix Theory and Applications to QCD. In Proceedings of the 35th Latin American School of Physics on Supersymmetries in Physics and Its Applications (ELAF 2004); Bijker, R., Castaños, O., Fernández, D., Morales-Técotl, H., Urrutia, L., Villarreal, C., Eds.; American Institute of Physics: Melville, NY, USA, 2004; Volume 744, pp. 277–362. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.K. Partially conserved axial-vector current and model chiral field theories in nuclear physics. Phys. Rev. C 1979, 19, 1965–1970. [Google Scholar] [CrossRef]
- Dmitrašinović, V.; Myhrer, F. Pion-nucleon scattering and the nucleon Σ term in an extended linear Σ model. Phys. Rev. C 2000, 61, 025205. [Google Scholar] [CrossRef] [Green Version]
- Delorme, J.; Chanfray, G.; Ericson, M. Chiral Lagrangians and quark condensate in nuclei. Nucl. Phys. A 1996, 603, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Gasiorowicz, S.; Geffen, D.A. Effective Lagrangians and Field Algebras with Chiral Symmetry. Rev. Mod. Phys. 1969, 41, 531–573. [Google Scholar] [CrossRef]
- Parganlija, D.; Kovács, P.; Wolf, G.; Giacosa, F.; Rischke, D.H. Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons. Phys. Rev. D 2013, 87, 014011. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Hill, R.J. Weakly interacting stable hidden sector pions. Phys. Rev. D 2010, 82, 111701. [Google Scholar] [CrossRef] [Green Version]
- Antipin, O.; Redi, M.; Strumia, A.; Vigiani, E. Accidental Composite Dark Matter. J. High Energy Phys. 2015, 2015, 39. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Fractionally charged particles and quark confinement. JETP Lett. 1981, 33, 162. [Google Scholar]
- Alexander, S.; Orbach, R. Density of states on fractals: « fractons ». J. Phys. Lett. 1982, 43, 625. [Google Scholar] [CrossRef] [Green Version]
- Zel’dovich, Y.B.; Okun’, L.B.; Pikel’ner, S.B. Quarks: Astrophysical and physicalchemical aspects. Sov. Phys. Uspekhi 1966, 8, 702. [Google Scholar] [CrossRef]
- Glashow, S.G. A Sinister Extension of the Standard Model to SU(3) × SU(2) × SU(2) × U(1). In Proceedings of the XI Workshop on Neutrino Telescopes, Venice, Italy, 22–25 February 2005; p. 9. [Google Scholar]
- Khlopov, M.Y. Composite dark matter from 4th generation. JETP Lett. 2006, 83, 1–4. [Google Scholar] [CrossRef]
- Goertz, F. Composite Higgs theory. Proc. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Sannino, F.; Tuominen, K. Orientifold theory dynamics and symmetry breaking. Phys. Rev. D 2005, 71, 051901. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.K.; Hsu, S.D.H.; Sannino, F. Composite higgs from higher representations. Phys. Lett. B 2004, 597, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.D.; Sannino, F.; Tuominen, K. Light composite higgs from higher representations versus electroweak precision measurements: Predictions for LHC. Phys. Rev. D 2005, 72, 055001. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.D.; Sannino, F.; Tuominen, K. Light composite higgs and precision electroweak measurements on the Z resonance: An update. Phys. Rev. D 2006, 73, 037701. [Google Scholar] [CrossRef] [Green Version]
- Gudnason, S.B.; Kouvaris, C.; Sannino, F. Towards working technicolor: Effective theories and dark matter. Phys. Rev. D 2006, 73, 115003. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Kouvaris, C. Strong interactive massive particles from a strong coupled theory. Phys. Rev. D 2008, 77, 065002. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Kouvaris, C. Composite dark matter from a model with composite Higgs boson. Phys. Rev. D 2008, 78, 065040. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, M.; Strumia, A.; Tamburini, M. Cosmology and Astrophysics of Minimal Dark Matter. Nucl. Phys. B 2007, 787, 152–175. [Google Scholar] [CrossRef] [Green Version]
- Kuksa, V.; Beylin, V. Hyperfine Splitting of Excited States of new Heavy Hadrons and Low-energy Interaction of Hadronic Dark Matter with Photons, Nucleons and Leptons. Universe 2020, 6, 84. [Google Scholar] [CrossRef]
- Ebert, D.; Galkin, V.O.; Faustov, R.N. Mass spectrum of orbitally and radially excited heavy-light mesons in the relativistic quark model. Phys. Rev. D 1998, 57, 5663–5669. [Google Scholar] [CrossRef] [Green Version]
- Mutuk, H. Mass Spectra and Decay Constants of Heavy-Light Mesons. Adv. High Energy Phys. 2018, 2018, 8095653. [Google Scholar]
- Vereshkov, G.M.; Kuksa, V.I. U(1) × SU(3)-gauge model of baryon-meson interactions. Yad. Fiz. 1991, 54, 1700. [Google Scholar]
- Beylin, V.A.; Kuksa, V.I. Interaction of Hadronic Dark Matter with Nucleons and Leptons. Symmetry 2020, 12, 567. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, R.H.; Tinker, J.L. The Connection between Galaxies and their Dark Matter Halos. arXiv 2018, arXiv:1804.03097. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M. Dark atom solution for puzzles of direct dark matter searches. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1312, 012011. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y. Introduction to the special issue on indirect dark matter searches. Mod. Phys. Lett. A 2014, 29, 1402001. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, M. Dark Matter Indirect searches: Phenomenological and theoretical aspects. J. Phys. Conf. Ser. 2013, 447, 012006. [Google Scholar] [CrossRef]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rep. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [Green Version]
- Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys. 2016, 57, 496–525. [Google Scholar] [CrossRef]
- Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, D.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 2018, 78, 203. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Esipova, E.A.; Kamaletdinov, A.K.; Shlepkina, E.S.; Solovyov, M.L. Indirect effects of dark matter. Int. J. Mod. Phys. D 2019, 28, 1941011. [Google Scholar] [CrossRef] [Green Version]
- Gaggero, D.; Valli, M. Impact of Cosmic-Ray Physics on Dark Matter Indirect Searches. Adv. High Energy Phys. 2018, 3010514. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Small-scale clumps in the galactic halo and dark matter annihilation. Phys. Rev. D 2003, 68, 103003. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Remnants of dark matter clumps. Phys. Rev. D 2008, 77, 083519. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes. J. Cosmol. Astropart. Phys. 2013, 11, 059. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.; Kirillov, A.; Khlopov, M. Gamma-ray evidences of the dark matter clumps. Grav. Cosmol. 2014, 20, 47. [Google Scholar] [CrossRef] [Green Version]
- Tasitsiomi, A.; Olinto, A.V. Detectability of neutralino clumps via atmospheric Cherenkov telescopes. Phys. Rev. D 2002, 66, 083006. [Google Scholar] [CrossRef] [Green Version]
- Gabici, S.; Evoli, C.; Gaggero, D.; Lipari, P.; Mertcsh, P.; Orlando, E.; Strong, A.; Vittino, A. The origin of galactic cosmic rays: Challenges to the standard paradigm. Int. J. Mod. Phys. D 2019, 28, 1930022. [Google Scholar] [CrossRef]
- Kachelries, M.; Semikoz, D.V. Cosmic Ray Models. Nucl. Phys. B 2019, 109, 103710. [Google Scholar] [CrossRef] [Green Version]
- Allard, D.; Busca, N.G.; Decerprit, G.; Olinto, A.V.; Parizot, E. Implications of the cosmic ray spectrum for the mass composition at the highest energies. J. Cosmol. Astropart. Phys. 2008, 2008, 33. [Google Scholar] [CrossRef]
- Unger, M.; Farrar, G.R.; Anchordoqui, L.A. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it. Phys. Rev. D 2015, 92, 123001. [Google Scholar] [CrossRef] [Green Version]
- Dova, M.T. Ultra-High Energy Cosmic Rays. In Proceedings of the CERN–Latin-American School of High-Energy Physics, Arequipa, Peru, 6–19 March 2013; CERN-2015-001. CERN: Meyrin, Switzerland, 2015. [Google Scholar]
- Torres, D.F.; Anchordoqui, L.A. Astrophysical Origins of Ultrahigh Energy Cosmic Rays. Rep. Prog. Phys. 2004, 67, 1663–1730. [Google Scholar] [CrossRef]
- Bloom, E.D.; Wells, J.D. Multi-GeV photons from electron–dark matter scattering near Active Galactic Nuclei. Phys. Rev. D 1998, 57, 1299–1302. [Google Scholar] [CrossRef] [Green Version]
- Gorchtein, M.; Profumo, S.; Ubaldi, L. Probing Dark Matter with AGN Jets. Phys. Rev. D 2010, 82, 083514. [Google Scholar] [CrossRef] [Green Version]
- Profumo, S.; Ubaldi, L. Cosmic Ray-Dark Matter Scattering: A New Signature of (Asymmetric) Dark Matter in the Gamma Ray Sky. J. Cosmol. Astropart. Phys. 2011, 2011, 20. [Google Scholar] [CrossRef] [Green Version]
- Gorchtein, M.; Profumo, S.; Ubaldi, L. Gamma rays from cosmic-ray proton scattering in AGN jets: The intra-cluster gas vastly outshines dark matter. J. Cosmol. Astropart. Phys. 2013, 2013, 12. [Google Scholar]
- Cappiello, C.V.; Ng, K.C.Y.; Beacom, J.F. Reverse Direct Detection: Cosmic Ray Scattering with Light Dark Matter. Phys. Rev. D 2019, 99, 063004. [Google Scholar] [CrossRef] [Green Version]
- Beylin, V.; Bezuglov, M.; Kuksa, V.; Tretiakov, E.; Yagozinskaya, A. On the scattering of a high-energy cosmic ray electrons off the dark matter. Int. J. Mod. Phys. A 2019, 34, 1950040. [Google Scholar] [CrossRef]
- Beylin, V.; Bezuglov, M.; Kuksa, V.; Tretiakov, E. Quasi-elastic lepton scattering off two-component dark matter in hypercolor model. Symmetry 2020, 12, 708. [Google Scholar] [CrossRef]
- Agashe, K.; Cui, Y.; Necib, L.; Thaler, J. (In)direct Detection of Boosted Dark Matter. J. Cosmol. Astropart. Phys. 2014, 2014, 062. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.; Hong, D.K.; Lee, J.-W.; David Lin, C.-J.; Lucini, B.; Piai, M.; Vadacchino, D. Meson spectrum of Sp(4) lattice gauge theory with two fundamental Dirac fermions. arXiv 2019, arXiv:1911.00437. [Google Scholar]
- Bennett, E.; Hong, D.K.; Lee, J.-W.; David Lin, C.-J.; Lucini, B.; Piai, M.; Vadacchino, D. Sp(4) gauge theories on the lattice: Nf=2 dynamical fundamental fermions. J. High Energy Phys. 2019, 2019, 53. [Google Scholar] [CrossRef] [Green Version]
- De Roeck, A.; Kim, D.; Moghaddam, Z.C.; Park, J.-C.; Shin, S.; Whitehead, L.H. Probing Energetic Light Dark Matter with Multi-Particle Tracks signatures at DUNE. arXiv 2020, arXiv:2005.08979. [Google Scholar]
- Bhattacharya, A.; Gandhi, R.; Gupta, A. The Direct Detection of Boosted Dark Matter at High Energies and PeV events at IceCube. J. Cosmol. Astropart. Phys. 2015, 2015, 27. [Google Scholar] [CrossRef] [Green Version]
- Kopp, J.; Liu, J.; Wang, X.-P. Boosted Dark Matter in IceCube and at the Galactic Center. J. High Energy Phys. 2015, 2015, 105. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Park, J.-C.; Shin, S. Dark Matter Collider from Inelastic Boosted Dark Matter. Phys. Rev. Lett. 2017, 119, 161801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giudice, G.F.; Kim, D.; Park, J.-C.; Shin, S. Inelastic Boosted Dark Matter at Direct Detection Experiments. Phys. Lett. B 2018, 780, 543–552. [Google Scholar] [CrossRef]
- Bringmann, T.; Pospelov, M. Novel direct detection constraints on light dark matter. Phys. Rev. Lett. 2019, 122, 171801. [Google Scholar] [CrossRef] [Green Version]
- Heurtier, L.; Kim, D.; Park, J.-C.; Shin, S. Explaining the ANITA Anomaly with Inelastic Boosted Dark Matter. Phys. Rev. D 2019, 100, 055004. [Google Scholar] [CrossRef] [Green Version]
- Ghou, B.; Beacom, J.F. Neutrino-nucleus cross sections for W-boson and trident production. Phys. Rev. D 2020, 101, 036011. [Google Scholar]
- Kuksa, V.I. The convolution formula for a decay rate. Phys. Lett. B 2006, 633, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Kuksa, V.I.; Volchanskiy, N.I. Factorization in the model of unstable particles with continuous masses. Cent. Eur. J. Phys. 2013, 11, 182–194. [Google Scholar] [CrossRef]
- Ryabov, V.A. Ultrahigh-energy neutrinos from astrophysical sources and superheavy particle decays. Phys.-Uspekhi 2006, 49, 9. [Google Scholar] [CrossRef]
- Necib, L.; Moon, J.; Wongjirad, T.; Conrad, J.M. Boosted Dark Matter at Neutrino Experiments. Phys. Rev. D 2017, 95, 075018. [Google Scholar] [CrossRef] [Green Version]
- Alhazmi, H.; Kong, K.; Mohlabeng, G.; Park, J.-C. Boosted Dark Matter at the Deep Underground Neutrino Experiment. J. High Energy Phys. 2017, 2017, 158. [Google Scholar] [CrossRef] [Green Version]
- Jaeckel, J.; Yin, W. Boosted Neutrinos and Relativistic Dark Particles as Messengers from Reheating. arXiv 2020, arXiv:2007.15006. [Google Scholar]
- Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; et al. Measurements of the atmospheric neutrino flux by 430 Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation. Phys. Rev. D 2016, 94, 052001. [Google Scholar] [CrossRef] [Green Version]
- Niederhausen, H.; Xu, Y. High Energy Astrophysical Neutrino Flux Measurement Using Neutrino-induced Cascades Observed in 4 Years of IceCube Data. Int. Cosm. Ray Conf. 2017, 301, 968. [Google Scholar]
- Kochanov, A.A.; Morozova, A.D.; Sinegovskaya, T.S.; Sinegovskiy, S.I. Behaviour of the high-energy neutrino flux in the Earth’s atmosphere. Sol. Terr. Phys. 2015, 1, 3–10. [Google Scholar]
- Ahlers, M.; Helbing, K.; de los Heros, C.P. Probing particle physics with IceCube. Eur. Phys. J. C 2018, 78, 924. [Google Scholar] [CrossRef]
- Kampert, K.H.; Watson, A.A. Extensive Air Showers and UHECR: A historical review. arXiv 2012, arXiv:1207.4827. [Google Scholar]
- Dent, J.B.; Dutta, B.; Newstead, J.L.; Shoemaker, I.M. Bounds on Cosmic Ray-Boosted Dark Matter in Simplified Models and its Corresponding Neutrino-Floor. Phys. Rev. D 2020, 101, 116007. [Google Scholar] [CrossRef]
- Ge, S.-F.; Liu, J.-L.; Yuan, Q.; Zhou, N. Boosted Diurnal Effect of Sub-GeV Dark Matter at Direct Detection Experiment. arXiv 2020, arXiv:2005.09480. [Google Scholar]
- Bottai, S.; Giurgola, S. Downward neutrino induced EAS with EUSO detector. Int. Cosm. Ray Conf. 2003, 2, 1113–1116. [Google Scholar]
- Fargion, D. Ultra High Energy Cosmic Rays, Z-Shower and Neutrino Astronomy by Horizontal-Upward Tau Air-Showers. arXiv 2003, arXiv:hep-ph/0306238. [Google Scholar]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. An algorithm for the reconstruction of high-energy neutrino induced particle showers and its application to the ANTARES neutrino telescope. Eur. Phys. J. C 2017, 77, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.-L.; Lei, Z.-H.; Tang, J. Constraints on cosmic-ray boosted DM in CDEX-10. arXiv 2020, arXiv:2008.07116. [Google Scholar]
- Beylin, V.; Kuksa, V. On the reactions involving neutrinos and hidden mass particles in hypercolor model. In Proceedings of the XXIII Int. Workshop “What Comes Beyond the Standard Models?”; DMFA: Bled, Slovenia, 2020; to be published. [Google Scholar]
- Fusco, L.A.; Versari, F. Testing cosmic ray composition models with very large-volume neutrino telescopes. Eur. Phys. J. Plus 2020, 135, 624. [Google Scholar] [CrossRef]
- Rott, C. Status of Dark Matter Searches. arXiv 2017, arXiv:1712.00666. [Google Scholar]
- Bai, X.; Bi, B.; Bi, J.; Cao, Z.; Chen, S.Z.; Chen, Y.; Chiavassa, A.; Cui, X.H.; Dai, Z.G.; della Volpe, D.; et al. The large high altitude air shower observatory (LHAASO) science white paper. arXiv 2019, arXiv:1905.02773. [Google Scholar]
1. |
State | H-Quark Current | |||
---|---|---|---|---|
0 | 0 | |||
0 | 0 | |||
0 | , 0 | |||
0 | , 0 | |||
A | 1 | |||
B | 1 | |||
f | 0 | 0 | ||
0 | 0 | |||
0 | ||||
0 | ||||
1 | ||||
1 |
q | |||||
---|---|---|---|---|---|
1 | 2 | 1 | 0 | ||
3 | 4 | 3 | 2 | ||
5 | 6 | 5 | 4 | ||
7 | 8 | 7 | 6 |
T | Isotopic Content | Quark Content | |
---|---|---|---|
, | |||
1 | |||
0 |
Signum | ||
---|---|---|
(threshold) | ||
(non-threshold) | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beylin, V.; Khlopov, M.; Kuksa, V.; Volchanskiy, N. New Physics of Strong Interaction and Dark Universe. Universe 2020, 6, 196. https://doi.org/10.3390/universe6110196
Beylin V, Khlopov M, Kuksa V, Volchanskiy N. New Physics of Strong Interaction and Dark Universe. Universe. 2020; 6(11):196. https://doi.org/10.3390/universe6110196
Chicago/Turabian StyleBeylin, Vitaly, Maxim Khlopov, Vladimir Kuksa, and Nikolay Volchanskiy. 2020. "New Physics of Strong Interaction and Dark Universe" Universe 6, no. 11: 196. https://doi.org/10.3390/universe6110196
APA StyleBeylin, V., Khlopov, M., Kuksa, V., & Volchanskiy, N. (2020). New Physics of Strong Interaction and Dark Universe. Universe, 6(11), 196. https://doi.org/10.3390/universe6110196