# Quarkonium Phenomenology from a Generalised Gauss Law

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Gauss Law Potential Model

#### 2.1. A Novel Formulation

#### 2.2. Vetting with Lattice QCD Data

## 3. Phenomenology

#### 3.1. Spectral Functions at Finite Temperature

#### 3.2. Applications to Heavy Ion Collisions

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Andronic, A.; Arleo, F.; Arnaldi, R.; Beraudo, A.; Bruna, E.; Caffarri, D.; Conesa del Valle, Z.; Contreras, J.G.; Dahms, T.; Dainese, A.; et al. Heavy-flavour and quarkonium production in the LHC era: From proton–proton to heavy-ion collisions. Eur. Phys. J.
**2016**, 76, 107. [Google Scholar] [CrossRef] [PubMed] - Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A. Effective-field theories for heavy quarkonium. Rev. Mod. Phys.
**2005**, 77, 1423. [Google Scholar] [CrossRef] - Burnier, Y.; Rothkopf, A. Disentangling the timescales behind the nonperturbative heavy quark potential. Phys. Rev. D
**2012**, 86, 051503. [Google Scholar] [CrossRef] - Laine, M.; Philipsen, O.; Tassler, M.; Romatschke, P. Real-time static potential in hot QCD. J. High Energy Phys.
**2007**, 3, 054. [Google Scholar] [CrossRef] - Brambilla, N.; Ghiglieri, J.; Vairo, A.; Petreczky, P. Static quark-antiquark pairs at finite temperature. Phys. Rev. D
**2008**, 78, 014017. [Google Scholar] [CrossRef] - Kajimotoa, S.; Akamatsua, Y.; Asakawaa, M.; Rothkopf, A. Quantum dynamical dissociation of quarkonia by wave function decoherence in quark-gluon plasma. Nucl. Phys. A
**2019**, 982, 711–714. [Google Scholar] [CrossRef] - Petreczky, P.; Rothkopf, A.; Weber, J. Realistic in-medium heavy-quark potential from high statistics lattice QCD simulations. Nucl. Phys. A
**2019**, 982, 735–738. [Google Scholar] [CrossRef] - Burnier, Y.; Rothkopf, A. A gauge invariant Debye mass and the complex heavy-quark potential. Phys. Lett. B
**2016**, 753, 232–236. [Google Scholar] [CrossRef][Green Version] - Kapusta, J.I.; Gale, C. Finite-Temperature Field Theory. Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Thakur, L.; Kakade, U.; Patra, B.K. Dissociation of quarkonium in a complex potential. Phys. Rev. D
**2014**, 89, 094020. [Google Scholar] [CrossRef] - Burnier, Y.; Kaczmarek, O.; Rothkopf, A. Static Quark-Antiquark Potential in the Quark-Gluon Plasma from Lattice QCD. Phys. Rev. Lett.
**2015**, 114, 082001. [Google Scholar] [CrossRef] - Bazavov, A.; Bhattacharya, T.; Cheng, M.; DeTar, C.; Ding, H.-T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D
**2012**, 85, 054503. [Google Scholar] [CrossRef] - Burnier, Y.; Kaczmarek, O.; Rothkopf, A. Quarkonium at finite temperature: towards realistic phenomenology from first principles. J. High Energy Phys.
**2015**, 12, 1–34. [Google Scholar] [CrossRef] - Burnier, Y.; Laine, M.; Vepsalainen, M. Heavy quarkonium in any channel in resummed hot QCD. J. High Energy Phys.
**2008**, 1, 43. [Google Scholar] [CrossRef] - Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature
**2018**, 561, 321–330. [Google Scholar] [CrossRef] - Laine, M.; Vuorinen, A. Basics of Thermal Field Theory. Lect. Notes Phys.
**2016**, 925, 1–281. [Google Scholar] - Bodwin, G.T.; Braaten, E.; Lepage, G.P. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D
**1995**, 51, 1125–1171. [Google Scholar] [CrossRef][Green Version] - Alessandro, B.; et al.; [NA50 Collaboration] Ψ
^{′}production in Pb–Pb collisions at 158 GeV/nucleon. Eur. Phys. J. C**2007**, 49, 559–567. [Google Scholar] [CrossRef] - Adam, J.; et al.; [ALICE Collaboration] Differential studies of inclusive J/Ψ and Ψ(2S) production at forward rapidity in Pb-Pb collisions at $\sqrt{{s}_{NN}}$ = 2.76 TeV. J. High Energy Phys.
**2016**, 5, 179. [Google Scholar] [CrossRef] - Khachatryan, V.; et al.; [CMS Collaboration] Measurement of Prompt ψ(2S) to J/ψ Yield Ratios in Pb-Pb and p-p Collisions at $\sqrt{{s}_{NN}}$ = 2.76 TeV. Phys. Rev. Lett.
**2014**, 113, 262301. [Google Scholar] [CrossRef] - Sirunyan, A.M.; et al.; [CMS Collaboration] Relative Modification of Prompt ψ(2S) and J/ψ Yields from pp to PbPb Collisions at $\sqrt{{s}_{NN}}$ = 5.02 TeV. Phys. Rev. Lett.
**2017**, 118, 162301. [Google Scholar] [CrossRef] - Adare, A.; et al.; [PHENIX Collaboration] Relative Yields and Nuclear Modification of Ψ
^{′}to J/Ψ mesons in p+p, p(3He)+A Collisions at $\sqrt{{s}_{NN}}$ = 200 GeV, measured in PHENIX. Nucl. Part. Phys. Proc.**2017**, 289–290, 417–420. [Google Scholar]

**Figure 1.**Gauss-law parametrisation and the lattice QCD potential. (

**left**) Real part (symbols) and best fit results (solid lines). (

**centre**) Tentative imaginary part (symbols) and the Gauss-law prediction (solid lines). Errorbands from uncertainty in both the $T>0$ fit and the vacuum parameters. (

**right**) Best fit values of the Debye mass and interpolation.

**Figure 3.**Thermal mass (

**left**) and spectral width (

**right**) of charmonium as a function of temperature. The error bands denote the Debye mass uncertainty arising from the fitting procedure. The continuum threshold energy on the left figure is defined as $\mathrm{Re}V\phantom{\rule{-0.166667em}{0ex}}\left(\right)open="("\; close=")">r\to \infty $.

**Figure 4.**The prediction of this work (green) for the relative production yield of ${\Psi}^{\prime}$ to $J/\Psi $. We also include the statistical hadronisation model prediction [15] (purple) and experimental data measured by the NA50 [18], ALICE [19], and CMS [20,21] collaborations (red) for Pb–Pb collisions, as well as the pp baseline [15,22] (orange).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lafferty, D.; Rothkopf, A.
Quarkonium Phenomenology from a Generalised Gauss Law. *Universe* **2019**, *5*, 119.
https://doi.org/10.3390/universe5050119

**AMA Style**

Lafferty D, Rothkopf A.
Quarkonium Phenomenology from a Generalised Gauss Law. *Universe*. 2019; 5(5):119.
https://doi.org/10.3390/universe5050119

**Chicago/Turabian Style**

Lafferty, David, and Alexander Rothkopf.
2019. "Quarkonium Phenomenology from a Generalised Gauss Law" *Universe* 5, no. 5: 119.
https://doi.org/10.3390/universe5050119