# Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. A Regular Magnetized BH Solution

## 3. Thermodynamics and Phase Transitions

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Stelle, K.S. Classical gravity with higher derivatives. Gen. Rel. Grav.
**1978**, 9, 353–371. [Google Scholar] [CrossRef] - Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D
**1977**, 16, 953–969. [Google Scholar] [CrossRef] - Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett.
**2012**, 108, 031101. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Biswas, T.; Conroy, A.; Koshelev, A.S.; Mazumdar, A. Generalized ghost-free quadratic curvature gravity. Class. Quant. Grav.
**2014**, 31, 015022. [Google Scholar] [CrossRef] [Green Version] - Modesto, L. Super-renormalizable Quantum Gravity. Phys. Rev. D
**2012**, 86, 044005. [Google Scholar] [CrossRef] [Green Version] - Markov, M.A. Limiting density of matter as a universal law of nature. JETP Lett.
**1982**, 36, 266. [Google Scholar] - Markov, M.A. Problems of a perpetually oscillating universe. Ann. Phys.
**1984**, 155, 333. [Google Scholar] [CrossRef] - Polchinski, J. Decoupling Versus Excluded Volume or Return of the Giant Wormholes. Nucl. Phys. B
**1989**, 325, 619–630. [Google Scholar] [CrossRef] - Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D
**2016**, 94, 104056. [Google Scholar] [CrossRef] [Green Version] - Hayward, S.A. Formation and evaporation of nonsingular black holes. Phys. Rev. Lett.
**2006**, 96, 031103. [Google Scholar] [CrossRef] [Green Version] - Bardeen, J. Non-singular general-relativistic gravitational collapse. In Proceedings of the GR5, Tbilisi, U.S.S.R., 9–13 September 1968. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B
**2000**, 493, 149. [Google Scholar] [CrossRef] [Green Version] - Ayon-Beato, E.; Garcia, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett.
**1998**, 80, 5056. [Google Scholar] [CrossRef] [Green Version] - Ayon-Beato, E.; Garcia, A. New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B
**1999**, 464, 25. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D
**2001**, 63, 044005. [Google Scholar] [CrossRef] [Green Version] - Born, M.; Infeld, L. Foundations of the new field theory. Proc. Royal Soc. (Lond.) A
**1934**, 144, 425. [Google Scholar] [CrossRef] - Gitman, D.M.; Shabad, A.E. A note on “Electron self-energy in logarithmic electrodynamics” by P. Gaete and J. Helayël-Neto. Eur. Phys. J. C
**2014**, 74, 3186. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. A model of nonlinear electrodynamics. Ann. Phys.
**2015**, 353, 299. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. Nonlinear arcsin-electrodynamics. Ann. Phys. (Berlin)
**2015**, 527, 397. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. Modified nonlinear model of arcsin-electrodynamics. Commun. Theor. Phys.
**2016**, 66, 59. [Google Scholar] [CrossRef] - Heisenberg, W.; Euler, H. Folgerungen aus der diracschen theorie des positrons. Z. Physik
**1936**, 98, 714. [Google Scholar] [CrossRef] - García-Salcedo, R.; Breton, N. Born–Infeld cosmologies. Int. J. Mod. Phys. A
**2000**, 15, 4341. [Google Scholar] [CrossRef] - Camara, C.S.; de Garcia Maia, M.R.; Carvalho, J.C.; Lima, J.A.S. Nonsingular FRW cosmology and nonlinear electrodynamics. Phys. Rev. D
**2004**, 69, 123504. [Google Scholar] [CrossRef] [Green Version] - Novello, M.; Bergliaffa, S.E.P.; Salim, J.M. Nonlinear electrodynamics and the acceleration of the universe. Phys. Rev. D
**2004**, 69, 127301. [Google Scholar] [CrossRef] [Green Version] - Novello, M.; Goulart, E.; Salim, J.M.; Bergliaffa, S.E.P. Cosmological effects of nonlinear electrodynamics. Class. Quant. Grav.
**2007**, 24, 3021. [Google Scholar] [CrossRef] [Green Version] - Vollick, D.N. Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation. Phys. Rev. D
**2008**, 78, 063524. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. Universe acceleration and nonlinear electrodynamicsv. Phys. Rev. D
**2015**, 92, 123523. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. Nonlinear electromagnetic fields as a source of universe acceleration. Int. J. Mod. Phys. A
**2016**, 31, 1650058. [Google Scholar] [CrossRef] - Kruglov, S.I. Acceleration of universe by nonlinear electromagnetic fields. Int. J. Mod. Phys. D
**2016**, 25, 1640002. [Google Scholar] [CrossRef] [Green Version] - Ali, A.; Saifullah, K. Asymptotic magnetically charged non-singular black hole and its thermodynamics. Phys. Lett. B
**2019**, 792, 276. [Google Scholar] [CrossRef] - Mazharimousavi, S.H.; Halilsoy, M. Note on regular magnetic black hole. Phys. Lett. B
**2019**, 796, 123. [Google Scholar] [CrossRef] - Kruglov, S.I. Black hole as a magnetic monopole within exponential nonlinear electrodynamics. Ann. Phys.
**2017**, 378, 59. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. Nonlinear Electrodynamics and Magnetic Black Holes. Ann. Phys. (Berlin)
**2017**, 529, 1700073. [Google Scholar] [CrossRef] [Green Version] - Myung, Y.S.; Kim, Y.-W.; Park, Y.-J. Thermodynamics of regular black hole. Gen. Rel. Grav.
**2009**, 41, 1051. [Google Scholar] [CrossRef] [Green Version] - Tharanath, R.; Suresh, J.; Kuriakose, V.C. Phase transitions and geometrothermodynamics of regular black holes. Gen. Rel. Grav.
**2015**, 47, 46. [Google Scholar] [CrossRef] [Green Version] - Kruglov, S.I. On a model of magnetically charged black hole with nonlinear electrodynamics. Universe
**2018**, 4, 66. [Google Scholar] [CrossRef] [Green Version] - Myung, Y.S.; Kim, Y.-W.; Park, Y.-J. Quantum cooling evaporation process in regular black holes. Phys. Lett. B
**2007**, 656, 221. [Google Scholar] [CrossRef] [Green Version] - Fan, Z.Y.; Wang, X.B. Construction of Regular Black Holes in General Relativity. Phys. Rev. D
**2016**, 94, 24027. [Google Scholar] [CrossRef] [Green Version] - Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43, 199. [Google Scholar] [CrossRef] - Novikov, I.D.; Frolov, V.P. Physics of Black Holes; Kluver Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Bronnikov, K.A. Nonlinear electrodynamics, regular black holes and wormholes. Int. J. Mod. Phys. D
**2018**, 27, 1841005. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The plot of the function $f\left(x\right)$ for $B=1$ and $C=0$ (${m}_{0}=0$). The dashed-dotted line corresponds to $A=6$, the solid line corresponds to $A=2$ and the dashed line corresponds to $A=3.93$.

**Figure 2.**The plot of the function ${T}_{H}\sqrt{q}{\beta}^{1/4}$ vs. horizons ${x}_{h}$ for $C=0$ (${m}_{0}=0$). The dashed-dotted line corresponds to $B=10$, the solid line corresponds to $B=1$ and the dashed line corresponds to $B=5$.

**Figure 3.**The plot of the function ${C}_{q}G/\left(\sqrt{\beta}q\right)$ vs. ${x}_{h}$ for $C=0$ (${m}_{0}=0$). The dashed-dotted line corresponds to $B=10$, the solid line corresponds to $B=1$ and the dashed line corresponds to $B=5$.

A | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 |
---|---|---|---|---|---|---|---|---|

${x}_{-}$ | 1.56 | 1.04 | 0.88 | 0.78 | 0.72 | 0.68 | 0.64 | 0.54 |

${x}_{+}$ | 2.11 | 3.58 | 4.71 | 5.78 | 6.82 | 7.84 | 8.87 | 13.92 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kruglov, S.I.
Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics. *Universe* **2019**, *5*, 225.
https://doi.org/10.3390/universe5120225

**AMA Style**

Kruglov SI.
Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics. *Universe*. 2019; 5(12):225.
https://doi.org/10.3390/universe5120225

**Chicago/Turabian Style**

Kruglov, Sergey I.
2019. "Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics" *Universe* 5, no. 12: 225.
https://doi.org/10.3390/universe5120225