Free Scalar Fields in Finite Volume Are Holographic
Abstract
:1. Introduction
2. Vacuum Degrees of Freedom in Finite Volume
3. Discussion
Funding
Conflicts of Interest
References
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Carter, B.; Hawking, S. The Four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Hawking, S.W. Black Holes and Thermodynamics. Phys. Rev. D 1976, 13, 191–197. [Google Scholar] [CrossRef]
- Gibbons, G.; Hawking, S. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 1977, 15, 2738–2751. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G. Dimensional Reduction in Quantum Gravity; Salamfest, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; pp. 284–296. [Google Scholar]
- Banks, T.; Kaplan, D.B.; Nelson, A.E. Cosmological implications of dynamical supersymmetry breaking. Phys. Rev. D 1994, 49, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Fischler, W.; Susskind, L. Holography and cosmology. arXiv 1998, arXiv:hep-th/9806039. [Google Scholar]
- Bak, D.; Rey, S.J. Cosmic holography. Class. Quant. Grav. 2000, 17, L83. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. A Covariant entropy conjecture. J. High Energy Phys. 1999, 1999, 004. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. The Holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Quantum Compositeness of Gravity: Black Holes, AdS and Inflation. J. Cosmol. Astropart. Phys. 2014, 2014, 023. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R.; Casini, H.; Fisher, Z.; Maldacena, J. Entropy on a null surface for interacting quantum field theories and the Bousso bound. Phys. Rev. D 2015, 91, 084030. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C.; Lüst, D. Classical Limit of Black Hole Quantum N-Portrait and BMS Symmetry. Phys. Lett. B 2016, 753, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G. Area Law Saturation of Entropy Bound from Perturbative Unitarity in Renormalizable Theories. arXiv 2019, arXiv:1906.03530. [Google Scholar]
- Dvali, G. Unitarity Entropy Bound: Solitons and Instantons. arXiv 2019, arXiv:1907.07332. [Google Scholar]
- Zeldovich, Y.B. Cosmological Constant and Elementary Particles. JETP Lett. 1967, 6, 316. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Krasinski, A.; Zeldovich, Y.B. The Cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The Cosmological constant. Ann. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Gardner, C.L. Primordial inflation and present day cosmological constant from extra dimensions. Phys. Lett. B 2002, 524, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Ratra, B. The Cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Cosmological constant: The Weight of the vacuum. Phys. Rept. 2003, 380, 235–320. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Why do we observe a small but nonzero cosmological constant? Class. Quant. Grav. 2002, 19, L167–L174. [Google Scholar] [CrossRef] [Green Version]
- Straumann, N. The History of the cosmological constant problem. In Proceedings of the 18th IAP Colloquium on the Nature of Dark Energy: Observational and Theoretical Results on the Accelerating Universe, Paris, France, 1–5 July 2002. [Google Scholar]
- Giddings, S.B. The Fate of four-dimensions. Phys. Rev. 2003, D68, 026006. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Cosmological constant problem. In Proceedings of the 6th Workshop, Quantum Field Theory under the Influence of External Conditions QFEXT’03, Norman, OK, USA, 15–19 September 2003; pp. 337–343. [Google Scholar]
- Ossola, G.; Sirlin, A. Considerations concerning the contributions of fundamental particles to the vacuum energy density. Eur. Phys. J. C 2003, 31, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Sundrum, R. Fat euclidean gravity with small cosmological constant. Nucl. Phys. B 2004, 690, 302–330. [Google Scholar] [CrossRef] [Green Version]
- Zee, A. Dark energy and the nature of the graviton. Phys. Lett. B 2004, 594, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Vacuum fluctuations of energy density can lead to the observed cosmological constant. Class. Quant. Grav. 2005, 22, L107–L110. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G.E. Cosmological constant and vacuum energy. Annalen Phys. 2005, 14, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S. A Quantum gravitational relaxation of the cosmological constant. Phys. Lett. B 2005, 629, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X. Cosmological constant and noncommutative spacetime. Europhys. Lett. 2007, 77, 19902. [Google Scholar] [CrossRef]
- Freese, K.; Liu, J.T.; Spolyar, D. Devaluation: A Dynamical mechanism for a naturally small cosmological constant. Phys. Lett. B 2006, 634, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Froggatt, C.; Nevzorov, R.; Nielsen, H.B. On the smallness of the cosmological constant in SUGRA models. Nucl. Phys. B 2006, 743, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Itzhaki, N. A Comment on Technical Naturalness and the Cosmological Constant. J. High Energy Phys. 2006, 2006, 020. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R.; Harnik, R.; Kribs, G.D.; Perez, G. Predicting the Cosmological Constant from the Causal Entropic Principle. Phys. Rev. D 2007, 76, 043513. [Google Scholar] [CrossRef] [Green Version]
- Cline, J.M.; Frey, A.R.; Holder, G. Predictions of the causal entropic principle for environmental conditions of the universe. Phys. Rev. D 2008, 77, 063520. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R.; Hall, L.J.; Nomura, Y. Multiverse Understanding of Cosmological Coincidences. Phys. Rev. D 2009, 80, 063510. [Google Scholar] [CrossRef] [Green Version]
- Larsen, G.; Nomura, Y.; Roberts, H.L.L. The Cosmological Constant in the Quantum Multiverse. Phys. Rev. D 2011, 84, 123512. [Google Scholar] [CrossRef] [Green Version]
- Martin, J. Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask). C. R. Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P. The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics. In Proceedings of the 100th Les Houches Summer School: Post-Planck Cosmology, Les Houches, France, 8 July–2 August 2013; pp. 149–197. [Google Scholar] [CrossRef] [Green Version]
- Burgess, C.P.; van Nierop, L.; Williams, M. Distributed SUSY breaking: Dark energy, Newton’s law and the LHC. J. High Energy Phys. 2014, 2014, 034. [Google Scholar] [CrossRef] [Green Version]
- Sola, J. Cosmological constant and vacuum energy: Old and new ideas. J. Phys. Conf. Ser. 2013, 453, 012015. [Google Scholar] [CrossRef]
- Albareti, F.D.; Cembranos, J.A.R.; Maroto, A.L. The large-scale structure of vacuum. Int. J. Mod. Phys. D 2014, 23, 1442019. [Google Scholar] [CrossRef] [Green Version]
- Avelino, P.P. Could the dynamics of the Universe be influenced by what is going on inside black holes? J. Cosmol. Astropart. Phys. 2015, 2015, 024. [Google Scholar] [CrossRef] [Green Version]
- Banks, T. Supersymmetry Breaking and the Cosmological Constant. Int. J. Mod. Phys. A 2014, 29, 1430010. [Google Scholar] [CrossRef] [Green Version]
- Barrau, A.; Linsefors, L. Our Universe from the cosmological constant. J. Cosmol. Astropart. Phys. 2014, 2014, 037. [Google Scholar] [CrossRef] [Green Version]
- Demir, D.A. Riemann-Eddington theory: Incorporating matter, degravitating the cosmological constant. Phys. Rev. D 2014, 90, 064017. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Kashyap, G.; Mitra, S. The fine tuning of the cosmological constant in a conformal model. Int. J. Mod. Phys. A 2015, 30, 1550171. [Google Scholar] [CrossRef] [Green Version]
- Mikovic, A.; Vojinovic, M. Solution to the Cosmological Constant Problem in a Regge Quantum Gravity Model. Europhys. Lett. 2015, 110, 40008. [Google Scholar] [CrossRef] [Green Version]
- Tasinato, G. A small cosmological constant from Abelian symmetry breaking. Class. Quant. Grav. 2014, 31, 225004. [Google Scholar] [CrossRef] [Green Version]
- Bass, S.D. Vacuum energy and the cosmological constant. Mod. Phys. Lett. A 2015, 30, 1540033. [Google Scholar] [CrossRef] [Green Version]
- Bull, P. Beyond ΛCDM: Problems, solutions, and the road ahead. Phys. Dark Univ. 2016, 12, 56–99. [Google Scholar] [CrossRef] [Green Version]
- Fritzsch, H.; Sola, J. Fundamental constants and cosmic vacuum: The micro and macro connection. Mod. Phys. Lett. A 2015, 30, 1540034. [Google Scholar] [CrossRef] [Green Version]
- Hamada, Y.; Kawai, H.; Oda, K.y. Eternal Higgs inflation and the cosmological constant problem. Phys. Rev. D 2015, 92, 045009. [Google Scholar] [CrossRef] [Green Version]
- Hertzberg, M.P.; Masoumi, A. Can Compactifications Solve the Cosmological Constant Problem? J. Cosmol. Astropart. Phys. 2016, 2016, 053. [Google Scholar] [CrossRef] [Green Version]
- Padilla, A. Lectures on the Cosmological Constant Problem. arXiv 2015, arXiv:1502.05296. [Google Scholar]
- Sola, J. The cosmological constant and entropy problems: mysteries of the present with profound roots in the past. Int. J. Mod. Phys. D 2015, 24, 1544027. [Google Scholar] [CrossRef]
- Linde, A. On inflation, cosmological constant, and SUSY breaking. J. Cosmol. Astropart. Phys. 2016, 2016, 002. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Mass Generation, the Cosmological Constant Problem, Conformal Symmetry, and the Higgs Boson. Prog. Part. Nucl. Phys. 2017, 94, 125–183. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Do We Really Understand the Cosmos? C. R. Phys. 2016, 18, 275–291. [Google Scholar] [CrossRef]
- Solà, J. Cosmological constant vis-a-vis dynamical vacuum: bold challenging the ΛCDM. Int. J. Mod. Phys. A 2016, 31, 1630035. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, T. A New approach to quantum statistical mechanics. Prog. Theor. Phys. 1955, 14, 351–378. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.W.; Glotzer, S.C. A squeezed-state primer. Am. J. Phys. 1988, 56, 318–328. [Google Scholar] [CrossRef]
- Toms, D.J. Vacuum solutions for scalar fields confined in cavities. arXiv 2002, arXiv:hep-th/0207056. [Google Scholar]
- Gouveia, T.; Fiolhais, M.C.N.; Birman, J.L. A relativistic spin zero particle in a spherical cavity. Eur. J. Phys. 2015, 36, 055021. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázs, C. Free Scalar Fields in Finite Volume Are Holographic. Universe 2019, 5, 223. https://doi.org/10.3390/universe5120223
Balázs C. Free Scalar Fields in Finite Volume Are Holographic. Universe. 2019; 5(12):223. https://doi.org/10.3390/universe5120223
Chicago/Turabian StyleBalázs, Csaba. 2019. "Free Scalar Fields in Finite Volume Are Holographic" Universe 5, no. 12: 223. https://doi.org/10.3390/universe5120223
APA StyleBalázs, C. (2019). Free Scalar Fields in Finite Volume Are Holographic. Universe, 5(12), 223. https://doi.org/10.3390/universe5120223