Anomalous Electromagnetic Transport in Compact Stars
Abstract
1. Introduction
2. The MCDCW Phase
3. Axion Electrodynamics in the MDCDW Phase
4. Anomalous Transport in the MDCDW Phase
5. Conclusions
Acknowledgments
Author Contributions
References
- Demorest, P.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. Shapiro delay measurement of a two solar mass neutron star. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, J.; Paulo, C.C.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; et al. A massive pulsar in a compact relativistic binary. Science 2013, 340, 1233232. [Google Scholar] [CrossRef] [PubMed]
- Ambartsumyan, V.A.; Saakyan, G.S. The degenerate superdense gas of elementary particles. Sov. Astron. 1960, 4, 187–201. [Google Scholar]
- Glendenning, N.K. The hyperon composition of neutron stars. Phys. Lett. B 1982, 114, 392–396. [Google Scholar] [CrossRef]
- Glendenning, N.K. Neutron stars are giant hypernuclei? Astrophys. J. 1985, 293, 470–493. [Google Scholar] [CrossRef]
- Weber, F.; Weigel, M.K. Baryon composition and macroscopic properties of neutron stars. Nucl. Phys. A 1989, 505, 779–822. [Google Scholar] [CrossRef]
- Knorren, R.; Prakash, M.; Ellis, P.J. Strangeness in hadronic stellar matter. Phys. Rev. C 1995, 52, 3470–3482. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Sagawa, H.; Wu, C.-X.; Zhao, E.-G. Hypernuclei in the deformed Skyrme-Hartree-Fock approach. Phys. Rev. C 2007, 76, 034312. [Google Scholar]
- Zhou, X.-R.; Polls, A.; Schulze, H.-J.; Vidaña, I. Lambda hyperons and the neutron drip line. Phys. Rev. C 2008, 78, 054306. [Google Scholar] [CrossRef]
- Sammarruca, F. Effects of Lambda hyperons on the nuclear equation of state in a Dirac-Brueckner-Hartree-Fock model. Phys. Rev. C 2009, 79, 034301. [Google Scholar] [CrossRef]
- Lonardoni, D.; Pederiva, F.; Gandolfi, S. Accurate determination of the interaction between hyperons and nucleons from auxiliary field diffusion Monte Carlo calculations. Phys. Rev. C 2014, 89, 014314. [Google Scholar] [CrossRef]
- Katayama, T.; Saito, K. Hyperons in neutron stars. Phys. Lett. B 2015, 747, 43–47. [Google Scholar] [CrossRef]
- Glendenning, N.K. Hyperons in neutron stars. Z. Phys. A 1987, 326, 57–64. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Baldo, M.; Lombardo, U.; Cugnon, J.; Lejeune, A. Hypernuclear matter in the Bruckner-Hartree-Fock approximation. Phys. Lett. B 1995, 355, 21–26. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Baldo, M.; Lombardo, U.; Cugnon, J.; Lejeune, A. Hyperonic nuclear matter in Bruckner theory. Phys. Rev. C 1998, 57, 704. [Google Scholar] [CrossRef]
- Baldo, M.; Burgio, G.F.; Schulze, H.-J. Hyperon stars in the Brueckner-Bethe-Goldstone theory. Phys. Rev. C 2000, 61, 055801. [Google Scholar] [CrossRef]
- Vidaña, I.; Polls, A.; Ramos, A.; Engvik, L.; Hjorth-Jensen, M. Hyperon-hyperon interactions and properties of neutron star matter. Phys. Rev. C 2000, 62, 035801. [Google Scholar] [CrossRef]
- Schulze, H.-J.; Polls, A.; Ramos, A.; Vidaña, I. Maximum mass of neutron stars. Phys. Rev. C 2006, 73, 058801. [Google Scholar] [CrossRef]
- Djapo, H.; Schaefer, B.-J.; Wambach, J. Appearance of hyperons in neutron stars. Phys. Rev. C 2010, 81, 035803. [Google Scholar]
- Schulze, H.-J.; Rijken, T. Maximum mass of hyperon stars with the Nijmegen ESC-08 model. Phys. Rev. C 2011, 84, 035801. [Google Scholar] [CrossRef]
- Bednarek, I.; Haensel, P.; Zdunik, L.; Bejger, M.; Mάnka, R. Hyperons in neutron-star cores and two-solar-mass pulsar. Astron. Astrophys. 2012, 157, 543. [Google Scholar]
- Weissenborn, S.; Chatterjee, D.; Schaffner-Bielich, J. Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry. Phys. Rev. C 2012, 85, 065802. [Google Scholar] [CrossRef]
- Weissenborn, S.; Chatterjee, D.; Schaffner-Bielich, J. Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry (Erratum). Phys. Rev. C 2014, 90, 019904. [Google Scholar] [CrossRef]
- Oertel, M.; Providência, C.; Gulminelli, F.; Raduta, A.R. Hyperons in neutron star matter within relativistic mean-field models. J. Phys. G 2015, 42, 075202. [Google Scholar] [CrossRef]
- Maslov, K.A.; Kolomeitsev, E.E.; Voskresensky, D.N. Solution of the hyperon puzzle within a relativistic mean-field model. Phys. Lett. B 2015, 748, 369–375. [Google Scholar] [CrossRef]
- Takatsuka, T.; Nishizaki, S.; Yamamoto, Y. Necessity of extra repulsion in hypernuclear systems: Suggestion from neutron stars. Eur. Phys. J. A 2002, 13, 213. [Google Scholar] [CrossRef]
- Takatsuka, T.; Nishizaki, S.; Tamagaki, R. Three-Body force as an extra repulsion suggested from hyperon-mixed neutron stars. Prog. Theor. Phys. Suppl. 2002, 174, 80–83. [Google Scholar] [CrossRef]
- Vidaña, I.; Logoteta, D.; Providência, C.; Polls, A.; Bombaci, I. Estimation of the effect of hyperonic three-body forces on the maximum mass of neutron stars. Eur. Phys. Lett. 2011, 94, 11002. [Google Scholar]
- Yamamoto, Y.; Furumoto, T.; Yasutake, B.; Rijken, T.A. Multi-pomeron repulsion and the neutron-star mass. Phys. Rev. C 2013, 88, 022801. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Furumoto, T.; Yasutake, B.; Rijken, T.A. Hyperon mixing and universal many-body repulsion in neutron stars. Phys. Rev. C 2014, 90, 045805. [Google Scholar] [CrossRef]
- Lonardoni, D.; Lovato, A.; Gandolfi, S.; Pederiva, F. Hyperon puzzle: Hints from Quantum Monte Carlo calculations. Phys. Rev. Lett. 2015, 114, 092301. [Google Scholar] [CrossRef] [PubMed]
- Weber, F. Strange quark matter and compact stars. Prog. Part Nucl. Phys. 2005, 54, 193–288. [Google Scholar] [CrossRef]
- Lattimer, J.M. Neutron star equation of state. New Astron. Rev. 2010, 54, 101. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272. [Google Scholar] [CrossRef]
- Nice, D.J.; Splaver E., M.; Stairs, I.H.; Loehmer, O.; Jessner, A.; Kramer, M.; Cordes, J.M. A 2.1 solar mass pulsar measured by relativistic orbital decay. Astrophys. J. 2005, 634, 1242–1249. [Google Scholar] [CrossRef]
- Barret, D.; Olive, J.F.; Miller, M.C. An abrupt drop in the coherence of the lower kilohertz QPO in 4U 1636-536. Mon. Not. Roy. Astron. Soc. 2005, 361, 855–860. [Google Scholar] [CrossRef]
- Trümper, J.E.; Burwitz, V.; Haberl, F.; Zavlin, V.E. The puzzles of RX J1856.5-3754: Neutron star or quark star? Nucl. Phys. Proc. Suppl. 2004, 132, 560–565. [Google Scholar] [CrossRef]
- Özel, F. Soft equations of state for neutron-star matter ruled out by EXO 0748-676. Nature 2006, 441, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Alford, M.G.; Schmitt, A.; Rajagopal, K.; Schäfer, T. Color superconductivity in dense quark matter. Rev. Mod. Phys. 2008, 80, 1455–1515. [Google Scholar] [CrossRef]
- Huang, M. QCD phase diagram at high temperature and density. arXiv, 2010; arXiv:1001.3216. [Google Scholar]
- Schmitt, A. Dense Matter in Compact Stars, Lecture Notes in Physics v. 811; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef]
- Kitazawa, M.; Koide, T.; Kunihiro, T.; Nemoto, Y. Chiral and color superconducting phase transitions with vector interaction in a simple model. Prog. Theor. Phys. 2002, 108, 929–951. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V.; Paulucci, L. Gluon effects on the equation of state of color superconducting strange stars. Phys. Rev. D 2015, 92, 043010. [Google Scholar] [CrossRef]
- Deryagin, D.V.; Grigoriev, D.Y.; Rubakov, V.A. Standing wave ground state in high density, zero temperature QCD at large N(c). Int. J. Mod. Phys. A 1992, 7, 659–681. [Google Scholar] [CrossRef]
- Shuster, E.; Son, D.T. On finite density QCD at large N(c). Nucl. Phys. B 2000, 573, 434–446. [Google Scholar] [CrossRef]
- Park, B.-Y.; Rho, M.; Wirzba, A.; Zahed, I. Dense QCD: Overhauser or BCS pairing? Phys. Rev. D 2000, 62, 034015. [Google Scholar] [CrossRef]
- Kojo, T.; Hidaka, Y.; McLerran, L.; Pisarski, R.D. Quarkyonic chiral spirals. Nucl. Phys. A 2010, 843, 37–58. [Google Scholar] [CrossRef]
- Kojo, T.; Hidaka, Y.; Fukushima, K.; McLerran, L.D.; Pisarski, R.D. Interweaving chiral spirals. Nucl. Phys. A 2012, 875, 94–138. [Google Scholar] [CrossRef]
- Kojo, T.; Pisarski, R.D.; Tsvelik, A.M. Covering the Fermi surface with patches of quarkyonic chiral spirals. Phys. Rev. D 2010, 82, 074015. [Google Scholar] [CrossRef]
- Kojo, T. A (1+1) dimensional example of quarkyonic matter. Nucl. Phys. A 2012, 877, 70–94. [Google Scholar] [CrossRef]
- Nickel, D. How many phases meet at the chiral critical point? Phys. Rev. Lett. 2009, 103, 072301. [Google Scholar] [CrossRef] [PubMed]
- Nickel, D. Inhomogeneous phases in the Nambu-Jona-Lasino and quark-meson model. Phys. Rev. D 2009, 80, 074025. [Google Scholar] [CrossRef]
- Rapp, R.; Shuryak, E.; Zahed, I. A Chiral crystal in cold QCD matter at intermediate densities? Phys. Rev. D 2001, 63, 034008. [Google Scholar] [CrossRef]
- Gubina, N.V.; Klimenko, K.G.; Kurbanov, S.G.; Zhukovsky, V.C. Inhomogeneous charged pion condensation phenomenon in the NJL2 model with quark number and isospin chemical potentials. Phys. Rev. D 2012, 86, 085011. [Google Scholar] [CrossRef]
- Carignano, S.; Nickel, D.; Buballa, M. Influence of vector interaction and Polyakov loop dynamics on inhomogeneous chiral symmetry breaking phases. Phys. Rev. D 2010, 82, 054009. [Google Scholar] [CrossRef]
- Abuki, H.; Ishibashi, D.; Suzuki, K. Crystalline chiral condensates off the tricritical point in a generalized Ginzburg-Landau approach. Phys. Rev. D 2012, 85, 074002. [Google Scholar] [CrossRef]
- Klevansky, S. The Nambu-Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 1992, 64, 649–708. [Google Scholar] [CrossRef]
- Anglani, R.; Casalbuoni, R.; Ciminale, M.; Ippolito, N.; Gatto, R.; Mannarelli, M.; Ruggieri, M. Crystalline color superconductors. Rev. Mod. Phys. 2014, 86, 509–561. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Gatto, R.; Mannarelli, M.; Nardulli, G.; Ruggieri, M. Meissner masses in the gCFL phase of QCD. Phys. Lett. B 2005, 605, 362–368. [Google Scholar] [CrossRef]
- Fukushima, K. Analytical and numerical evaluation of the Debye and Meissner masses in dense neutral three-flavor quark matter. Phys. Rev. D 2005, 72, 074002. [Google Scholar] [CrossRef]
- Reddy, S.; Rupak, G. Phase structure of 2-flavor quark matter: Heterogeneous superconductors. Phys. Rev. C 2005, 71, 025201. [Google Scholar] [CrossRef]
- Fukushima, K. Characterizing the Larkin-Ovchinnikov-Fulde-Ferrel phase induced by the chromomagnetic instability. Phys. Rev. D 2006, 73, 094016. [Google Scholar] [CrossRef]
- Hashimoto, M. Manifestation of instabilities in Nambu-Jona-Lasinio type models. Phys. Lett. B 2006, 642, 93–99. [Google Scholar] [CrossRef][Green Version]
- Huang, M. Spontaneous current generation in the 2SC phase. Phys. Rev. D 2006, 73, 045007. [Google Scholar] [CrossRef]
- Larkin, A.I.; Ovchinnikov, Y.N. Nonuniform state of superconductors. Sov. Phys. JETP 1965, 20, 762–770. [Google Scholar]
- Fulde, P.; Ferrell, R.A. Superconductivity in a strong spin-exchange field. Phys. Rev. 1964, 135, A550–A563. [Google Scholar] [CrossRef]
- Alford, M.G.; Bowers, J.A.; Rajagopal, K. Crystalline color superconductivity. Phys. Rev. D 2001, 63, 074016. [Google Scholar] [CrossRef]
- Bowers, J.A.; Rajagopal, K. The crystallography of color superconductivity. Phys. Rev. D 2001, 66, 065002. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 2004, 76, 263–320. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V. Chromomagnetic instability and induced magnetic field in neutral two-flavor color superconductivity. Phys. Rev. D 2007, 76, 114012. [Google Scholar] [CrossRef]
- Dong, L.; Shapiro, S.L. Cold equation of state in a strong magnetic field - Effects of inverse beta-decay. ApJ 1991, 383, 745–751. [Google Scholar]
- Ferrer, E.J.; de la Incera, V.; Keith, J.P.; Portillo, I.; Springsteen, P.L. Equation of state of a dense and magnetized fermion system. Phys. Rev. C 2010, 82, 065802. [Google Scholar] [CrossRef]
- Fushiki, I.; Gudmundsson, E.H.; Pethick, C.J. Surface structure of neutron stars with high magnetic fields. Astrophys. J. 1989, 342, 958–975. [Google Scholar] [CrossRef]
- Abrahams, A.M.; Shapiro, S.L. Equation of state in a strong magnetic field-Finite temperature and gradient corrections. Astrophys. J. 1991, 374, 652–667. [Google Scholar] [CrossRef]
- Fushiki, I.; Gudmundsson, E.H.; Yngvason, J.; Pethick, C.J. Matter in a magnetic field in the Thomas-Fermi and related theories. Ann. Phys. 1992, 216, 29–72. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Bandyopadhyay, D.; Pal, S. Dense nuclear matter in a strong magnetic field. Phys. Rev. Lett. 1997, 78, 2898–2901. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Chakrabarty, S.; Dey, P. Rapid cooling of magnetized neutron stars. Phys. Rev. D 1998, 58, 121301. [Google Scholar] [CrossRef]
- Broderick, A.; Prakash, M.; Lattimer, J.M. The Equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 2000, 537, 351–367. [Google Scholar] [CrossRef]
- Cardall, C.Y.; Prakash, M.; Lattimer, J.M. Effects of strong magnetic fields on neutron star structure. Astrophys. J. 2001, 554, 322–339. [Google Scholar] [CrossRef]
- Suh, I.-S.; Mathews, G.J. Cold ideal equation of state for strongly magnetized neutron star matter: Effects on muon production and pion condensation. Astrophys. J. 2001, 546, 1126–1136. [Google Scholar] [CrossRef]
- Perez-Martinez, A.; Perez-Rojas, H.; Mosquera-Cuesta, H.J. Magnetic collapse of a neutron gas: Can magnetars indeed be formed? Eur. Phys. J. C 2003, 29, 111–123. [Google Scholar] [CrossRef]
- Wei, F.X.; Mao, G.J.; Ko, C.M.; Kisslinger, L.S.; Stoecker, H.; Greiner, W. Effect of isovector-scalar meson on neutron star matter in strong magnetic fields. J. Phys. G 2006, 32, 47–61. [Google Scholar] [CrossRef]
- Hardings, A.K.; Lai, D. Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 2006, 69, 2631. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, P.-Q.; Liu, L.-G. The influence of the magnetic field on the properties of neutron star matter. Mod. Phys. Lett. A 2007, 22, 623–630. [Google Scholar] [CrossRef]
- Rabhi, A.; Providencia, C.; da Providencia, J. Stellar matter with a strong magnetic field within density-dependent relativistic models. J. Phys. G 2008, 35, 125201. [Google Scholar] [CrossRef]
- Gonzalez-Felipe, R.; Perez-Martinez, A.; Perez-Rojas, H.; Orsaria, M. Magnetized strange quark matter and magnetized strange quark stars. Phys. Rev. C 2008, 77, 015807. [Google Scholar] [CrossRef]
- Yue, P.; Yang, F.; Shen, H. Properties of hyperonic matter in strong magnetic fields. Phys. Rev. C 2009, 79, 025803. [Google Scholar] [CrossRef]
- Menezes, D.P.; Benghi Pinto, M.; Avancini, S.S.; Perez Martinez, A.; Providencia, C. Quark matter under strong magnetic fields in the Nambu-Jona-Lasinio Model. Phys. Rev. C 2009, 79, 035807. [Google Scholar] [CrossRef]
- Menezes, D.P.; Benghi Pinto, M.; Avancini, S.S.; Providencia, C. Quark matter under strong magnetic fields in the SU(3) Nambu-Jona-Lasinio model. Phys. Rev. C 2009, 80, 065805. [Google Scholar] [CrossRef]
- Paulucci, L.; Ferrer, E.J.; de la Incera, V.; Horvath, J.E. Equation of state for the MCFL phase and its implications for compact star models. Phys. Rev. D 2011, 83, 043009. [Google Scholar] [CrossRef]
- Fayazbakhsh, S.; Sadooghi, N. Anomalous magnetic moment of hot quarks, inverse magnetic catalysis, and reentrance of the chiral symmetry broken phase. Phys. Rev. D 2014, 90, 105030. [Google Scholar] [CrossRef]
- Carignano, S.; Ferrer, E.J.; de la Incera, V.; Paulucci, L. Crystalline chiral condensates as a component of compact stars. Phys. Rev. D 2015, 92, 105018. [Google Scholar] [CrossRef]
- Canuto, V.; Chiu, H.Y. Quantum theory of an electron gas in intense magnetic fields. Phys. Rev. 1968, 173, 1210–1219. [Google Scholar] [CrossRef]
- Canuto, V.; Chiu, H.Y. Thermodynamic properties of a magnetized fermi gas. Phys. Rev. 1968, 173, 1220. [Google Scholar] [CrossRef]
- Canuto, V.; Chiu, H.Y. Magnetic moment of a magnetized fermi gas. Phys. Rev. 1968, 173, 1229–1235. [Google Scholar] [CrossRef]
- Chiu, H.Y.; Canuto, V.; Fassio-Canuto, L. Quantum Theory of an Electron Gas with Anomalous Magnetic Moments in Intense Magnetic Fields. Phys. Rev. 1968, 176, 1438–1442. [Google Scholar] [CrossRef]
- Chaichian, M.; Masood, S.S.; Montonen, C.; Perez Martinez, A.; Perez Rojas, H. Quantum magnetic and gravitational collapse. Phys. Rev. Lett. 2000, 84, 5261–5264. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, S. Quark matter in strong magnetic field. Phys. Rev. D 1996, 54, 1306–1316. [Google Scholar] [CrossRef]
- Broderick, A.; Prakash, M.; Lattimer, J.M. Effects of strong magnetic fields in strange baryonic matter. Phys. Lett. B 2002, 531, 167–174. [Google Scholar] [CrossRef]
- Khalilov, V.R. Macroscopic effects in cold magnetized nucleons and electrons with anomalous magnetic moments. Phys. Rev. D 2002, 65, 056001. [Google Scholar] [CrossRef]
- Mao, G.; Kondratyev, V.N.; Iwamoto, A.; Li, Z.; Wu, X.; Greiner, W. Neutron star composition in strong magnetic fields. Chin. Phys. Lett. 2003, 20, 1238–1241. [Google Scholar]
- Mao, G.; Iwamoto, A.; Li, Z. Study of the neutron star structure in strong magnetic fields including the anomalous magnetic moments. Chin. J. Astron. Astrophys. 2003, 3, 359–374. [Google Scholar] [CrossRef]
- Perez Martinez, A.; Perez Rojas, H.; Mosquera Cuesta, H.J.; Boligan, M.; Orsaria, M.G. Quark stars and quantum-magnetically induced collapse. Int. J. Mod. Phys. D 2005, 14, 1959. [Google Scholar] [CrossRef]
- Felipe, R.G.; Martinez, A.P.; Rojas, H.P.; Orsaria, M. Magnetized strange quark matter and magnetized strange quark stars. Phys. Rev. C 2008, 77, 015807. [Google Scholar] [CrossRef]
- Perez-Garcia, M.A.; Navarro, J.; Polls, A. Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces. Phys. Rev. C 2009, 80, 025802. [Google Scholar] [CrossRef]
- Rabhi, A.; Pais, H.; Panda, P.K.; Providencia, C.J. Quark-hadron phase transition in a neutron star under strong magnetic fields. Phys. G 2009, 36, 115204. [Google Scholar] [CrossRef]
- Dexheimer, V.; Negreiros, R.; Schramm, S. Hybrid Stars in a strong magnetic field. Eur. Phys. J. A 2012, 48, 189. [Google Scholar] [CrossRef]
- Strickland, M.; Dexheimer, V.; Menezes, D.P. Bulk properties of a Fermi gas in a magnetic field. Phys. Rev. D 2012, 86, 125032. [Google Scholar] [CrossRef]
- Dong, J.; Lombardo, U.; Zuo, W.; Zhang, H. Dense nuclear matter and symmetry energy in strong magnetic fields. Nucl. Phys. A 2013, 898, 32–42. [Google Scholar] [CrossRef][Green Version]
- Casali, R.H.; Castro, L.B.; Menezes, D.P. Hadronic and hybrid stars subject to density dependent magnetic fields. Phys. Rev. C 2014, 89, 015805. [Google Scholar] [CrossRef]
- Manreza Paret, D.; Perez Martinez, A.; Ferrer E., J.; de la Incera, V. Effects of AMM on the EoS of magnetized dense systems. Astron. Nachr. 2014, 335, 685–690. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V.; Manreza Peret, D.; Perez Martinez, A.; Sanchez, A. Insignificance of the anomalous magnetic moment of charged fermions for the equation of state of a magnetized and dense medium. Phys. Rev. D 2015, 91, 085041. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V. Dissipationless Hall current in dense quark matter in a magnetic field. Phys. Lett. B 2017, 69, 208–212. [Google Scholar] [CrossRef]
- Burkov, A.A.; Balents, I. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 2011, 107, 127205. [Google Scholar] [CrossRef] [PubMed]
- Zyuzin, A.A.; Burkov, A.A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 2012, 86, 115133. [Google Scholar] [CrossRef]
- Frolov, I.E.; Zhukovsky, V.C.; Klimenko, K.G. Chiral density waves in quark matter within the Nambu-Jona-Lasinio model in an external magnetic field. Phys. Rev. D 2010, 82, 076002. [Google Scholar] [CrossRef]
- Tatsumi, T.; Nishiyama, K.; Karasawa, S. Novel Lifshitz point for chiral transition in the magnetic field. Phys. Lett. B 2015, 743, 66–70. [Google Scholar] [CrossRef]
- Wilczek, F. Two Applications of Axion Electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.J.; de la Incera, V.; Manuel, C. Magnetic color flavor locking phase in high density QCD. Phys. Rev. Lett. 2005, 152002. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.J.; de la Incera, V.; Manuel, C. Color-superconducting gap in the presence of a magnetic field. Nucl. Phys. B 2006, 747, 88–112. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V.; Manuel, C. Colour superconductivity in a strong magnetic field. J. Phys. A 2006, 39, 6349–6355. [Google Scholar] [CrossRef]
- Feng, B.; Ferrer, E.J.; de la Incera, V. Magnetoelectric effect in strongly magnetized color superconductivity. Phys. Lett. B 2011, 706, 232–238. [Google Scholar] [CrossRef][Green Version]
- Qi, X.-L.; Hughes, T.L.; Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Bermudez, A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.; Martin-Delgado, M.A. Wilson fermions and axion electrodynamics in optical lattices. Phys. Rev. Lett. 2010, 105, 190404. [Google Scholar] [CrossRef] [PubMed]
- Glendenning, N.K. Compact Stars, Nuclear Physics, Particle Physics, General Relativity; Springer: New York, NY, USA, 2000. [Google Scholar]
- Harding, A.K.; Lai, D. Physics of strongly magnetized neutron stars. Rept. Prog. Phys. 2006, 69, 2631–2708. [Google Scholar] [CrossRef]
- Spruit, H.C. Origin of neutron star magnetic fields. AIP Conf. Proc. 2008, 983, 391–398. [Google Scholar]
- Li, R.; Wang, J.-L.; Qi, X.-C.; Zhang, S. Dynamical axion field in topological magnetic insulators. Nat. Phys. 2010, 6, 284–288. [Google Scholar] [CrossRef]
- Ferrer, E.J.; de la Incera, V. Exploring dense and cold QCD in magnetic fields. Eur. Phys. J. A 2016, 52, 266. [Google Scholar] [CrossRef]
- Odyniec, G. The RHIC beam energy scan program in STAR and what’s next... J. Phys. Conf. Ser. 2013, 455, 012037. [Google Scholar] [CrossRef]
- Ablyazimov, T.; Abuhoza, A.; Adak, P.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. [CBM Collaboration] Challenges in QCD matter physics –The scientific program of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- Deng, W.-T.; Huang, X.-G. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 2012, 85, 044907. [Google Scholar] [CrossRef]
- Toneev, V.; Rogachevsky, O.; Voronyuk, V. Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions. Eur. Phys. J. A 2016, 52, 264. [Google Scholar] [CrossRef]
- Young, S.M.; Zaheer, S.; Teo, J.C.Y.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405. [Google Scholar] [CrossRef] [PubMed]
- Borisenko, S.; Gibson, Q.; Evtushinsky, D.; Zabolotnyy, V.; Buchner, B.; Cava, R.J. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 2014, 113, 027603. [Google Scholar] [CrossRef] [PubMed]
- Neupane, M.; Xu, S.Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.R.; Jeng, H.T.; Lin, H.; Bansil, A.; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 2014, 5, 3786. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.K.; Jiang, J.; Zhou, B.; Wang, Z.J.; Zhang, Y.; Weng, H.M.; Prabhakaran, D.; Mo, S.-K.; Peng, H.; Dudin, P.; et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mat. 2014, 13, 677–681. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, E.J.; De la Incera, V. Anomalous Electromagnetic Transport in Compact Stars. Universe 2018, 4, 54. https://doi.org/10.3390/universe4030054
Ferrer EJ, De la Incera V. Anomalous Electromagnetic Transport in Compact Stars. Universe. 2018; 4(3):54. https://doi.org/10.3390/universe4030054
Chicago/Turabian StyleFerrer, Efrain J., and Vivian De la Incera. 2018. "Anomalous Electromagnetic Transport in Compact Stars" Universe 4, no. 3: 54. https://doi.org/10.3390/universe4030054
APA StyleFerrer, E. J., & De la Incera, V. (2018). Anomalous Electromagnetic Transport in Compact Stars. Universe, 4(3), 54. https://doi.org/10.3390/universe4030054