#
Enhancement of Elliptic Flow of π^{−} under Intense Magnetic Field in √ ^{s}NN = 200 GeV Au+Au Collisions: A (2 + 1)-Dimensional Reduced-MHD Model Study

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Setup and Results

`AZHYDRO`” [7]. In order to solve the system of coupled partial differential equations, a set of initial conditions needs to be specified. In particular, at the initial time of the hydrodynamical evolution, which we choose as ${\tau}_{0}=0.6\phantom{\rule{0.166667em}{0ex}}\mathrm{fm}$, we set ${v}^{x}={v}^{y}=0$, while the initial energy density in the transverse plane is obtained from the Glauber model via the popular two-component form. We use the Equation of State (EoS) indicated as “s95p-PCE165-v0” in [8], which is constructed from lattice-QCD data at a high temperature and a partially chemically equilibrated hadron resonance gas at a low temperature. The kinetic freeze-out temperature is set to 130 MeV.

## 3. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Deng, W.T.; Huang, X.-G. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C
**2012**, 85, 044907. [Google Scholar] [CrossRef] - Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The Effects of topological charge change in heavy ion collisions: “Event by event P and CP violation”. Nucl. Phys. A
**2008**, 803, 227–253. [Google Scholar] [CrossRef] - Pang, L.G.; Endrödi, G.; Petersen, H. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C
**2016**, 93, 044919. [Google Scholar] [CrossRef] - Das, A.; Dave, S.S.; Saumia, P.S.; Srivastava, A.M. Effects of magnetic field on the plasma evolution in relativistic heavy-ion collisions. Phys. Rev. C
**2017**, 96, 034902. [Google Scholar] [CrossRef] - Pu, S.; Yang, D.L. Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion. Phys. Rev. D
**2016**, 93, 054042. [Google Scholar] [CrossRef] - Inghirami, G.; Del Zanna, L.; Beraudo, A.; Moghaddam, M.H.; Becattini, F.; Bleicher, M. Numerical magneto-hydrodynamics for relativistic nuclear collisions. Eur. Phys. J. C
**2016**, 76, 659. [Google Scholar] [CrossRef] - Kolb, P.F.; Sollfrank, J.; Heinz, U.W. Anisotropic flow from AGS to LHC energies. Phys. Lett. B
**1999**, 459, 667–673. [Google Scholar] [CrossRef] - Huovinen, P.; Petreczky, P. QCD Equation of State and Hadron Resonance Gas. Nucl. Phys. A
**2010**, 837, 26–53. [Google Scholar] [CrossRef] - Tuchin, K. Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C
**2013**, 88, 024911. [Google Scholar] [CrossRef] - Roy, V.; Pu, S.; Rezzolla, L.; Rischke, D.H. Effect of intense magnetic fields on reduced-MHD evolution in $\sqrt{{s}_{\mathrm{NN}}}$ = 200 GeV Au + Au collisions. Arxiv, 2017; arXiv:1706.05326. [Google Scholar]
- Roy, V.; Pu, S. Event-by-event distribution of magnetic field energy over initial fluid energy density in $\sqrt{{s}_{\mathrm{NN}}}$ = 200 GeV Au-Au collisions. Phys. Rev. C
**2015**, 92, 064902. [Google Scholar] [CrossRef] - Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Pang, L.; Wang, Q.; Wang, X.N. Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics. Phys. Rev. C
**2012**, 86, 024911. [Google Scholar] [CrossRef]

**Figure 1.**Time evolution of $e{\overline{B}}^{y}$ in medium with a finite conductivity for $b=10\phantom{\rule{0.166667em}{0ex}}\mathrm{fm}$ collisions; the red solid line is a fit of data given in [9]. Other lines correspond to various values of fit parameter.

**Figure 2.**The elliptic-flow coefficient ${v}_{2}$ for ${\pi}^{-}$ as a function of transverse momentum ${p}_{T}$ for $b=10\phantom{\rule{0.166667em}{0ex}}\mathrm{fm}$ collisions. The solid red line corresponds to the result for zero magnetic field; the dashed blue, dash-dotted magenta, and dotted black lines correspond to results for an external magnetic field with ${M}_{\tau}=1,1/2$, and $1/3$, respectively.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Roy, V.
Enhancement of Elliptic Flow of *π*^{−} under Intense Magnetic Field in √ ^{s}NN = 200 GeV Au+Au Collisions: A (2 + 1)-Dimensional Reduced-MHD Model Study. *Universe* **2017**, *3*, 82.
https://doi.org/10.3390/universe3040082

**AMA Style**

Roy V.
Enhancement of Elliptic Flow of *π*^{−} under Intense Magnetic Field in √ ^{s}NN = 200 GeV Au+Au Collisions: A (2 + 1)-Dimensional Reduced-MHD Model Study. *Universe*. 2017; 3(4):82.
https://doi.org/10.3390/universe3040082

**Chicago/Turabian Style**

Roy, Victor.
2017. "Enhancement of Elliptic Flow of *π*^{−} under Intense Magnetic Field in √ ^{s}NN = 200 GeV Au+Au Collisions: A (2 + 1)-Dimensional Reduced-MHD Model Study" *Universe* 3, no. 4: 82.
https://doi.org/10.3390/universe3040082