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Abstract: We investigate the effect of intense magnetic fields on the (2 + 1)-dimensional reduced-
magnetohydrodynamical (MHD) expansion of hot and dense quark–gluon plasma (QGP) produced
in
√

sNN = 200 GeV Au+Au collisions. For the sake of simplicity, we consider the case in which the
magnetic field points in the direction perpendicular to the reaction plane. We also consider this field
to be external, with energy density parametrized as a two-dimensional Gaussian. The width of the
Gaussian along the directions orthogonal to the beam axis varies with the centrality of the collision.
The dependence of the magnetic field on proper time (τ) is parametrized for the case of zero and
finite electrical conductivity of the QGP. We solve the equations of motion of ideal hydrodynamics
for such an external magnetic field. For collisions with a non-zero impact parameter we observe
a considerable increase in the elliptic-flow coefficient v2 of π− in the presence of an external magnetic
field, and the increment in v2 is found to depend on the evolution and the initial magnitude of the
magnetic field.
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1. Introduction

Two positively charged heavy nuclei produce ultra-intense magnetic fields in collider
experiments at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC);
for example, B ∼ 1018–1019 G for

√
sNN = 200 GeV Au+Au collisions. The intensity of the magnetic

field in the transverse plane grows approximately linearly with the center-of-mass energy (
√

sNN) [1].
The corresponding electric field in the transverse plane also becomes very large, as it is enhanced
by a Lorentz factor. Such intense electric and magnetic fields are believed to have a strong impact
on the dynamics of high-energy heavy-ion collisions. For example, in the case of an imbalance in
the number of left- versus right-handed fermions, a charge current is induced in the quark–gluon
plasma (QGP), leading to the separation of electrical charges, which is known as the “chiral magnetic
effect” (CME) [2].

Relativistic dissipative hydrodynamics has so far been successfully applied to explain the
experimentally measured flow harmonics in heavy-ion collisions. The success of hydrodynamics
implies that a QGP with small shear-viscosity-to-entropy-density ratio is formed in Au+Au collisions
at top RHIC energies within a short time interval of ∼0.2–0.6 fm. However, the possible effect
of a magnetic field on the hydrodynamical evolution has so far not been studied extensively,
except for some simplified cases, and most recently, using some approximate form of the equations
of relativistic magnetohydrodynamics (MHD). Here, we study the (2 + 1)-dimensional expansion
of matter with vanishing magnetization in terms of the dynamics of a perfect fluid in the presence
of an external magnetic field. We refer to this approach as “reduced MHD”, and we note that this
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is not a self-consistent solution of the full set of MHD equations, as we only use a parametrized
form for the evolution of the magnetic field and do not solve Maxwell’s equations together with the
conservation equations of energy and momentum. For the sake of simplicity, we also assume that the
electrical conductivity is infinite (i.e., the ideal-MHD limit), as this allows us to eliminate the electric
field in favour of the magnetic field. Assuming a perfectly conducting fluid under the influence of
an external magnetic field still represents a reasonable first approximation, which, however, calls for
a future improvement towards a self-consistent MHD solution. For some recent developments in
the field of numerical and analytical study of relativistic MHD in high-energy heavy-ion collisions,
see [3–6]. We also assume that the magnetic field only points into the y-direction. The goal of our
study is to clarify how large the external magnetic field has to be and how slowly it has to decay in
order to make a sizeable impact on the momentum anisotropy of charged particles. We use natural
units h̄ = c = ε0 = µ0 = 1, where ε0 and µ0 are the electric permittivity and magnetic permeability
in vacuum, respectively, and the electric charge e :=

√
4πh̄cα ' 0.303, where α ' 1/137 is the

fine-structure constant. In these units, the quantity eB has dimension GeV2. Throughout the paper,
the components of four-tensors are indicated with Greek indices, whereas three-vectors are denoted as
boldface symbols. The metric tensor in flat spacetime is gµν = diag (+,−,−,−).

2. Mathematical Setup and Results

In order to obtain the fluid evolution in the transverse plane, we assume a Bjorken-scaling
expansion in the longitudinal direction so that, on account of boost invariance, we may restrict the
discussion to the z = 0 plane, where for reasons of symmetry, uz = 0. In this case, it is advantageous to
use Milne coordinates (τ, x, y, η), where τ :=

√
t2 − z2, η := (1/2) ln[(t + z)/(t− z)] and the metric

tensor is given by gµν = diag
(
1,−1,−1,−1/τ2). The energy–momentum conservation equations

then take the following form:

∂τ T̃ττ + ∂x
(
T̃ττ ṽx)+ ∂y

(
T̃ττ ṽy) = −pB + τB̃2(bη)2 (1)

∂τ T̃τx + ∂x
(
T̃τxvx)+ ∂y

(
T̃τxvy) = −∂x

[
p̃B − B̃2bx(bx − bτvx)

]
+ ∂y

[
B̃2bx(by − bτvy)

]
(2)

∂τ T̃τy + ∂x
(
T̃τyvx)+ ∂y

(
T̃τyvy) = −∂y

[
p̃B − B̃2by(by − bτvy)

]
+ ∂x

[
B̃2by(bx − bτvx)

]
(3)

where pB = p + B2

2 , T̃µν = τTµν, p̃B = τpB, and B̃2 = τB2.

ṽx =
Txτ

Tττ
=

wγ2vx − B2bxbτ

wγ2 − pB − B2(bτ)2 (4)

ṽy =
Tyτ

Tττ
=

wγ2vy − B2bybτ

wγ2 − pB − B2(bτ)2 (5)

with w = ε + p + B2. It is also worthwhile to note that the magnetic induction field Bµ = 1
2 εµναβuνFαβ

is orthogonal to uµ, where Bµuµ = 0, and it is a space-like vector, 0 > BµBµ = −B2.
The total energy–momentum tensor is given as Tµν = Tµν

f luid + Tµν
f ield =

(
ε + p + B2) uµuν −(

p + B2

2

)
gµν − BµBν; here, ε, p, and uµ are fluid energy density, pressure, and four-velocity,

respectively. From Equation (3), it is clear that a magnetic field along the y-direction decreases
the total pressure. However, because driving the evolution of the fluid are the pressure gradients,
a constant magnetic field does not lead to a change in the fluid acceleration. We note that for our case,
the spatial distribution of the magnetic field (which is a very good approximation of the true magnetic
field configuration of heavy-ion collisions) is such that the pressure gradients are enhanced (reduced)
along the x (y)-axis, respectively. Ultimately, this will result in an increase in the momentum-space
anisotropy of the fluid and consequently a larger elliptic flow.

We solve the energy–momentum conservation Equations (1)–(3) by using a modified version of
the publicly available (2 + 1)-dimensional perfect fluid dynamics code “AZHYDRO” [7]. In order to solve
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the system of coupled partial differential equations, a set of initial conditions needs to be specified.
In particular, at the initial time of the hydrodynamical evolution, which we choose as τ0 = 0.6 fm,
we set vx = vy = 0, while the initial energy density in the transverse plane is obtained from the
Glauber model via the popular two-component form. We use the Equation of State (EoS) indicated
as “s95p-PCE165-v0” in [8], which is constructed from lattice-QCD data at a high temperature and
a partially chemically equilibrated hadron resonance gas at a low temperature. The kinetic freeze-out
temperature is set to 130 MeV.

In a QGP with nonzero electrical conductivity, we parametrize the evolution of the magnetic field
as in [9]:

f (τ) = Maa3eb3/(Mττ+c3) (6)

Data from [9] are fitted by setting Ma = Mτ = 1 and adjusting the constants,
giving a3 = 1.99× 10−3, b3 = 8.1306 fm, and c3 = 1.2420 fm.

Figure 1 shows the temporal evolution of the magnetic field for various values of Ma and Mτ ,
which gives a different initial value of the magnetic field and a different time evolution, respectively.
The space variation of the magnetic field is taken as a two- dimensional Gaussian; for details see [10].
Figure 2 shows the elliptic-flow coefficient v2 of π− as a function of the transverse momentum
pT for non-central collisions with b = 10 fm. The solid red line corresponds to the result for zero
magnetic field; the dashed blue, dash-dotted magenta, and dotted black lines correspond to results
with an external magnetic field for Mτ = 1, 1/2, and 1/3, respectively. It is clear from Figure 2 that
changes in v2 are noticeable when the magnetic field decay is substantially delayed. For the largest
initial value of the magnetic field considered here, that is, for eB̄y ' 10 m2

π , we notice a considerable
enhancement of the elliptic-flow coefficient, which can become as large as v2 < 0.9 for pT ∼ 2.5 GeV
(cf. dotted black line in Figure 2). A more realistic magnetic field evolution with initial eB̄y ' 10 m2

π

leads to a smaller increase in the elliptic-flow coefficient (blue dashed line), thus highlighting that
fairly realistic values of the magnetic field can have a considerable impact on the ellipticity of the
flow of particles. Overall, these results and their implications for the understanding of the physics
of ultra-relativistic heavy-ion collisions clearly call for the extension of this study towards a fully
self-consistent MHD treatment of the evolution of hot and dense strongly interacting matter created in
heavy-ion collisions.

Figure 1. Time evolution of eB̄y in medium with a finite conductivity for b = 10 fm collisions; the red
solid line is a fit of data given in [9]. Other lines correspond to various values of fit parameter.
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Figure 2. The elliptic-flow coefficient v2 for π− as a function of transverse momentum pT for b = 10 fm
collisions. The solid red line corresponds to the result for zero magnetic field; the dashed blue,
dash-dotted magenta, and dotted black lines correspond to results for an external magnetic field with
Mτ = 1, 1/2, and 1/3, respectively.

3. Discussion

We have investigated the effect of a strong external magnetic field on the evolution of matter
created in

√
sNN = 200 GeV Au+Au collisions within a (2+ 1)-dimensional reduced-MHD description.

In particular, we have assumed that the external magnetic field has only a non-vanishing component
transverse to the reaction plane, and we have employed the spacetime variation suggested in [1,9].

A substantial change in the fluid velocity and, consequently, in the elliptic-flow coefficient v2 of
π− is observed when the magnetic field is sufficiently large, that is, for eB̄y ≥ 5 m2

π , or when a nonzero
electrical conductivity of the QGP is accounted for such that it decays slowly, that is, for Mτ ≥ 1/2.
Under these conditions, the elliptic-flow coefficient can become as large as v2 ∼ 0.7 for pT ∼ 2.5 GeV
(all of the values reported refer to an initial magnetic field strength of eB̄y ' 5 m2

π).
Our results were obtained under some simplifying assumptions: (1) We have used an analytic

prescription for the magnetic-field evolution, but the latter should really be the result of a self-consistent
solution of the full set of ideal-MHD equations. (2) We have considered event-averaged values for
the initial energy density and the magnetic field, but both of these fluctuate event-to-event in reality.
Indeed, a previous study [11] has shown that because of the event-by-event fluctuations of both the
magnetic energy density and the fluid energy density, in some cases, the ratio of these two quantities
can be ∼1. In such cases, the magnetic field will have a larger effect than considered here. (3) We have
neglected the x component of the magnetic field, as we expect that B̄x � B̄y in the present geometrical
setup. Although this is a good approximation for peripheral collisions, in central collisions, B̄x is of
the same order as B̄y when initial state fluctuation is considered. (4) We have considered a decay
of the magnetic field pertaining to a constant electrical conductivity [9]. However, one should use
the appropriate temperature-dependent electrical conductivity of the QGP. (5) We have considered
here only perfect fluids [12], but it is important to also take into account dissipative corrections to the
fluid evolution. We believe a nonzero magnetic field will have an impact on the value of the shear
viscosity-to-entropy density ratio ηsh/s extracted from a comparison to experimental data. (6) We also
note that the (2 + 1)-dimensional hydrodynamics solution assumes the Bjorken-Hwa scaling solution
along the longitudinal direction, which is a good approximation only at mid-rapidity and high-energy
collisions, but a (3 + 1)-dimensional calculation shows that a more realistic longitudinal-flow profile
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gives a different elliptic flow [13], and hence it is also important that one uses a proper longitudinal
initial condition when studying the effect of the magnetic field at finite rapidities.

It will be interesting to study in a future work the corrections to the final particle spectra due to
the magnetic field at and after freeze-out, as well as the investigation of smaller collision energies,
for which the decay of the magnetic field is slower, and thus its impact on the fluid evolution is
expected to be more pronounced.
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