U-Net Based Forecasting of Storm-Time Total Electron Content over North Africa Using Assimilation of GNSS Observation into Global Ionospheric Maps
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Assimilation Methodology of GNSS TEC into UHRG Map
2.3. U-Net Deep Learning Model
- Multi-channel input representation;
- Encoder architecture for spatio-temporal feature extraction;
- Attention-based bottleneck;
- Decoder architecture for feature reconstruction with skip connections;
- Output block.
3. Results
3.1. GNSS-TEC Data Assimilation into the GIM-TEC
3.2. U-Net Prediction Model Relative to IRI-2020 and AfriTEC Storm-Time Models
3.3. U-Net Validation at Two Unassimilated GNSS Stations
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GIM | Global Ionospheric Map |
| TEC | Total Electron Content |
| VTEC | Vertical Total Electron Content |
| EIA | Equatorial Ionospheric Anomaly |
| U-Net | Union Net |
| GNSS | Global Navigation Satellite System |
| AfriTEC | African TEC |
| IRI | International Reference Ionosphere |
| IGS | International GNSS Service |
| COSMIC | Constellation Observing System for Meteorology, Ionosphere, and Climate |
| DOY | Day of Year |
References
- Jakowski, N.; Mayer, C.; Hoque, M.M.; Wilken, V. Total Electron Content Models and Their Use in Ionosphere Monitoring. Radio Sci. 2011, 46, RS0D18. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsurutani, B.T. Ionosphere and Thermosphere Responses to Extreme Geomagnetic Storms. In Extreme Events in Geospace; Elsevier eBooks: Amsterdam, The Netherlands, 2018; pp. 493–511. [Google Scholar] [CrossRef]
- Astafyeva, E.; Yasyukevich, Y.V.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.S.; Syrovatskii, S.; Guendouz, N. Ionospheric Disturbances and Irregularities during the 25–26 August 2018 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029843. [Google Scholar] [CrossRef]
- Reddybattula, K.D.; Nelapudi, L.S.; Moses, M.; Kumar, K.; Ali, M.A.; Jamjareegulgarn, P.; Panda, S.K. Ionospheric TEC Forecasting over an Indian Low Latitude Location Using Long Short-Term Memory (LSTM) Deep Learning Network. Universe 2022, 8, 562. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, K.; Wu, S.; Shi, J.; Hu, A.; Wu, H.; Li, Y. An Investigation of Ionospheric TEC Prediction Maps over China Using Bidirectional Long Short-Term Memory Method. Space Weather-Int. J. Res. Appl. 2022, 20, e2022SW003103. [Google Scholar] [CrossRef]
- Emmela, S.; Rama Lahari, V.; Anusha, B.; Bhavana, D.; Yasyukevich, Y.V.; Demyanov, V.V.; Venkata Ratnam, D. Global Ionospheric Total Electron Content Short-Term Forecast Based on Light Gradient Boosting Machine, Extreme Gradient Boosting, and Gradient Boost Regression. Adv. Space Res. 2024, 74, 3642–3653. [Google Scholar] [CrossRef]
- Akala, A.O.; Rabiu, A.B.; Somoye, E.O.; Oyeyemi, E.O.; Adeloye, A.B. The Response of African Equatorial GPS-TEC to Intense Geomagnetic Storms during the Ascending Phase of Solar Cycle 24. J. Atmos. Sol.-Terr. Phys. 2013, 98, 50–62. [Google Scholar] [CrossRef]
- Abdu, M.A. Electrodynamics of Ionospheric Weather over Low Latitudes. Geosci. Lett. 2016, 3, 11. [Google Scholar] [CrossRef]
- Amaechi, P.O.; Oyeyemi, E.O.; Akala, A.O. Geomagnetic Storm Effects on the Occurrences of Ionospheric Irregularities over the African Equatorial/Low-Latitude Region. Adv. Space Res. 2018, 61, 2074–2090. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC Maps: A Reliable Source of Ionospheric Information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Tariku, Y. Patterns of GPS-TEC Variation over Low-Latitude Regions (African Sector) during the Deep Solar Minimum (2008 to 2009) and Solar Maximum (2012 to 2013) Phases. Earth Planets Space 2015, 67, 35. [Google Scholar] [CrossRef]
- Abe, O.E.; Villamide, X.O.; Paparini, C.; Radicella, S.M.; Nava, B.; Rodríguez-Bouza, M. Performance Evaluation of GNSS-TEC Estimation Techniques at the Grid Point in Middle and Low Latitudes during Different Geomagnetic Conditions. J. Geod. 2016, 91, 409–417. [Google Scholar] [CrossRef]
- Mengist, C.K.; Kim, Y.H.; Yeshita, B.D.; Workayehu, A.B. Mapping the East African Ionosphere Using Ground-Based GPS TEC Measurements. J. Astron. Space Sci. 2016, 33, 29–36. [Google Scholar] [CrossRef]
- Ogwala, A.; Oyedokun, O.J.; Ogunmodimu, O.; Akala, A.O.; Ali, M.A.; Jamjareegulgarn, P.; Panda, S.K. Longitudinal Variations in Equatorial Ionospheric TEC from GPS, Global Ionosphere Map and International Reference Ionosphere-2016 during the Descending and Minimum Phases of Solar Cycle 24. Universe 2022, 8, 575. [Google Scholar] [CrossRef]
- Feng, X.; Luo, Y.; Zhan, A. Characterizing the Long Term Temporal and Spatial Variation of the African Ionosphere Using Multi-Data Sources. Adv. Space Res. 2025, 76, 4594–4620. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kwak, Y.-S. Validating the IRI-2020 Model for Ionospheric Storms over the North-East Asian Sector Induced by Extreme Geomagnetic Storms. Adv. Space Res. 2024, 75, 4347–4369. [Google Scholar] [CrossRef]
- Okoh, D.; Seemala, G.; Rabiu, B.; Habarulema, J.B.; Jin, S.; Shiokawa, K.; Otsuka, Y.; Aggarwal, M.; Uwamahoro, J.; Mungufeni, P.; et al. A Neural Network-Based Ionospheric Model over Africa from Constellation Observing System for Meteorology, Ionosphere, and Climate and Ground Global Positioning System Observations. J. Geophys. Res. Space Phys. 2019, 124, 10512–10532. [Google Scholar] [CrossRef]
- Okoh, D.; Habarulema, J.B.; Rabiu, B.; Seemala, G.; Wisdom, J.B.; Olwendo, J.; Obrou, O.; Matamba, T.M. Storm-Time Modeling of the African Regional Ionospheric Total Electron Content Using Artificial Neural Networks. Space Weather 2020, 18, e2020SW002525. [Google Scholar] [CrossRef]
- Matamba, T.M.; Danskin, D.W. Development and Evaluation of Near-Real Time TEC and Ancillary Products for SANSA Space Weather. Space Weather 2022, 20, e2021SW003013. [Google Scholar] [CrossRef]
- Data, E.A.; Terefe, D.A.; Gebino, G.K. Performance Evaluation of AfriTEC Model during Quiet and Disturbed Time over East African Sector. Astrophys. Space Sci. 2025, 370, 45. [Google Scholar] [CrossRef]
- Aa, E.; Liu, S.; Huang, W.; Shi, L.; Gong, J.; Chen, Y.; Shen, H.; Li, J. Regional 3-D Ionospheric Electron Density Specification on the Basis of Data Assimilation of Ground-Based GNSS and Radio Occultation Data. Space Weather-Int. J. Res. Appl. 2016, 14, 433–448. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Fan, Z.; Tang, Q.; Li, X.; Zhang, F.; Song, Y.; He, F.; Zhou, C.; Qing, H.; et al. Ionospheric TEC Data Assimilation Based on Gauss–Markov Kalman Filter. Adv. Space Res. 2021, 68, 4189–4204. [Google Scholar] [CrossRef]
- Tang, J.; Hu, J.; Zhang, W.; Fan, C.; Zhou, Q. Assimilation of the Total Electron Content Obtained from GNSS to a Model of the Ionosphere Using a Hierarchical Bayesian Network. J. Space Weather Space Clim. 2025, 15, 23. [Google Scholar] [CrossRef]
- Wang, H.-N.; Zhu, Q.-L.; Dong, X.; Ou, M.; Zhi, Y.-F.; Xu, B.; Zhou, C. A Regional Ionospheric TEC Map Assimilation Method Considering Temporal Scale during Geomagnetic Storms. Remote Sens. 2025, 17, 951. [Google Scholar] [CrossRef]
- Chen, C.; Lin, C.; Matsuo, T.; Chen, W.; Lee, I.Y.; Liu, J.B.; Lin, J.; Hsu, C. Ionospheric Data Assimilation with Thermosphere-Ionosphere-Electrodynamics General Circulation Model and GPS-TEC during Geomagnetic Storm Conditions. J. Geophys. Res. Space Phys. 2016, 121, 5708–5722. [Google Scholar] [CrossRef]
- Adebiyi, S.J.; Adebesin, B.O.; Ikubanni, S.O.; Joshua, B.W. Performance Evaluation of GIM-TEC Assimilation of the IRI-Plas Model at Two Equatorial Stations in the American Sector. Space Weather 2017, 15, 726–736. [Google Scholar] [CrossRef]
- Mahbuby, H.; Amerian, Y. Regional Assimilation of GPS-Derived TEC into GIMs. Pure Appl. Geophys. 2021, 178, 1317–1337. [Google Scholar] [CrossRef]
- Okoh, D.; Habarulema, J.B.; Nava, B.; Cesaroni, C.; Baki, P.; Migoya-Orué, Y.; Rabiu, B.; Ochieng, G.; Awuor, A.; Jamjareegulgarn, P.; et al. An Operational Machine Learning Framework for Calibrating COSMIC Radio Occultation TEC to Ground-Based GNSS-Derived TEC. Adv. Space Res. 2026, in press. [Google Scholar] [CrossRef]
- Ren, X.; Yang, P.; Liu, H.; Chen, J.; Liu, W. Deep Learning for Global Ionospheric TEC Forecasting: Different Approaches and Validation. Space Weather 2022, 20, e2021SW003011. [Google Scholar] [CrossRef]
- Wu, X.; Fan, C.; Tang, J.; Cheng, Y. Forecast of Global Ionospheric TEC Using an Improved Transformer Model. Adv. Space Res. 2024, 73, 4519–4538. [Google Scholar] [CrossRef]
- Gao, X.; Yao, Y. A Storm-Time Ionospheric TEC Model with Multichannel Features by the Spatiotemporal ConvLSTM Network. J. Geod. 2023, 97, 9. [Google Scholar] [CrossRef]
- Luo, H.; Gong, Y.; Chen, S.; Yu, C.; Yang, G.; Yu, F.; Hu, Z.; Tian, X. Prediction of Global Ionospheric Total Electron Content (TEC) Based on SAM-ConvLSTM Model. Space Weather 2023, 21, e2023SW003707. [Google Scholar] [CrossRef]
- Arafa, A.; Harfoush, H.; El-Fishawy, N.; Radad, M. SMOTE-Enhanced CNN-Bi-LSTM for Wearable Sensor-Based Human Activity Recognition. Pervasive Mob. Comput. 2026, 117, 102161. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, B.; Ren, Z.; Xiong, B. Ionospheric TEC Prediction in China during Storm Periods Based on Deep Learning: Mixed CNN-BiLSTM Method. Remote Sens. 2024, 16, 3160. [Google Scholar] [CrossRef]
- Yang, J.; Huang, W.; Xia, G.; Zhou, C.; Chen, Y. Operational Forecasting of Global Ionospheric TEC Maps 1-, 2-, and 3-Day in Advance by ConvLSTM Model. Remote Sens. 2024, 16, 1700. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. 2015, 9351, 234–241. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, S.; Sun, H.; Chen, Y. Forecast Global Ionospheric TEC: Apply Modified U-Net on VISTA TEC Data Set. Space Weather 2023, 21, e2023SW003494. [Google Scholar] [CrossRef]
- Shan, W.; Wang, M.; Xia, J.; Chen, J.; Li, Q.; Xing, L.; Zhang, R.; Wang, M.; Zhang, S.; Zhang, X. U-TSS: A Novel Time Series Segmentation Model Based U-Net Applied to Automatic Detection of Interference Events in Geomagnetic Field Data. PeerJ Comput. Sci. 2025, 11, e2678. [Google Scholar] [CrossRef]
- Zhuang, L.; Dai, M.; Zhou, Y.; Sun, L. Intelligent Automatic Sleep Staging Model Based on CNN and LSTM. Front. Public Health 2022, 10, 946833. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, T.L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I. GIM-TEC Adaptive Ionospheric Weather Assessment and Forecast System. J. Atmos. Sol.-Terr. Phys. 2013, 102, 329–340. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.K.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv 2015, arXiv:1506.04214. [Google Scholar] [CrossRef]
- Taylor, G.W.; Fergus, R.; LeCun, Y.; Bregler, C. Convolutional Learning of Spatio-Temporal Features. Eur. Conf. Comput. Vis. 2010, 2010, 140–153. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Peng, Y.; Chen, D.Z.; Sonka, M. U-Net V2: Rethinking the Skip Connections of U-Net for Medical Image Segmentation. In Proceedings of the 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), Houston, TX, USA, 14–17 April 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Lei, X.; Pan, H.; Huang, X. A Dilated CNN Model for Image Classification. IEEE Access 2019, 7, 124087–124095. [Google Scholar] [CrossRef]
- Chartier, A.T.; Kinrade, J.; Mitchell, C.N.; Rose, J.; Jackson, D.R.; Cilliers, P.J.; Habarulema, J.B.; Katamzi, Z.; McKinnell, L.A.; Matamba, T.M.; et al. Ionospheric Imaging in Africa. Radio Sci. 2014, 49, 19–27. [Google Scholar] [CrossRef]
- Giday, N.M.; Katamzi-Joseph, Z.T. Performance of MIDAS over East African Longitude Sector: Case Study during 4–14 March 2012 Quiet to Disturbed Geomagnetic Conditions. Space Weather 2018, 16, 126–137. [Google Scholar] [CrossRef]
- Chekole, D.A.; Giday, N.M.; Moges, S.T. Assimilation of GPS TEC and COSMIC FoF2/HmF2 into SPIM Model Using Unscented Kalman Filter Techniques over the East African Equatorial Region. Radio Sci. 2025, 60, 1–22. [Google Scholar] [CrossRef]
- Mengist, C.K.; Seo, K.; Kim, Y.H.; Eswaraiah, S.; Ssessanga, N.; Kwak, Y. 3-D Regional Imaging of Ionosphere over Africa through Assimilating Satellite and Ground-Based Data. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030859. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, Y.; Kim, Y.; Moon, S.; Jeong, S.; Yun, J. Potential of Regional Ionosphere Prediction Using a Long Short-Term Memory Deep-Learning Algorithm Specialized for Geomagnetic Storm Period. Space Weather 2021, 19, e2021SW002741. [Google Scholar] [CrossRef]













| Station Code | Geographic Coordinates | Magnetic Coordinates | ||
|---|---|---|---|---|
| Latitude ° | Longitude ° | Latitude ° | Longitude ° | |
| GVDG | 34.80 | 24.10 | 33.21 | 102.90 |
| RABT | 34.02 | −6.83 | 37.13 | 72.93 |
| ALX2 | 30.00 | 30.00 | 27.67 | 107.63 |
| LPAL | 28.00 | −17.00 | 32.88 | 60.36 |
| DAKR | 14.72 | −17.41 | 19.81 | 57.74 |
| DJIG | 11.50 | 42.80 | 7.34 | 116.93 |
| CGGN | 10.12 | 9.12 | 11.22 | 83.6 |
| ADIS | 9.04 | 38.77 | 5.60 | 112.63 |
| YKRO | 6.90 | −5.20 | 10.30 | 68.73 |
| ACRG | 5.64 | −0.21 | 7.71 | 73.55 |
| NKLG | 0.35 | 9.67 | 1.55 | 82.62 |
| MBAR | −0.61 | 30.70 | −2.8 | 103.24 |
| LAMP | 35.50 | 12.60 | 35.80 | 91.34 |
| Station | GIM_Original | GroundTruth | PredictedTEC | IRITEC | AfriTec |
|---|---|---|---|---|---|
| RABT | 0.774 | 0.973 | 0.886 | 0.781 | 0.523 |
| ALX2 | 0.869 | 0.899 | 0.886 | 0.796 | 0.603 |
| LPAL | 0.871 | 0.975 | 0.926 | 0.707 | 0.522 |
| DJIG | 0.953 | 0.995 | 0.955 | 0.917 | 0.827 |
| ADIS | 0.961 | 0.994 | 0.967 | 0.924 | 0.821 |
| YKRO | 0.967 | 0.995 | 0.979 | 0.868 | 0.839 |
| ACRG | 0.966 | 0.994 | 0.98 | 0.817 | 0.819 |
| NKLG | 0.964 | 0.993 | 0.97 | 0.765 | 0.714 |
| Station | GIM_Original | GroundTruth | PredictedTEC | IRITEC | AfriTec |
|---|---|---|---|---|---|
| RABT | 16.07 | 2.92 | 5.86 | 10.55 | 14.3 |
| ALX2 | 17.51 | 8.7 | 8.5 | 12.88 | 16.55 |
| LPAL | 17.11 | 4.55 | 6.07 | 15.89 | 19.9 |
| DJIG | 12.14 | 2.61 | 9.39 | 11.49 | 16.41 |
| ADIS | 10.66 | 3.25 | 8.58 | 12.87 | 16.93 |
| YKRO | 11.08 | 2.9 | 7.08 | 14.64 | 16.7 |
| ACRG | 11.47 | 3.34 | 6.57 | 16.45 | 17.96 |
| NKLG | 11.59 | 3.22 | 6.91 | 17.83 | 22.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fathy, A.; Farid, A.I.S.; Okoh, D.; Mungufeni, P.; Mahrous, A.; Nassar, M.; Otsuka, Y.; Fu, W.; Habarulema, J.B.; El-Husseiny, H.; et al. U-Net Based Forecasting of Storm-Time Total Electron Content over North Africa Using Assimilation of GNSS Observation into Global Ionospheric Maps. Universe 2026, 12, 54. https://doi.org/10.3390/universe12020054
Fathy A, Farid AIS, Okoh D, Mungufeni P, Mahrous A, Nassar M, Otsuka Y, Fu W, Habarulema JB, El-Husseiny H, et al. U-Net Based Forecasting of Storm-Time Total Electron Content over North Africa Using Assimilation of GNSS Observation into Global Ionospheric Maps. Universe. 2026; 12(2):54. https://doi.org/10.3390/universe12020054
Chicago/Turabian StyleFathy, Adel, Ahmed. I. Saad Farid, Daniel Okoh, Patrick Mungufeni, Ayman Mahrous, Mohamed Nassar, Yuichi Otsuka, Weizheng Fu, John Bosco Habarulema, Haitham El-Husseiny, and et al. 2026. "U-Net Based Forecasting of Storm-Time Total Electron Content over North Africa Using Assimilation of GNSS Observation into Global Ionospheric Maps" Universe 12, no. 2: 54. https://doi.org/10.3390/universe12020054
APA StyleFathy, A., Farid, A. I. S., Okoh, D., Mungufeni, P., Mahrous, A., Nassar, M., Otsuka, Y., Fu, W., Habarulema, J. B., El-Husseiny, H., & Arafa, A. (2026). U-Net Based Forecasting of Storm-Time Total Electron Content over North Africa Using Assimilation of GNSS Observation into Global Ionospheric Maps. Universe, 12(2), 54. https://doi.org/10.3390/universe12020054

