Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations
Abstract
1. Introduction
2. Black Holes in Nonlinear Electrodynamics
2.1. Theories in the Scope of
2.2. Theories in the Scope of
2.3. Theories in the Scope of
3. Black-Hole Dynamics: Scalar Field Motion Equation
4. Scalar-Field Quasinormal Modes
5. Final Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | It is still worth mentioning the singularity of the chargeless BTZ geometry without rotation as being associated with an angular deficit in if the line element is considered isometric to the pure AdS geometry. |
References
- Deser, S.; Jackiw, R. Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature. Ann. Phys. 1984, 153, 405–416. [Google Scholar] [CrossRef]
- Carlip, S. Classical general relativity in 2 + 1 dimensions. In Quantum Gravity in 2 + 1 Dimensions; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- García-Díaz, A.A. Dilaton–Inflaton Friedmann–Robertson–Walker Cosmologies. In Exact Solutions in Three-Dimensional Gravity; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Arenas-Henriquez, G.; Gregory, R.; Scoins, A. On acceleration in three dimensions. J. High Energy Phys. 2022, 2022, 63. [Google Scholar] [CrossRef]
- Arenas-Henriquez, G.; Cisterna, A.; Diaz, F.; Gregory, R. Accelerating Black Holes in 2+1 dimensions: Holography revisited. arXiv 2023, arXiv:2308.00613. [Google Scholar] [CrossRef]
- Banados, M.; Teitelboim, C.; Zanelli, J. The Black hole in three-dimensional space-time. Phys. Rev. Lett. 1992, 69, 1849–1851. [Google Scholar] [CrossRef]
- Jackiw, R. Lower Dimensional Gravity. Nucl. Phys. B 1985, 252, 343–356. [Google Scholar] [CrossRef]
- Mann, R.B. Lower dimensional black holes. Gen. Rel. Grav. 1992, 24, 433–449. [Google Scholar] [CrossRef]
- de Oliveira, J.; Fontana, R.D.B. Three-dimensional black holes with quintessence. Phys. Rev. D 2018, 98, 044005. [Google Scholar] [CrossRef]
- Bueno, P.; Andino, O.L.; Moreno, J.; van der Velde, G. On regular charged black holes in three dimensions. arXiv 2025, arXiv:2503.02930. [Google Scholar]
- Kiselev, V.V. Quintessence and black holes. Class. Quantum Gravity 2003, 20, 1187. [Google Scholar] [CrossRef]
- Holst, S.; Matschull, H.J. The Anti-de Sitter Gott universe: A Rotating BTZ wormhole. Class. Quant. Grav. 1999, 16, 3095–3131. [Google Scholar] [CrossRef]
- Cataldo, M.; Cruz, N.; del Campo, S.; Garcia, A. (2 + 1)-dimensional black hole with Coulomb-like field. Phys. Lett. B 2000, 484, 154. [Google Scholar] [CrossRef]
- Emparan, R.; Frassino, A.M.; Way, B. Quantum BTZ black hole. JHEP 2020, 11, 137. [Google Scholar] [CrossRef]
- Koch, B.; Reyes, I.A.; Rincón, A. A scale dependent black hole in three-dimensional space–time. Class. Quant. Grav. 2016, 33, 225010. [Google Scholar] [CrossRef]
- Contreras, E.; Rincón, A.; Bargueño, P. A general interior anisotropic solution for a BTZ vacuum in the context of the Minimal Geometric Deformation decoupling approach. Eur. Phys. J. C 2019, 79, 216. [Google Scholar] [CrossRef]
- Younesizadeh, Y.; Ahmed, A.H.; Ahmad, A.A.; Younesizadeh, F.; Ebrahimkhas, M. What happens for the BTZ black hole solution in dilaton f(R)-gravity? Int. J. Mod. Phys. D 2021, 30, 2150028. [Google Scholar] [CrossRef]
- Ahmed, F.; Bouzenada, A. Stationary BTZ space-time in Ricci-inverse and f(R) gravity theories. Eur. Phys. J. C 2024, 84, 1271. [Google Scholar] [CrossRef]
- Nashed, G.; Sheykhi, A. New black hole solutions in three-dimensional f(R) gravity. Phys. Dark Universe 2023, 40, 101174. [Google Scholar] [CrossRef]
- Chen, W.X.; Zheng, Y.G. Thermodynamic geometric analysis of BTZ black hole under f(R) gravity. arXiv 2022, arXiv:2112.15032. [Google Scholar]
- Fernando, S. Quasinormal modes of charged scalars around dilaton black holes in 2+1 dimensions: Exact frequencies. Phys. Rev. D 2008, 77, 124005. [Google Scholar] [CrossRef]
- Fernando, S. Quasinormal Modes of Charged Dilaton Black Holes in 2 + 1 Dimensions. Gen. Relativ. Gravit. 2004, 36, 71–82. [Google Scholar] [CrossRef]
- González, P.; Papantonopoulos, E.; Saavedra, J. Chern-Simons black holes: Scalar perturbations, mass and area spectrum and greybody factors. J. High Energy Phys. 2010, 2010, 50. [Google Scholar] [CrossRef]
- Övgün, A.; Jusufi, K. Quasinormal modes and greybody factors of f(R) gravity minimally coupled to a cloud of strings in 2 + 1 dimensions. Ann. Phys. 2018, 395, 138–151. [Google Scholar] [CrossRef]
- Birmingham, D.; Sachs, I.; Sen, S. Exact results for the BTZ black hole. Int. J. Mod. Phys. D 2001, 10, 833–858. [Google Scholar] [CrossRef]
- Birmingham, D.; Sachs, I.; Solodukhin, S.N. Conformal Field Theory Interpretation of Black Hole Quasinormal Modes. Phys. Rev. Lett. 2002, 88, 151301. [Google Scholar] [CrossRef]
- Lee, H.W.; Myung, Y.S. Greybody factor for the BTZ black hole and a 5-D black hole. Phys. Rev. D 1998, 58, 104013. [Google Scholar] [CrossRef]
- Dasgupta, A. Emission of fermions from BTZ black holes. Phys. Lett. B 1999, 445, 279–286. [Google Scholar] [CrossRef]
- Rincón, A.; Villanueva, J.R. The Sagnac effect on a scale-dependent rotating BTZ black hole background. Class. Quant. Grav. 2020, 37, 175003. [Google Scholar] [CrossRef]
- Cuadros-Melgar, B.; Fontana, R.D.B.; de Oliveira, J. Gauss-Bonnet black holes in (2+1) dimensions: Perturbative aspects and entropy features. Phys. Rev. D 2022, 106, 124007. [Google Scholar] [CrossRef]
- Fontana, R.D.B.; Rincon, A. Accelerated black holes in (2 + 1) dimensions: Quasinormal modes and stability. Eur. Phys. J. C 2025, 85, 179. [Google Scholar] [CrossRef]
- Regge, T.; Wheeler, J.A. Stability of a Schwarzschild singularity. Phys. Rev. 1957, 108, 1063–1069. [Google Scholar] [CrossRef]
- Addesso, P.; Adhikari, R.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.; Aiello, L.; Ain, A.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Addesso, P.; Adhikari1, R.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.; Aiello, L.; Ain, A.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- Adhikari, R.; Adya, V.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.; Aiello, L.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101, Erratum in Phys. Rev. Lett. 2018, 121, 129901. [Google Scholar] [CrossRef]
- Zerilli, F.J. Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics. Phys. Rev. D 1970, 2, 2141–2160. [Google Scholar] [CrossRef]
- Zerilli, F.J. Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 1970, 24, 737–738. [Google Scholar] [CrossRef]
- Teukolsky, S.A. Rotating black holes—Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 1972, 29, 1114–1118. [Google Scholar] [CrossRef]
- Teukolsky, S.A.; Press, W.H. Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 1974, 193, 443–461. [Google Scholar] [CrossRef]
- Leaver, E.W. Spectral decomposition of the perturbation response of the Schwarzschild geometry. Phys. Rev. D 1986, 34, 384–408. [Google Scholar] [CrossRef]
- Leaver, E.W. Quasinormal modes of Reissner-Nordström black holes. Phys. Rev. D 1990, 41, 2986–2997. [Google Scholar] [CrossRef]
- Schutz, B.F.; Will, C.M. Black hole normal modes—A semianalytic approach. Astrophysic. J. 1985, 291, L33–L36. [Google Scholar] [CrossRef]
- Iyer, S.; Will, C.M. Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering. Phys. Rev. 1987, D35, 3621. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S. Black-hole normal modes: A WKB approach. II. Schwarzschild black holes. Phys. Rev. D 1987, 35, 3632–3636. [Google Scholar] [CrossRef] [PubMed]
- Kokkotas, K.D.; Schutz, B.F. Black Hole Normal Modes: A WKB Approach. 3. The Reissner-Nordstrom Black Hole. Phys. Rev. 1988, D37, 3378–3387. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.; Lemos, J.P.S. Scalar, electromagnetic, and Weyl perturbations of BTZ black holes: Quasinormal modes. Phys. Rev. D 2001, 63, 124015. [Google Scholar] [CrossRef]
- Birmingham, D. Choptuik scaling and quasinormal modes in the anti–de Sitter space/conformal-field theory correspondence. Phys. Rev. D 2001, 64, 064024. [Google Scholar] [CrossRef]
- Fontana, R.D.B. Quasinormal modes of charged BTZ black holes. Class. Quantum Gravity 2024, 41, 145010. [Google Scholar] [CrossRef]
- Fontana, R.D.B. Scalar field instabilities in charged BTZ black holes. Phys. Rev. D 2024, 109, 044039. [Google Scholar] [CrossRef]
- Konewko, S.; Winstanley, E. Charge superradiance on charged BTZ black holes. Eur. Phys. J. C 2024, 84, 594. [Google Scholar] [CrossRef]
- Aragón, A.; González, P.A.; Saavedra, J.; Vásquez, Y. Scalar quasinormal modes for 2 + 1-dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Gen. Relativ. Gravit. 2021, 53, 91. [Google Scholar] [CrossRef]
- González, P.; Rincón, Á.; Saavedra, J.; Vásquez, Y. Superradiant instability and charged scalar quasinormal modes for (2 + 1)-dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Phys. Rev. D 2021, 104. [Google Scholar] [CrossRef]
- Hendi, S.H. Charged BTZ-like black holes in higher dimensions. Eur. Phys. J. C 2011, 71, 1551. [Google Scholar] [CrossRef]
- Hendi, S.H.; Eslam Panah, B.; Saffari, R. Exact solutions of three-dimensional black holes: Einstein gravity versus F(R) gravity. Int. J. Mod. Phys. D 2014, 23, 1450088. [Google Scholar] [CrossRef]
- Younesizadeh, Y.; Ahmad, A.A.; Ahmed, A.H.; Younesizadeh, F.; Ebrahimkhas, M. A new black hole solution in dilaton gravity inspired by power-law electrodynamics. Int. J. Mod. Phys. A 2019, 34, 1950239. [Google Scholar] [CrossRef]
- Valtancoli, P. Scalar field conformally coupled to a charged BTZ black hole. Ann. Phys. 2016, 369, 161–167. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, A. Quasinormal modes of black holes in Einstein-power-Maxwell theory. Int. J. Mod. Phys. D 2018, 27, 1850034. [Google Scholar] [CrossRef]
- Soroushfar, S.; Saffari, R.; Jafari, A. Study of geodesic motion in a (2+1)-dimensional charged BTZ black hole. Phys. Rev. D 2016, 93, 104037. [Google Scholar] [CrossRef]
- Nascimento, F.F.d.; Bezerra, V.B.; Toledo, J.d.M. Black Holes with a Cloud of Strings and Quintessence in a Non-Linear Electrodynamics Scenario. Universe 2024, 10, 430. [Google Scholar] [CrossRef]
- Kruglov, S.I. Einstein-AdS Gravity Coupled to Nonlinear Electrodynamics, Magnetic Black Holes, Thermodynamics in an Extended Phase Space and Joule–Thomson Expansion. Universe 2023, 9, 456. [Google Scholar] [CrossRef]
- Seidel, E.; Iyer, S. Black hole normal modes: A WKB approach. 4. Kerr black holes. Phys. Rev. 1990, D41, 374–382. [Google Scholar] [CrossRef]
- Konoplya, R.A. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. 2003, D68, 024018. [Google Scholar] [CrossRef]
- Matyjasek, J.; Opala, M. Quasinormal modes of black holes: The improved semianalytic approach. Phys. Rev. D 2017, 96, 024011. [Google Scholar] [CrossRef]
- Gundlach, C.; Price, R.H.; Pullin, J. Late-time behavior of stellar collapse and explosions. I. Linearized perturbations. Phys. Rev. D 1994, 49, 883–889. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Hubeny, V.E. Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 2000, 62, 024027. [Google Scholar] [CrossRef]
- Jansen, A. Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes. Eur. Phys. J. Plus 2017, 132, 546. [Google Scholar] [CrossRef]
- Carlip, S. The (2 + 1)-dimensional black hole. Class. Quantum Gravity 1995, 12, 2853–2879. [Google Scholar] [CrossRef]
- Martínez, C.; Teitelboim, C.; Zanelli, J. Charged rotating black hole in three spacetime dimensions. Phys. Rev. D 2000, 61. [Google Scholar] [CrossRef]
0.01 | −5.8831 | 0.11 | −4.8112 | 0.21 | −4.2616 | 0.31 | −3.9206 |
0.02 | −5.6928 | 0.12 | −4.7443 | 0.22 | −4.2187 | 0.32 | −3.8985 |
0.03 | −5.5454 | 0.13 | −4.6807 | 0.23 | −4.1776 | 0.33 | −3.8791 |
0.04 | −5.4206 | 0.14 | −4.6200 | 0.24 | −4.1385 | 0.34 | −3.8627 |
0.05 | −5.3106 | 0.15 | −4.5619 | 0.25 | −4.1013 | 0.35 | −3.8495 |
0.06 | −5.2112 | 0.16 | −4.5064 | 0.26 | −4.0660 | 0.36 | −3.8399 |
0.07 | −5.1199 | 0.17 | −4.4532 | 0.27 | −4.0327 | 0.37 | −3.8343 |
0.08 | −5.0353 | 0.18 | −4.4022 | 0.28 | −4.0014 | 0.38 | −3.8332 |
0.09 | −4.9561 | 0.19 | −4.3533 | 0.29 | −3.9722 | 0.39 | −3.8678 |
0.1 | −4.8816 | 0.2 | −4.3065 | 0.3 | −3.9453 |
q | 1/2 | 1 | 3/2 | 2 | 5/2 | 3 | 7/2 | 4 | 9/2 | 5 |
---|---|---|---|---|---|---|---|---|---|---|
1.6918 | 1.6470 | 2.0816 | 3.0235 | 4.4017 | 6.1651 | 8.2886 | 10.760 | 13.574 | 16.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, R.D.B. Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations. Universe 2025, 11, 197. https://doi.org/10.3390/universe11060197
Fontana RDB. Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations. Universe. 2025; 11(6):197. https://doi.org/10.3390/universe11060197
Chicago/Turabian StyleFontana, Rodrigo Dal Bosco. 2025. "Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations" Universe 11, no. 6: 197. https://doi.org/10.3390/universe11060197
APA StyleFontana, R. D. B. (2025). Lower Dimensional Black Holes in Nonlinear Electrodynamics: Causal Structure and Scalar Perturbations. Universe, 11(6), 197. https://doi.org/10.3390/universe11060197