Nonrelativistic Superfluids in Cosmology from a Relativistic Approach: Revisiting Two Formulations of Superfluidity
Abstract
:1. Introduction
2. Preliminaries
2.1. Two-Fluid Model
2.2. Effective Theory Approach
3. Recovering the Nonrelativistic Limit for BEC DM
3.1. Low-Temperature Limit
3.2. Self-Gravitating Superfluids
3.3. High-Temperature Limit
4. Recovering the Nonrelativistic Dynamics for
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DM | Dark Matter |
CDM | Lambda-Cold Dark Matter |
BEC | Bose–Einstein Condensate |
MOND | MOdified Newtonian Dynamics |
UV | Ultra-Violet |
1 | Since we are in a frame that is comoving with the normal component, we must have . Thus, because , we know that must be space-like. |
2 | The y-dependence cannot be neglected when the particle number is conserved. In the absence of a superfluid component, the symmetry (14) is enhanced to , with f being an arbitrary function, and this precludes the X-dependence of F [65]. However, for systems in which the particle number is not conserved (e.g., a gas of photons), we would have . |
References
- Lahav, O.; Liddle, A.R. The cosmological parameters. arXiv 2023, arXiv:2403.15526. [Google Scholar]
- Aghanim, N. et al. [Planck Collaboration]. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in: Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Hoekstra, H.; Yee, H.K.C.; Gladders, M.D. Properties of galaxy dark matter halos from weak lensing. Astrophys. J. 2004, 606, 67–77. [Google Scholar] [CrossRef]
- Bennett, C.L. et al. [WMAP Collaboration]. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. 2013, 208, 20. [Google Scholar] [CrossRef]
- Zwicky, F. The redshift of extragalactic nebulae. Helv. Phys. Acta 1933, 6, 138. [Google Scholar]
- Smith, S. The mass of the Virgo cluster. Astrophys. J. 1936, 83, 23. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379–403. [Google Scholar] [CrossRef]
- Freeman, K.C. On the disks of spiral and S0 galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Peebles, P.J.E. A numerical study of the stability of flattened galaxies: Or, can cold galaxies survive? Astrophys. J. 1973, 186, 467–480. [Google Scholar] [CrossRef]
- Anderson, L.; Aubourg, É.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the Data Releases 10 and 11 galaxy samples. Mon. Not. Roy. Astron. Soc. 2014, 441, 24–62. [Google Scholar] [CrossRef]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2004, 606, 702–740. [Google Scholar] [CrossRef]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Ann. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Bullock, J.S.; Governato, F.; de Naray, R.K.; Peter, A.H.G. Cold dark matter: Controversies on small scales. Proc. Nat. Acad. Sci. USA 2015, 112, 12249–12255. [Google Scholar] [CrossRef] [PubMed]
- Spergel, D.N.; Steinhardt, P.J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 2000, 84, 3760–3763. [Google Scholar] [CrossRef]
- Colín, P.; Avila-Reese, V.; Valenzuela, O. Substructure and halo density profiles in a warm dark matter cosmology. Astrophys. J. 2000, 542, 622–630. [Google Scholar] [CrossRef]
- Berezhiani, L.; Khoury, J. Theory of dark matter superfluidity. Phys. Rev. D 2015, 92, 103510. [Google Scholar] [CrossRef]
- Berezhiani, L.; Khoury, J. Dark Matter Superfluidity and Galactic Dynamics. Phys. Lett. B 2016, 753, 639–643. [Google Scholar] [CrossRef]
- Khoury, J. A Dark Matter Superfluid. arXiv 2015, arXiv:1507.03013. [Google Scholar]
- Sin, S.J. Late time cosmological phase transition and galactic halo as Bose liquid. Phys. Rev. D 1994, 50, 3650–3654. [Google Scholar] [CrossRef]
- Goodman, J. Repulsive dark matter. New Astron. 2000, 5, 103. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Fluid dark matter. Astrophys. J. Lett. 2000, 534, L127. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Barkana, R.; Gruzinov, A. Cold and fuzzy dark matter. Phys. Rev. Lett. 2000, 85, 1158–1161. [Google Scholar] [CrossRef]
- Silverman, M.P.; Mallett, R.L. Dark matter as a cosmic Bose-Einstein condensate and possible superfluid. Gen. Rel. Grav. 2002, 34, 633–649. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T. Can dark matter be a Bose-Einstein condensate? JCAP 2007, 6, 025. [Google Scholar] [CrossRef]
- Chavanis, P.H. Mass-radius relation of Newtonian self-gravitating Bose–Einstein condensates with short-range interactions: I. Analytical results. Phys. Rev. D 2011, 84, 043531. [Google Scholar] [CrossRef]
- Bettoni, D.; Colombo, M.; Liberati, S. Dark matter as a Bose-Einstein Condensate: The relativistic non-minimally coupled case. JCAP 2014, 2, 004. [Google Scholar] [CrossRef]
- Guth, A.H.; Hertzberg, M.P.; Prescod-Weinstein, C. Do Dark Matter Axions Form a Condensate with Long-Range Correlation? Phys. Rev. D 2015, 92, 103513. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Ferreira, E.G.M.; Franzmann, G.; Khoury, J.; Brandenberger, R. Unified Superfluid Dark Sector. JCAP 2019, 8, 027. [Google Scholar] [CrossRef]
- Das, S.; Bhaduri, R.K. Dark matter and dark energy from a Bose–Einstein condensate. Class. Quant. Grav. 2015, 32, 105003. [Google Scholar] [CrossRef]
- Das, S.; Bhaduri, R.K. Bose-Einstein condensate in cosmology. arXiv 2018, arXiv:1808.10505. [Google Scholar]
- Das, S.; Sur, S. A unified cosmological dark sector from a Bose–Einstein condensate. Phys. Dark Univ. 2023, 42, 101331. [Google Scholar] [CrossRef]
- Ferreira, E.G.M. Ultra-light dark matter. Astron. Astrophys. Rev. 2021, 29, 7. [Google Scholar] [CrossRef]
- Hui, L. Wave Dark Matter. Ann. Rev. Astron. Astrophys. 2021, 59, 247–289. [Google Scholar] [CrossRef]
- Khoury, J. Dark Matter Superfluidity. SciPost Phys. Lect. Notes 2022, 42, 1. [Google Scholar] [CrossRef]
- Berezhiani, L.; Famaey, B.; Khoury, J. Phenomenological consequences of superfluid dark matter with baryon-phonon coupling. JCAP 2018, 9, 021. [Google Scholar] [CrossRef]
- Landau, L.D. Theory of the superfluidity of helium II. Phys. Rev. 1941, 60, 356–358. [Google Scholar] [CrossRef]
- Landau, L.D. On the Theory of Superfluidity of Helium II. J. Phys. (USSR) 1947, 11, 91. [Google Scholar] [CrossRef]
- Schmitt, A. Introduction to Superfluidity; Lecture Notes in Physics; Springer: Cham, Switzerland, 2015; Volume 888. [Google Scholar] [CrossRef]
- Page, D.; Prakash, M.; Lattimer, J.M.; Steiner, A.W. Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter. Phys. Rev. Lett. 2011, 106, 081101. [Google Scholar] [CrossRef]
- Rajagopal, K.; Wilczek, F. The Condensed Matter Physics of QCD; World Scientific: Singapore, 2001. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D 1984, 30, 2379. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. ‘Nonbaryonic’ dark matter as baryonic color superconductor. JCAP 2003, 10, 010. [Google Scholar] [CrossRef]
- Alexander, S.; McDonough, E.; Spergel, D.N. Chiral Gravitational Waves and Baryon Superfluid Dark Matter. JCAP 2018, 5, 003. [Google Scholar] [CrossRef]
- Alexander, S.; McDonough, E.; Spergel, D.N. Strongly-interacting ultralight millicharged particles. Phys. Lett. B 2021, 822, 136653. [Google Scholar] [CrossRef]
- Ouyed, R.; Leahy, D.; Koning, N.; Jaikumar, P. Quark Clusters, QCD Vacuum and the Cosmological 7Li, Dark Matter and Dark Energy Problems. Universe 2024, 10, 115. [Google Scholar] [CrossRef]
- Alexander, S.; Bernardo, H.; Gilmer, H. A Dark Matter Fermionic Quantum Fluid from Standard Model Dynamics. arXiv 2024, arXiv:2405.08874. [Google Scholar]
- Bernardo, H.; Brandenberger, R.; Favero, A. Superfluid dark matter flow around cosmic strings. Phys. Rev. D 2024, 109, 123509. [Google Scholar] [CrossRef]
- Israel, W. Covariant superfluid mechanics. Phys. Lett. A 1981, 86, 79–81. [Google Scholar] [CrossRef]
- Khalatnikov, I.M.; Lebedev, V.V. Relativistic hydrodynamics of a superfluid liquid. Phys. Lett. A 1982, 91, 70–72. [Google Scholar] [CrossRef]
- Lebedev, V.V.; Khalatnikov, I.M. Relativistic hydrodynamics of a superfluid. Zh. Eksp. Teor. Fiz. 1982, 56, 1601. [Google Scholar]
- Israel, W. Equivalence of two theories of relativistic superfluid mechanics. Phys. Lett. A 1982, 92, 77–78. [Google Scholar] [CrossRef]
- Dixon, W.G. Thermodynamics of superfluids via relativity. Arch. Ration. Mech. Anal. 1982, 80, 159–203. [Google Scholar] [CrossRef]
- Carter, B.; Khalatnikov, I.M. Equivalence of convective and potential variational derivations of covariant superfluid dynamics. Phys. Rev. D 1992, 45, 4536. [Google Scholar] [CrossRef]
- Carter, B.; Langlois, D. The Equation of state for cool relativistic two constituent superfluid dynamics. Phys. Rev. D 1995, 51, 5855–5864. [Google Scholar] [CrossRef]
- Son, D.T. Hydrodynamics of relativistic systems with broken continuous symmetries. Int. J. Mod. Phys. A 2001, 16S1C, 1284–1286. [Google Scholar] [CrossRef]
- Nicolis, A. Low-energy effective field theory for finite-temperature relativistic superfluids. arXiv 2011, arXiv:1108.2513. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 6. [Google Scholar]
- London, F. On the Bose–Einstein condensation. Phys. Rev. 1938, 54, 947–954. [Google Scholar] [CrossRef]
- London, F. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 1938, 141, 643–644. [Google Scholar] [CrossRef]
- Tisza, L. Transport phenomena in helium II. Nature 1938, 141, 913. [Google Scholar] [CrossRef]
- Donnelly, R.J. The two-fluid theory and second sound in liquid helium. Phys. Today 2009, 62, 34–39. [Google Scholar] [CrossRef]
- Balibar, S. Laszlo Tisza and the two-fluid model of superfluidity. C. R. Phys. 2017, 18, 586–591. [Google Scholar] [CrossRef]
- Dubovsky, S.; Hui, L.; Nicolis, A.; Son, D.T. Effective field theory for hydrodynamics: Thermodynamics, and the derivative expansion. Phys. Rev. D 2012, 85, 085029. [Google Scholar] [CrossRef]
- Andersson, N.; Comer, G.L. Relativistic fluid dynamics: Physics for many different scales. Living Rev. Rel. 2021, 24, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favero, A.; Bernardo, H. Nonrelativistic Superfluids in Cosmology from a Relativistic Approach: Revisiting Two Formulations of Superfluidity. Universe 2025, 11, 150. https://doi.org/10.3390/universe11050150
Favero A, Bernardo H. Nonrelativistic Superfluids in Cosmology from a Relativistic Approach: Revisiting Two Formulations of Superfluidity. Universe. 2025; 11(5):150. https://doi.org/10.3390/universe11050150
Chicago/Turabian StyleFavero, Aline, and Heliudson Bernardo. 2025. "Nonrelativistic Superfluids in Cosmology from a Relativistic Approach: Revisiting Two Formulations of Superfluidity" Universe 11, no. 5: 150. https://doi.org/10.3390/universe11050150
APA StyleFavero, A., & Bernardo, H. (2025). Nonrelativistic Superfluids in Cosmology from a Relativistic Approach: Revisiting Two Formulations of Superfluidity. Universe, 11(5), 150. https://doi.org/10.3390/universe11050150