Differing Manifestations of Spatial Curvature in Cosmological FRW Models
Abstract
:1. Introduction
2. The Benchmark Standard Model
3. Modified Curvature SM
3.1. Models and Datasets
3.2. Results
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Handley, W. Curvature tension: Evidence for a closed universe. Phys. Rev. D 2021, 103, L041301. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49. [Google Scholar] [CrossRef]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, Ö.; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E.; et al. Cosmology Intertwined IV: The age of the universe and its curvature. Astropart. Phys. 2021, 131, 102607. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron. 2020, 4, 196. [Google Scholar] [CrossRef]
- Efstathiou, G.; Gratton, S. The evidence for a spatially flat Universe. Mon. Not. R. Astron. Soc. 2020, 496, L91. [Google Scholar] [CrossRef]
- Dicke, R.H. Memoirs of the American Philosophical Society, Jayne Lectures for 1969; American Philosophical Society: Philadelphia, PA, USA, 1970. [Google Scholar]
- Carroll, S.M. In What Sense Is the Early Universe Fine-Tuned? arXiv 2014, arXiv:1406.3057. [Google Scholar] [CrossRef]
- Evrard, G.; Coles, P. LETTER TO THE EDITOR: Getting the measure of the flatness problem. Class. Quantum Gravity 1995, 12, L93. [Google Scholar] [CrossRef]
- Lake, K. The Flatness Problem and Λ. Phys. Rev. Lett. 2005, 94, 201102. [Google Scholar] [CrossRef]
- Helbig, P. Arguments against the flatness problem in classical cosmology: A review. Eur. Phys. J. H 2021, 46, 10. [Google Scholar] [CrossRef]
- Helbig, P. The flatness problem and the age of the Universe. Mon. Not. R. Astron. Soc. 2020, 495, 3571. [Google Scholar] [CrossRef]
- Adler, R.J.; Overduin, J.M. The nearly flat universe. Gen. Rel. Grav. 2005, 37, 1491. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Loeb, A.; Moresco, M. Eppur è piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance. Astrophys. J. 2021, 908, 84. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. The galaxy power spectrum take on spatial curvature and cosmic concordance. Phys. Dark Universe 2021, 33, 100851. [Google Scholar] [CrossRef]
- Dhawan, S.; Alsing, J.; Vagnozzi, S. Non-parametric spatial curvature inference using late-Universe cosmological probes. Mon. Not. R. Astron. Soc. 2021, 506, L1. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Ratra, B. Using Pantheon and DES supernova, baryon acoustic oscillation, and Hubble parameter data to constrain the Hubble constant, dark energy dynamics, and spatial curvature. Mon. Not. R. Astron. Soc. 2021, 504, 300. [Google Scholar] [CrossRef]
- Chudaykin, A.; Dolgikh, K.; Ivanov, M.M. Constraints on the curvature of the Universe and dynamical dark energy from the full-shape and BAO data. Phys. Rev. D 2021, 103, 023507. [Google Scholar] [CrossRef]
- Bargiacchi, G.; Benetti, M.; Capozziello, S.; Lusso, E.; Risaliti, G.; Signorini, M. Quasar cosmology: Dark energy evolution and spatial curvature. Mon. Not. R. Astron. Soc. 2022, 515, 1795. [Google Scholar] [CrossRef]
- Glanville, A.; Howlett, C.; Davis, T. Full-shape galaxy power spectra and the curvature tension. Mon. Not. R. Astron. Soc. 2022, 517, 3087. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, S.; Liu, T.; Li, X.; Geng, S.; Lian, Y.; Guo, W. Model-independent Constraints on Cosmic Curvature: Implication from Updated Hubble Diagram of High-redshift Standard Candles. Astrophys. J. 2020, 901, 129. [Google Scholar] [CrossRef]
- Arjona, R.; Nesseris, S. Novel null tests for the spatial curvature and homogeneity of the Universe and their machine learning reconstructions. Phys. Rev. D 2021, 103, 103539. [Google Scholar] [CrossRef]
- Gonzalez, J.E.; Benetti, M.; von Marttens, R.; Alcaniz, J. Testing the consistency between cosmological data: The impact of spatial curvature and the dark energy EoS. J. Cosmol. Astropart. Phys. 2021, 2021, 060. [Google Scholar] [CrossRef]
- Acquaviva, G.; Akarsu, Ö.; Katırcı, N.; Vazquez, J.A. Simple-graduated dark energy and spatial curvature. Phys. Rev. D 2021, 104, 023505. [Google Scholar] [CrossRef]
- Jesus, J.F.; Valentim, R.; Moraes, P.H.R.S.; Malheiro, M. Kinematic constraints on spatial curvature from supernovae Ia and cosmic chronometers. Mon. Not. R. Astron. Soc. 2021, 500, 2227. [Google Scholar] [CrossRef]
- Yang, W.; Giarè, W.; Pan, S.; Di Valentino, E.; Melchiorri, A.; Silk, J. Revealing the effects of curvature on the cosmological models. Phys. Rev. D 2023, 107, 063509. [Google Scholar] [CrossRef]
- Gao, C.; Chen, Y.; Zheng, J. Investigating the relationship between cosmic curvature and dark energy models with the latest supernova sample. Res. Astron. Astrophys. 2020, 20, 151. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Liu, X.; Liu, T.; Liu, Y.; Zheng, C. Multiple measurements of gravitational waves acting as standard probes: Model-independent constraints on the cosmic curvature with DECIGO. Astrophys. J. 2022, 931, 119. [Google Scholar] [CrossRef]
- Favale, A.; Gómez-Valent, A.; Migliaccio, M. Cosmic chronometers to calibrate the ladders and measure the curvature of the Universe. A model-independent study. Mon. Not. R. Astron. Soc. 2023, 523, 3406. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Qi, J.-Z.; Wang, B.; Zhang, J.-F.; Cui, J.-L.; Zhang, X. Cosmological model-independent measurement of cosmic curvature using distance sum rule with the help of gravitational waves. Mon. Not. R. Astron. Soc. 2022, 516, 5187. [Google Scholar] [CrossRef]
- Liu, T.; Cao, S.; Biesiada, M.; Geng, S. Revisiting the Hubble Constant, Spatial Curvature, and Cosmography with Strongly Lensed Quasar and Hubble Parameter Observations. Astrophys. J. 2022, 939, 37. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Investigating Cosmic Discordance. Astrophys. J. Lett. 2021, 908, L9. [Google Scholar] [CrossRef]
- Tröster, T.; Asgari, M.; Blake, C.; Cataneo, M.; Heymans, C.; Hildebrandt, H.; Joachimi, B.; Lin, C.-A.; Sánchez, A.G.; Wright, A.H.; et al. KiDS-1000 Cosmology: Constraints beyond flat ΛCDM. Astron. Astrphys. 2021, 649, A88. [Google Scholar] [CrossRef]
- Stevens, J.; Khoraminezhad, H.; Saito, S. Constraining the spatial curvature with cosmic expansion history in a cosmological model with a non-standard sound horizon. J. Cosmol. Astropart. Phys. 2023, 2023, 046. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Gott, J.R. Creation of open universes from de Sitter space. Nature 1982, 295, 304. [Google Scholar] [CrossRef]
- Bucher, M.; Goldhaber, A.S.; Turok, N. Open universe from inflation. Phys. Rev. D 1995, 52, 3314. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sasaki, M.; Tanaka, T. Large-Angle Cosmic Microwave Background Anisotropy in an Open Universe in the One-Bubble Inflationary Scenario. Astrophys. J. 1995, 455, 412. [Google Scholar] [CrossRef]
- Yamauchi, D.; Linde, A.; Naruko, A.; Sasaki, M.; Tanaka, T. Open inflation in the landscape. Phys. Rev. D 2011, 84, 043513. [Google Scholar] [CrossRef]
- Ratra, B. Inflation in a closed universe. Phys. Rev. D 2017, 96, 103534. [Google Scholar] [CrossRef]
- Velten, H.; Caramês, T.R.P. To Conserve, or Not to Conserve: A Review of Nonconservative Theories of Gravity. Universe 2021, 7, 38. [Google Scholar] [CrossRef]
- Rastall, P. Generalization of the Einstein Theory. Phys. Rev. D 1972, 6, 3357. [Google Scholar] [CrossRef]
- Fabris, J.C.; Alvarenga, M.H.; Hamani-Daouda, M.; Velten, H. Nonconservative unimodular gravity: A viable cosmological scenario? Eur. Phy. J. C 2022, 82, 522. [Google Scholar] [CrossRef]
- Bonder, Y.; Herrera, J.E.; Rubiol, A.M. Energy nonconservation and relativistic trajectories: Unimodular gravity and beyond. Phys. Rev. D 2023, 107, 084032. [Google Scholar] [CrossRef]
- Fazlollahi, H.R. Non-conserved modified gravity theory. Eur. Phys. J. C 2023, 83, 923. [Google Scholar] [CrossRef]
- Paiva, J.A.P.; Lazo, M.J.; Zanchin, V.T. Generalized nonconservative gravitational field equations from Herglotz action principle. Phys. Rev. D 2022, 105, 124023. [Google Scholar] [CrossRef]
- Al-Rawaf, A.S.; Taha, M.O. Cosmology of General Relativity without Energy-Momentum Conservation. Gen. Rel. Grav. 1996, 28, 935. [Google Scholar] [CrossRef]
- Smalley, L.L. Gravitational theories with nonzero divergence of the energy-momentum tensor. Phys. Rev. D 1975, 12, 376. [Google Scholar] [CrossRef]
- Jones, J.; Copi, C.J.; Starkman, G.D.; Akrami, Y. The Universe is not statistically isotropic. arXiv 2023, arXiv:2310.12859. [Google Scholar]
- Sandage, A. The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. Astrophys. J. 1962, 136, 319. [Google Scholar] [CrossRef]
- Loeb, A. Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects. Astrophys. J. Lett. 1998, 499, L111. [Google Scholar] [CrossRef]
- Liske, J.; Grazian, A.; Vanzella, E.; Dessauges, M.; Viel, M.; Pasquini, L.; Haehnelt, M.; Cristiani, S.; Pepe, F.; Avila, G.; et al. Cosmic dynamics in the era of Extremely Large Telescopes. Mon. Not. R. Astron. Soc. 2008, 386, 1192. [Google Scholar] [CrossRef]
- Calabrese, E.; Slosar, A.; Melchiorri, A.; Smoot, G.F.; Zahn, O. Cosmic microwave weak lensing data as a test for the dark universe. Phys. Rev. D 2008, 77, 123531. [Google Scholar] [CrossRef]
- Kable, J.A.; Addison, G.E.; Bennett, C.L. Deconstructing the Planck TT Power Spectrum to Constrain Deviations from ΛCDM. Astrophys. J. 2020, 905, 164. [Google Scholar] [CrossRef]
- Vagnozzi, S. Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches. Phys. Rev. D 2021, 104, 063524. [Google Scholar] [CrossRef]
- Ivanov, M.M.; Ali-Haïmoud, Y.; Lesgourgues, J. H0 tension or T0 tension? Phys. Rev. D 2020, 102, 063515. [Google Scholar] [CrossRef]
- Bose, B.; Lombriser, L. Easing cosmic tensions with an open and hotter universe. Phys. Rev. D 2021, 103, L081304. [Google Scholar] [CrossRef]
- Shimon, M.; Rephaeli, Y. Parameter interplay of CMB temperature, space curvature, and expansion rate. Phys. Rev. D 2020, 102, 083532. [Google Scholar] [CrossRef]
- Kolb, E.W. A Coasting Cosmology. Astrophys. J. 1989, 344, 543. [Google Scholar] [CrossRef]
- Buchert, T. Toward physical cosmology: Focus on inhomogeneous geometry and its non-perturbative effects. Class. Quantum Gravity 2011, 28, 164007. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G. Archipelagian cosmology: Dynamics and observables in a universe with discretized matter content. Phys. Rev. D 2009, 80, 103503. [Google Scholar] [CrossRef]
- Räsänen, S. Light propagation and the average expansion rate in near-FRW universes. Phys. Rev. D 2012, 85, 083528. [Google Scholar] [CrossRef]
- Buchert, T.; Carfora, M.; Ellis, G.F.R.; Kolb, E.W.; MacCallum, M.A.H.; Ostrowski, J.J.; Räsänen, S.; Roukema, B.F.; Andersson, L.; A Coley, A.; et al. Is there proof that backreaction of inhomogeneities is irrelevant in cosmology? Class. Quantum Gravity 2015, 32, 215021. [Google Scholar] [CrossRef]
- Agashe, A.; Ishak, M. An Almost FLRW Universe as an Averaged Geometry in Macroscopic Gravity. Gravit. Cosmol. 2023, 29, 110. [Google Scholar] [CrossRef]
- Buchert, T. Dark Energy from structure: A status report. Gen. Rel. Grav. 2008, 40, 467. [Google Scholar] [CrossRef]
- Buchert, T.; Larena, J.; Alimi, J.-M. Correspondence between kinematical backreaction and scalar field cosmologies—the ‘morphon field’. Class. Quantum Gravity 2006, 23, 6379. [Google Scholar] [CrossRef]
- Buchert, T. A cosmic equation of state for the inhomogeneous universe: Can a global far-from-equilibrium state explain dark energy? Class. Quantum Gravity 2005, 22, L113. [Google Scholar] [CrossRef]
- Geshnizjani, G.; Chung, D.J.; Afshordi, N. Do large-scale inhomogeneities explain away dark energy? Phys. Rev. D 2005, 72, 023517. [Google Scholar] [CrossRef]
- Kozaki, H.; Nakao, K.-I. Volume expansion of a Swiss-cheese universe. Phys. Rev. D 2002, 66, 104008. [Google Scholar] [CrossRef]
- Nambu, Y. Back reaction and the effective Einstein equation for the universe with ideal fluid cosmological perturbations. Phys. Rev. D 2002, 65, 104013. [Google Scholar] [CrossRef]
- Fleury, P. Cosmic backreaction and Gauss’s law. Phys. Rev. D 2017, 95, 124009. [Google Scholar] [CrossRef]
- Fleury, P.; Clarkson, C.; Maartens, R. How does the cosmic large-scale structure bias the Hubble diagram? J. Cosmol. Astropart. Phys. 2017, 2017, 062. [Google Scholar] [CrossRef]
- Giblin, J.T.; Mertens, J.B.; Starkman, G.D. Departures from the Friedmann-Lemaitre-Robertston-Walker Cosmological Model in an Inhomogeneous Universe: A Numerical Examination. Phys. Rev. Lett. 2016, 116, 251301. [Google Scholar] [CrossRef] [PubMed]
- Buchert, T. On Average Properties of Inhomogeneous Fluids in General Relativity: Dust Cosmologies. Gen. Rel. Grav. 2000, 32, 105. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Inhomogeneity effects in cosmology. Class. Quantum Gravity 2011, 28, 164001. [Google Scholar] [CrossRef]
- Larena, J.; Alimi, J.-M.; Buchert, T.; Kunz, M.; Corasaniti, P.-S. Testing backreaction effects with observations. Phys. Rev. D 2009, 79, 083011. [Google Scholar] [CrossRef]
- Lapi, A.; Haridasu, B.S.; Boco, L.; Cueli, M.M.; Baccigalupi, C.; Danese, L. Little ado about everything. Part II. An ‘emergent’ dark energy from structure formation to rule cosmic tensions. J. Cosmol. Astropart. Phys. 2025, 4, 015. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. [Planck Collaboration]. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef]
- To, C.; Krause, E.; Rozo, E.; Wu, H.; Gruen, D.; Wechsler, R.H.; Eifler, T.F.; Rykoff, E.S.; Costanzi, M.; Becker, M.R.; et al. Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations. Phys. Rev. Lett. 2021, 126, 141301. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.-H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617. [Google Scholar] [CrossRef]
- Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample—I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835. [Google Scholar] [CrossRef]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Liddle, A.R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 2007, 377, L74. [Google Scholar] [CrossRef]
- Abdul-Karim, M.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.; Prieto, C.A.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, E.; et al. [DESI Collaboration]. DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints. arXiv 2025, arXiv:2503.14738. [Google Scholar] [CrossRef]
Model 1 (CDM) | |
Model 2 (KCDM) | |
Model 3 | , |
Model 4 | |
Model 5 |
Datasets | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
P18 | 2799.4 | 2791.0 | – | 2800.1 | 2791.3 |
−8.3 | – | 0.7 | −8.1 | ||
P18+DES | 3339.8 | 3338.4 | 3331.6 | 3338.4 | 3339.2 |
−1.3 | −8.1 | −1.3 | −0.6 | ||
P18+BAO | 2805.9 | 2806.5 | 2805.9 | 2806.8 | 2806.4 |
0.6 | 0 | 0.9 | 0.5 | ||
P18+SN | 3834.8 | 3835.0 | 3827.7 | 3835.9 | 3835.7 |
0.2 | −7.0 | 1.1 | 0.9 | ||
P18+SN+BAO | 3840.8 | 3841.3 | 3841.7 | 3841.3 | 3841.4 |
0.5 | 0.9 | 0.5 | 0.6 |
Datasets | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
P18+SH0ES | 2819.3 | 2809.3 | 2795.7 | 2804.8 | 2807.8 |
−10.0 | −23.6 | −14.5 | −11.6 | ||
P18+DES+SH0ES | 3354.6 | 3342.0 | 3331.9 | 3338.4 | 3340.1 |
−12.6 | −22.7 | −16.2 | −14.5 | ||
P18+BAO+SH0ES | 2824.8 | 2821.5 | 2812.2 | 2818.4 | 2820.9 |
−3.3 | −12.6 | −6.4 | −3.9 | ||
P18+SN+SH0ES | 3853.8 | 3844.9 | 3843.1 | 3845.0 | 3844.2 |
−8.9 | −10.7 | −8.8 | −9.6 | ||
P18+SN+BAO+SH0ES | 3859.4 | 3856.8 | 3852.4 | 3854.3 | 3856.0 |
−2.6 | −7.0 | −5.2 | −3.4 |
Dataset | |||
---|---|---|---|
P18+SH0ES | 1:500 | 1:20 | 1:10,000,000 |
P18+DES+SH0ES | 1:300 | 1:5 | 1:1400 |
P18+BAO+SH0ES | 1:1250 | 1:25 | 1:1000 |
P18+SN+SH0ES | 1:7 | fair | 1:14 |
P18+BAO+SN+SH0ES | 1:20 | fair | 1:25 |
P18 | – | – | – |
P18+DES | 1:50 | 1:7 | 1:70 |
P18+BAO | 1:4 | fair | 1:5 |
P18+SN | 1:200 | 1:200 | 1:160 |
P18+BAO+SN | fair | fair | fair |
Dataset | Model 2 | Model 4 | Model 5 |
P18+SH0ES | 1:300 | 1:100,000 | 1:100,000 |
P18+DES+SH0ES | 1:2500 | 1:100,000 | 1:1250 |
P18+BAO+SH0ES | 1:14 | 1:100 | 1:20 |
P18+SN+SH0ES | 1:300 | 1:500 | 1:500 |
P18+BAO+SN+SH0ES | 1:16 | 1:50 | 1:20 |
P18 | 1:500 | 1:4 | 1:1100 |
P18+DES | 1:4 | 1:12 | 1:5 |
P18+BAO | fair | fair | fair |
P18+SN | fair | fair | fair |
P18+BAO+SN | fair | fair | fair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimon, M.; Rephaeli, Y. Differing Manifestations of Spatial Curvature in Cosmological FRW Models. Universe 2025, 11, 143. https://doi.org/10.3390/universe11050143
Shimon M, Rephaeli Y. Differing Manifestations of Spatial Curvature in Cosmological FRW Models. Universe. 2025; 11(5):143. https://doi.org/10.3390/universe11050143
Chicago/Turabian StyleShimon, Meir, and Yoel Rephaeli. 2025. "Differing Manifestations of Spatial Curvature in Cosmological FRW Models" Universe 11, no. 5: 143. https://doi.org/10.3390/universe11050143
APA StyleShimon, M., & Rephaeli, Y. (2025). Differing Manifestations of Spatial Curvature in Cosmological FRW Models. Universe, 11(5), 143. https://doi.org/10.3390/universe11050143