K-Essence Sources of Kerr–Schild Spacetimes
Abstract
:1. Introduction
2. Kerr–Schild Spacetimes and K-Essence
2.1. Nonvacuum Kerr–Schild Maps
2.2. K-Essence
3. K-Essence Sourcing Kerr–Schild Spacetimes
3.1. Infinitesimal Kerr–Schild Maps
3.2. Finite Kerr–Schild Maps
3.3. Autoparallel Null Congruence
4. Condition for the Solution of the Linearized System to Be Exact
4.1. Autoparallel Kerr–Schild Congruences
4.2. Unicity
5. Constant K-Essence Along the Integral Curves of the Kerr–Schild Null Congruence
6. On the Physical Interpretation of Kerr–Schild Maps
6.1. How Are Black Hole Properties Affected by Kerr–Schild Maps?
6.2. The Scalar Field Inside and Outside a Black Hole
6.2.1. Inside the Horizon
6.2.2. Outside the Horizon
6.3. Cosmological Scalar Field
6.4. On K-Essence Kerr–Schild Seed Spacetimes
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephani, H.; Kramer, D.; Maccallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2023; Volume 485. [Google Scholar]
- Gergely, L.Á.; Perjés, Z. Kerr-Schild metrics revisited I. The ground state. J. Math. Phys. 1994, 35, 2438. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Perjés, Z. Kerr-Schild metrics revisited II. The complete vacuum solution. J. Math. Phys. 1994, 35, 2448. [Google Scholar] [CrossRef]
- Gergely, L.Á.; Perjés, Z. Vacuum Kerr-Schild metrics generated by nontwisting congruences. Ann. Phys. 1994, 3, 609. [Google Scholar] [CrossRef]
- Xanthopoulos, B.C. Exact vacuum solutions of Einstein’s equation from linearized solutions. J. Math. Phys. 1978, 19, 1607. [Google Scholar] [CrossRef]
- Gergely, L.Á. Linear Einstein equations and Kerr-Schild maps. Class. Quantum Grav. 2002, 19, 2515. [Google Scholar] [CrossRef]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing general relativity with present and future astrophysical observations. Class. Quantum Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Gürses, M.; Şentürk, Ç. A Modified Gravity Theory: Null Aether. Commun. Theor. Phys. 2019, 71, 312. [Google Scholar] [CrossRef]
- Gürses, M.; Heydarzade, Y.; Şentürk, Ç. Kerr–Schild–Kundt metrics in generic gravity theories with modified Horndeski couplings. Eur. Phys. J. C 2021, 81, 1147. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Deffayet, C.; Gao, X.; Steer, D.A.; Zahariade, G. From k-essence to generalized Galileons. Phys. Rev. D. 2011, 84, 064039. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific and Virgo Collaborations, Fermi Gamma-ray burst monitor, and INTEGRAL] Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Baker, T.; Bellini, E.; Ferreira, P.G.; Lagos, M.; Noller, J.; Sawicki, I. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 2017, 119, 251301. [Google Scholar] [CrossRef] [PubMed]
- Ezquiaga, J.M.; Zumalacárregui, M. Dark Energy after GW170817: Dead ends and the road ahead. Phys. Rev. Lett. 2017, 119, 251304. [Google Scholar] [CrossRef] [PubMed]
- Creminelli, P.; Vernizzi, F. Dark Energy after GW170817 and GRB170817A. Phys. Rev. Lett. 2017, 119, 251302. [Google Scholar] [CrossRef] [PubMed]
- Sakstein, J.; Jain, B. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. Phys. Rev. Lett. 2017, 119, 251303. [Google Scholar] [CrossRef]
- Deffayet, C.; Pujolas, O.; Sawicki, I.; Vikman, A. Imperfect Dark Energy from Kinetic Gravity Braiding. JCAP 2010, 1010, 026. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V. k-Inflation. Phys. Lett. 1999, B458, 209. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. A Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Phys. Rev. Lett. 2000, 85, 4438. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k-essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Lim, E.A.; Sawicki, I.; Vikman, A. Dust of Dark Energy. JCAP 2010, 2010, 012. [Google Scholar] [CrossRef]
- Luongo, O.; Muccino, M. Speeding up the universe using dust with pressure. Phys. Rev. D 2018, 98, 103520. [Google Scholar] [CrossRef]
- D’Agostino, R.; Luongo, O.; Muccino, M. Healing the cosmological constant problem during inflation through a unified quasi-quintessence matter field. Class. Quantum Grav. 2022, 39, 195014. [Google Scholar] [CrossRef]
- Luongo, O.; Mengoni, T. Generalized K-essence inflation in Jordan and Einstein frames. Class. Quantum Grav. 2024, 41, 105006. [Google Scholar] [CrossRef]
- Akhoury, R.; Garfinkle, D.; Saotome, R. Gravitational collapse of k-essence. J. High Energy Phys. 2011, 2011, 096. [Google Scholar] [CrossRef]
- Manna, G.; Majumdar, P.; Majumder, B. k-essence emergent spacetime as a generalized Vaidya geometry. Phys. Rev. D 2020, 101, 124034. [Google Scholar] [CrossRef]
- Manna, G. Gravitational collapse for the K-essence emergent Vaidya spacetime. Eur. Phys. J. C 2020, 80, 813. [Google Scholar] [CrossRef]
- Majumder, B.; Ray, S.; Manna, G. Evaporation of Dynamical Horizon with the Hawking Temperature in the K-essence Emergent Vaidya Spacetime. Fortschritte Phys. 2023, 71, 2300133. [Google Scholar] [CrossRef]
- Kase, R.; Tsujikawa, S. Dark energy in Horndeski theories after GW170817: A review. Int. J. Mod. Phys. D 2019, 28, 1942005. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration] First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration] First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Faraoni, V. Correspondence between a scalar field and an effective perfect fluid. Phys. Rev. D 2012, 85, 024040. [Google Scholar] [CrossRef]
- Gergely, C.; Keresztes, Z.; Gergely, L.Á. Minimally coupled scalar fields as imperfect fluids. Phys. Rev. D 2020, 102, 024044. [Google Scholar] [CrossRef]
- Piattella, O.F.; Fabris, J.C.; Bilić, N. Note on the thermodynamics and the speed of sound of a scalar field. Class. Quantum Grav. 2014, 31, 055006. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Transcendence of the Law of Baryon-Number Conservation in Black-Hole Physics. Phys. Rev. Lett. 1972, 28, 452. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Nonexistence of Baryon Number for Static Black Holes. Phys. Rev. D 1972, 5, 1239. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Nonexistence of Baryon Number for Black Holes. II. Phys. Rev. D 1972, 5, 2403. [Google Scholar] [CrossRef]
- Sotiriou, T.P. Black holes and scalar fields. Class. Quantum Grav. 2015, 32, 214002. [Google Scholar] [CrossRef]
- Graham, A.A.H.; Jha, R. Nonexistence of black holes with noncanonical scalar fields. Phys. Rev. D 2014, 89, 084056. [Google Scholar] [CrossRef]
- Tattersall, O.J.; Ferreira, P.G.; Lagos, M. Speed of gravitational waves and black hole hair. Phys. Rev. D 2018, 97, 084005. [Google Scholar] [CrossRef]
- Jacobson, T. Primordial black hole evolution in tensor-scalar cosmology. Phys. Rev. Lett. 1999, 83, 2699. [Google Scholar] [CrossRef]
- Horbatsch, M.W.; Burgess, C.P. Cosmic black-hole hair growth and quasar OJ287. J. Cosmol. Astropart. Phys. 2012, 1205, 010. [Google Scholar] [CrossRef]
- Akyar, L.; Delice, Ö. On generalized Einstein-Rosen waves in Brans-Dicke theory. Eur. Phys. J. Plus 2014, 129, 226. [Google Scholar] [CrossRef]
- Piazza, F.; Tsujikawa, S. Dilatonic ghost condensate as dark energy. J. Cosmol. Astropart. Phys. 2004, 0407, 004. [Google Scholar] [CrossRef]
- Scherrer, R.J. Purely kinetic k-essence as unified dark matter. Phys. Rev. Lett. 2004, 93, 011301. [Google Scholar] [CrossRef]
- Racskó, B.; Gergely, L.Á. The Lanczos Equation on Light-Like Hypersurfaces in a Cosmologically Viable Class of Kinetic Gravity Braiding Theories. Symmetry 2019, 11, 616. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhász, B.; Gergely, L.Á. K-Essence Sources of Kerr–Schild Spacetimes. Universe 2025, 11, 100. https://doi.org/10.3390/universe11030100
Juhász B, Gergely LÁ. K-Essence Sources of Kerr–Schild Spacetimes. Universe. 2025; 11(3):100. https://doi.org/10.3390/universe11030100
Chicago/Turabian StyleJuhász, Bence, and László Árpád Gergely. 2025. "K-Essence Sources of Kerr–Schild Spacetimes" Universe 11, no. 3: 100. https://doi.org/10.3390/universe11030100
APA StyleJuhász, B., & Gergely, L. Á. (2025). K-Essence Sources of Kerr–Schild Spacetimes. Universe, 11(3), 100. https://doi.org/10.3390/universe11030100