Hadronic Molecules with Four Charm or Beauty Quarks
Abstract
:1. Introduction
2. Formalism
2.1. The System
2.2. The and Systems
2.3. The and Systems
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.R.; Chen, H.X.; Chen, W.; Liu, X.; Zhu, S.L. Pentaquark and Tetraquark States. Prog. Part. Nucl. Phys. 2019, 107, 237–320. [Google Scholar] [CrossRef]
- Chen, H.X.; Chen, W.; Liu, X.; Liu, Y.R.; Zhu, S.L. An updated review of the new hadron states. Rep. Prog. Phys. 2023, 86, 026201. [Google Scholar] [CrossRef]
- Guo, F.K.; Hanhart, C.; Meißner, U.G.; Wang, Q.; Zhao, Q.; Zou, B.S. Hadronic molecules. Rev. Mod. Phys. 2018, 90, 015004. [Google Scholar] [CrossRef]
- Brambilla, N.; Eidelman, S.; Hanhart, C.; Nefediev, A.; Shen, C.P.; Thomas, C.E.; Vairo, A.; Yuan, C.Z. The XYZ states: Experimental and theoretical status and perspectives. Phys. Rep. 2020, 873, 1–154. [Google Scholar] [CrossRef]
- Esposito, A.; Pilloni, A.; Polosa, A.D. Multiquark resonances. Phys. Rep. 2017, 668, 1–97. [Google Scholar] [CrossRef]
- Lebed, R.F.; Mitchell, R.E.; Swanson, E.S. Heavy-quark QCD exotica. Prog. Part. Nucl. Phys. 2017, 93, 143–194. [Google Scholar] [CrossRef]
- Ali, A.; Lange, J.S.; Stone, S. Exotics: Heavy pentaquarks and tetraquarks. Prog. Part. Nucl. Phys. 2017, 97, 123–198. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E. Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the σ, f0(980), a0(980) scalar mesons. Nucl. Phys. A 1997, 620, 438–456. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E.; Pelaez, J.R. Meson meson interaction in a nonperturbative chiral approach. Phys. Rev. D 1999, 59, 074001, Erratum in Phys. Rev. D 1999, 60, 099906; Phys. Rev. D 2007, 75, 099903. [Google Scholar] [CrossRef]
- Oset, E.; Ramos, A. Nonperturbative chiral approach to s wave anti-K N interactions. Nucl. Phys. A 1998, 635, 99–120. [Google Scholar] [CrossRef]
- Jido, D.; Oller, J.A.; Oset, E.; Ramos, A.; Meissner, U.G. Chiral dynamics of the two Lambda(1405) states. Nucl. Phys. A 2003, 725, 181–200. [Google Scholar] [CrossRef]
- Bruns, P.C.; Mai, M.; Meissner, U.G. Chiral dynamics of the S11(1535) and S11(1650) resonances revisited. Phys. Lett. B 2011, 697, 254–259. [Google Scholar] [CrossRef]
- Garcia-Recio, C.; Lutz, M.F.M.; Nieves, J. Quark mass dependence of s wave baryon resonances. Phys. Lett. B 2004, 582, 49–54. [Google Scholar] [CrossRef]
- Hyodo, T.; Nam, S.I.; Jido, D.; Hosaka, A. Flavor SU(3) breaking effects in the chiral unitary model for meson baryon scatterings. Phys. Rev. C 2003, 68, 018201. [Google Scholar] [CrossRef]
- Wu, J.J.; Molina, R.; Oset, E.; Zou, B.S. Prediction of Narrow N* and Λ* Resonances with Hidden Charm above 4 GeV. Phys. Rev. Lett. 2010, 105, 232001. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Molina, R.; Oset, E.; Zou, B.S. Dynamically generated N* and Λ* resonances in the hidden charm sector around 4.3 GeV. Phys. Rev. C 2011, 84, 015202. [Google Scholar] [CrossRef]
- Chen, H.X.; Geng, L.S.; Liang, W.H.; Oset, E.; Wang, E.; Xie, J.J. Looking for a hidden-charm pentaquark state with strangeness S = −1 from decay into J/ψK−Λ. Phys. Rev. C 2016, 93, 065203. [Google Scholar] [CrossRef]
- He, J. and interactions and the LHCb hidden-charmed pentaquarks. Phys. Lett. B 2016, 753, 547–551. [Google Scholar] [CrossRef]
- Xiao, C.W.; Nieves, J.; Oset, E. Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons. Phys. Rev. D 2013, 88, 056012. [Google Scholar] [CrossRef]
- Roca, L.; Nieves, J.; Oset, E. LHCb pentaquark as a Σc − molecular state. Phys. Rev. D 2015, 92, 094003. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, Q.; Zhao, Q. Understanding the newly observed heavy pentaquark candidates. Phys. Lett. B 2016, 757, 231–236. [Google Scholar] [CrossRef]
- Uchino, T.; Liang, W.H.; Oset, E. Baryon states with hidden charm in the extended local hidden gauge approach. Eur. Phys. J. A 2016, 52, 43. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb Collaboration] Observation of structure in the J/ψ-pair mass spectrum. Sci. Bull. 2020, 65, 1983–1993. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Observation of an Excess of Dicharmonium Events in the Four-Muon Final State with the ATLAS Detector. Phys. Rev. Lett. 2023, 131, 151902. [Google Scholar] [CrossRef] [PubMed]
- Hayrapetyan, A. et al. [CMS Collaboration] Observation of new structure in the J/ψJ/ψ mass spectrum in proton-proton collisions at = 13 TeV. arXiv 2023, arXiv:hep-ex/2306.07164. [Google Scholar]
- Liu, M.S.; Liu, F.X.; Zhong, X.H.; Zhao, Q. Full-heavy tetraquark states and their evidences in the LHCb di-J/ψ spectrum. arXiv 2020, arXiv:hep-ph/2006.11952. [Google Scholar]
- Tiwari, R.; Rathaud, D.P.; Rai, A.K. Spectroscopy of all charm tetraquark states. arXiv 2021, arXiv:hep-ph/2108.04017. [Google Scholar] [CrossRef]
- Lü, Q.F.; Chen, D.Y.; Dong, Y.B. Masses of fully heavy tetraquarks in an extended relativized quark model. Eur. Phys. J. C 2020, 80, 871. [Google Scholar] [CrossRef]
- Faustov, R.N.; Galkin, V.O.; Savchenko, E.M. Masses of the tetraquarks in the relativistic diquark-antidiquark picture. Phys. Rev. D 2020, 102, 114030. [Google Scholar] [CrossRef]
- Zhang, J.R. 0+ fully-charmed tetraquark states. Phys. Rev. D 2021, 103, 014018. [Google Scholar] [CrossRef]
- Li, Q.; Chang, C.H.; Wang, G.L.; Wang, T. Mass spectra and wave functions of tetraquarks. Phys. Rev. D 2021, 104, 014018. [Google Scholar] [CrossRef]
- Bedolla, M.A.; Ferretti, J.; Roberts, C.D.; Santopinto, E. Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective. Eur. Phys. J. C 2020, 80, 1004. [Google Scholar] [CrossRef]
- Weng, X.Z.; Chen, X.L.; Deng, W.Z.; Zhu, S.L. Systematics of fully heavy tetraquarks. Phys. Rev. D 2021, 103, 034001. [Google Scholar] [CrossRef]
- Liu, F.X.; Liu, M.S.; Zhong, X.H.; Zhao, Q. Higher mass spectra of the fully-charmed and fully-bottom tetraquarks. Phys. Rev. D 2021, 104, 116029. [Google Scholar] [CrossRef]
- Giron, J.F.; Lebed, R.F. Simple spectrum of states in the dynamical diquark model. Phys. Rev. D 2020, 102, 074003. [Google Scholar] [CrossRef]
- Karliner, M.; Rosner, J.L. Interpretation of structure in the di-J/ψ spectrum. Phys. Rev. D 2020, 102, 114039. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, K.; Kaewsnod, A.; Liu, X.; Limphirat, A.; Yan, Y. Study of charmoniumlike and fully-charm tetraquark spectroscopy. Phys. Rev. D 2021, 103, 116027. [Google Scholar] [CrossRef]
- Mutuk, H. Nonrelativistic treatment of fully-heavy tetraquarks as diquark-antidiquark states. Eur. Phys. J. C 2021, 81, 367. [Google Scholar] [CrossRef]
- Wang, G.J.; Meng, L.; Oka, M.; Zhu, S.L. Higher fully charmed tetraquarks: Radial excitations and P-wave states. Phys. Rev. D 2021, 104, 036016. [Google Scholar] [CrossRef]
- Wang, Z.G. Tetraquark candidates in the LHCb’s di-J/ψ mass spectrum. Chin. Phys. C 2020, 44, 113106. [Google Scholar] [CrossRef]
- Ke, H.W.; Han, X.; Liu, X.H.; Shi, Y.L. Tetraquark state X(6900) and the interaction between diquark and antidiquark. Eur. Phys. J. C 2021, 81, 427. [Google Scholar] [CrossRef]
- Zhu, R. Fully-heavy tetraquark spectra and production at hadron colliders. Nucl. Phys. B 2021, 966, 115393. [Google Scholar] [CrossRef]
- Jin, X.; Xue, Y.; Huang, H.; Ping, J. Full-heavy tetraquarks in constituent quark models. Eur. Phys. J. C 2020, 80, 1083. [Google Scholar] [CrossRef]
- Yang, G.; Ping, J.; Segovia, J. Exotic resonances of fully-heavy tetraquarks in a lattice-QCD insipired quark model. Phys. Rev. D 2021, 104, 014006. [Google Scholar] [CrossRef]
- Albuquerque, R.M.; Narison, S.; Rabemananjara, A.; Rabetiarivony, D.; Randriamanatrika, G. Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO. Phys. Rev. D 2020, 102, 094001. [Google Scholar] [CrossRef]
- Albuquerque, R.M.; Narison, S.; Rabetiarivony, D.; Randriamanatrika, G. Doubly hidden 0++ molecules and tetraquarks states from QCD at NLO. Nucl. Part. Phys. Proc. 2021, 312-317, 15289. [Google Scholar] [CrossRef]
- Wu, R.H.; Zuo, Y.S.; Wang, C.Y.; Meng, C.; Ma, Y.Q.; Chao, K.T. NLO results with operator mixing for fully heavy tetraquarks in QCD sum rules. arXiv 2022, arXiv:hep-ph/2201.11714. [Google Scholar]
- Asadi, Z.; Boroun, G.R. Masses of fully heavy tetraquark states from a four-quark static potential model. Phys. Rev. D 2022, 105, 014006. [Google Scholar] [CrossRef]
- Yang, B.C.; Tang, L.; Qiao, C.F. Scalar fully-heavy tetraquark states in QCD sum rules. Eur. Phys. J. C 2021, 81, 324. [Google Scholar] [CrossRef]
- Feng, F.; Huang, Y.; Jia, Y.; Sang, W.L.; Xiong, X.; Zhang, J.Y. Fragmentation production of fully-charmed tetraquarks at LHC. arXiv 2020, arXiv:hep-ph/2009.08450. [Google Scholar]
- Ma, Y.Q.; Zhang, H.F. Exploring the Di-J/ψ Resonances around 6.9 GeV Based on ab initio Perturbative QCD. arXiv 2020, arXiv:hep-ph/2009.08376. [Google Scholar]
- Maciuła, R.; Schäfer, W.; Szczurek, A. On the mechanism of T4c(6900) tetraquark production. Phys. Lett. B 2021, 812, 136010. [Google Scholar] [CrossRef]
- Gonçalves, V.P.; Moreira, B.D. Fully-heavy tetraquark production by γγ interactions in hadronic collisions at the LHC. Phys. Lett. B 2021, 816, 136249. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lin, Q.Y.; Xu, H.; Xie, Y.P.; Huang, Y.; Chen, X. Discovery potential for the LHCb fully-charm tetraquark X(6900) state via annihilation reaction. Phys. Rev. D 2020, 102, 116014. [Google Scholar] [CrossRef]
- Esposito, A.; Manzari, C.A.; Pilloni, A.; Polosa, A.D. Hunting for tetraquarks in ultraperipheral heavy ion collisions. Phys. Rev. D 2021, 104, 114029. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, Y.; Ma, Y.; Wang, Q. The lineshape of the compact fully heavy tetraquark. arXiv 2021, arXiv:hep-ph/2111.14028. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, S.; Zhuang, P. Fully-heavy tetraquarks in a strongly interacting medium. Phys. Rev. D 2020, 102, 114001. [Google Scholar] [CrossRef]
- Becchi, C.; Ferretti, J.; Giachino, A.; Maiani, L.; Santopinto, E. A study of tetraquark decays in 4 muons and in at LHC. Phys. Lett. B 2020, 811, 135952. [Google Scholar] [CrossRef]
- Sonnenschein, J.; Weissman, D. Deciphering the recently discovered tetraquark candidates around 6.9 GeV. Eur. Phys. J. C 2021, 81, 25. [Google Scholar] [CrossRef]
- Zhu, J.W.; Guo, X.D.; Zhang, R.Y.; Ma, W.G.; Li, X.Q. A possible interpretation for X(6900) observed in four-muon final state by LHCb—A light Higgs-like boson? arXiv 2020, arXiv:hep-ph/2011.07799. [Google Scholar]
- Wan, B.D.; Qiao, C.F. Gluonic tetracharm configuration of X(6900). Phys. Lett. B 2021, 817, 136339. [Google Scholar] [CrossRef]
- Gordillo, M.C.; De Soto, F.; Segovia, J. Diffusion Monte Carlo calculations of fully-heavy multiquark bound states. Phys. Rev. D 2020, 102, 114007. [Google Scholar] [CrossRef]
- Liu, M.Z.; Geng, L.S. Is X(7200) the heavy anti-quark diquark symmetry partner of X(3872)? Eur. Phys. J. C 2021, 81, 179. [Google Scholar] [CrossRef]
- Majarshin, A.J.; Luo, Y.A.; Pan, F.; Segovia, J. Bosonic algebraic approach applied to the tetraquarks. Phys. Rev. D 2022, 105, 054024. [Google Scholar] [CrossRef]
- Kuang, Z.; Serafin, K.; Zhao, X.; Vary, J.P. All-charm tetraquark in front form dynamics. Phys. Rev. D 2022, 105, 094028. [Google Scholar] [CrossRef]
- Wang, Q.N.; Yang, Z.Y.; Chen, W. Exotic fully-heavy tetraquark states in color configuration. Phys. Rev. D 2021, 104, 114037. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.X.; Liu, X.; Steele, T.G.; Zhu, S.L. Hunting for exotic doubly hidden-charm/bottom tetraquark states. Phys. Lett. B 2017, 773, 247–251. [Google Scholar] [CrossRef]
- Czarnecki, A.; Leng, B.; Voloshin, M.B. Stability of tetrons. Phys. Lett. B 2018, 778, 233–238. [Google Scholar] [CrossRef]
- Guo, Z.H.; Oller, J.A. Insights into the inner structures of the fully charmed tetraquark state X(6900). Phys. Rev. D 2021, 103, 034024. [Google Scholar] [CrossRef]
- Cao, Q.F.; Chen, H.; Qi, H.R.; Zheng, H.Q. Some remarks on X(6900). Chin. Phys. C 2021, 45, 103102. [Google Scholar] [CrossRef]
- Gong, C.; Du, M.C.; Zhao, Q.; Zhong, X.H.; Zhou, B. Nature of X(6900) and its production mechanism at LHCb. Phys. Lett. B 2022, 824, 136794. [Google Scholar] [CrossRef]
- Dong, X.K.; Baru, V.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Zou, B.S. Is the existence of a J/ψJ/ψ bound state plausible? Sci. Bull. 2021, 66, 1577. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.G.; Entem, D.R.; Fernández, F. Exploring Tψψ tetraquark candidates in a coupled-channels formalism. Phys. Rev. D 2023, 108, 094023. [Google Scholar] [CrossRef]
- Wang, G.J.; Meng, Q.; Oka, M. S-wave fully charmed tetraquark resonant states. Phys. Rev. D 2022, 106, 096005. [Google Scholar] [CrossRef]
- Zhou, Q.; Guo, D.; Kuang, S.Q.; Yang, Q.H.; Dai, L.Y. Nature of the X(6900) in partial wave decomposition of J/ψJ/ψ scattering. Phys. Rev. D 2022, 106, L111502. [Google Scholar] [CrossRef]
- Liu, W.Y.; Chen, H.X. Fully-heavy hadronic molecules bound by fully-heavy mesons. arXiv 2023, arXiv:hep-ph/2312.11212. [Google Scholar]
- Bando, M.; Kugo, T.; Yamawaki, K. Nonlinear Realization and Hidden Local Symmetries. Phys. Rep. 1988, 164, 217–314. [Google Scholar] [CrossRef]
- Meissner, U.G. Low-Energy Hadron Physics from Effective Chiral Lagrangians with Vector Mesons. Phys. Rep. 1988, 161, 213. [Google Scholar] [CrossRef]
- Oset, E.; Ramos, A. Dynamically generated resonances from the vector octet-baryon octet interaction. Eur. Phys. J. A 2010, 44, 445–454. [Google Scholar] [CrossRef]
- Aceti, F.; Bayar, M.; Oset, E.; Martinez Torres, A.; Khemchandani, K.P.; Dias, J.M.; Navarra, F.S.; Nielsen, M. Prediction of an I = 1 state and relationship to the claimed Zc(3900), Zc(3885). Phys. Rev. D 2014, 90, 016003. [Google Scholar] [CrossRef]
- Geng, L.S.; Oset, E. Vector meson-vector meson interaction in a hidden gauge unitary approach. Phys. Rev. D 2009, 79, 074009. [Google Scholar] [CrossRef]
- Nagahiro, H.; Roca, L.; Hosaka, A.; Oset, E. Hidden gauge formalism for the radiative decays of axial-vector mesons. Phys. Rev. D 2009, 79, 014015. [Google Scholar] [CrossRef]
- Molina, R.; Oset, E. The Y(3940), Z(3930) and the X(4160) as dynamically generated resonances from the vector-vector interaction. Phys. Rev. D 2009, 80, 114013. [Google Scholar] [CrossRef]
- Workman, R.L. et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Bečirević, D.; Duplančić, G.; Klajn, B.; Melić, B.; Sanfilippo, F. Lattice QCD and QCD sum rule determination of the decay constants of ηc, J/ψ and hc states. Nucl. Phys. B 2014, 883, 306–327. [Google Scholar] [CrossRef]
- Mathur, N.; Padmanath, M.; Mondal, S. Precise predictions of charmed-bottom hadrons from lattice QCD. Phys. Rev. Lett. 2018, 121, 202002. [Google Scholar] [CrossRef] [PubMed]
- McNeile, C.; Davies, C.T.H.; Follana, E.; Hornbostel, K.; Lepage, G.P. Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD. Phys. Rev. D 2012, 86, 074503. [Google Scholar] [CrossRef]
- Aceti, F.; Bayar, M.; Dias, J.M.; Oset, E. Prediction of a Zc(4000) state and relationship to the claimed Zc(4025). Eur. Phys. J. A 2014, 50, 103. [Google Scholar] [CrossRef]
- Oset, E.; Roca, L. Exotic molecular meson states of B(*)K(*) nature. Eur. Phys. J. C 2022, 82, 882, Erratum in Eur. Phys. J. C 2022, 82, 1014. [Google Scholar] [CrossRef]
- Yu, Q.X.; Pavao, R.; Debastiani, V.R.; Oset, E. Description of the Ξc and Ξb states as molecular states. Eur. Phys. J. C 2019, 79, 167. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhou, Y.; Chen, H.X.; Xie, J.J.; Geng, L.S. Dynamically generated JP = 1/2−(3/2−) singly charmed and bottom heavy baryons. Phys. Rev. D 2015, 92, 014036. [Google Scholar] [CrossRef]
- Ozpineci, A.; Xiao, C.W.; Oset, E. Hidden beauty molecules within the local hidden gauge approach and heavy quark spin symmetry. Phys. Rev. D 2013, 88, 034018. [Google Scholar] [CrossRef]
Constituent | Sector | Sector | Sector |
---|---|---|---|
15,725.3 − | 15,710.8 − | 15,685.2 − | ||||
15,790.3 − | 15,784.0 − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-Y.; Chen, H.-X. Hadronic Molecules with Four Charm or Beauty Quarks. Universe 2025, 11, 36. https://doi.org/10.3390/universe11020036
Liu W-Y, Chen H-X. Hadronic Molecules with Four Charm or Beauty Quarks. Universe. 2025; 11(2):36. https://doi.org/10.3390/universe11020036
Chicago/Turabian StyleLiu, Wen-Ying, and Hua-Xing Chen. 2025. "Hadronic Molecules with Four Charm or Beauty Quarks" Universe 11, no. 2: 36. https://doi.org/10.3390/universe11020036
APA StyleLiu, W.-Y., & Chen, H.-X. (2025). Hadronic Molecules with Four Charm or Beauty Quarks. Universe, 11(2), 36. https://doi.org/10.3390/universe11020036