Traversable Kaluza–Klein Wormholes?
Abstract
1. Introduction
2. Area Coordinates vs. Proper Distance Coordinates
3. Null Geodesic De-Focussing at the Throat
4. Curvature Conditions vs. Energy Conditions
5. Traditional Kaluza–Klein Ansatz
6. Traversable Kaluza–Klein Wormholes
6.1. Area Coordinates
6.2. Proper Distance Coordinates
7. Spacetime Curvature
7.1. 3 + 1 Traversable Wormhole in Proper Distance Coordinates
7.2. 4 + 1 Kaluza–Klein Wormhole in Proper Distance Coordinates
8. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | And going to even higher dimensionality introduces no essentially new ideas, and does not help. |
3 | |
4 | And the region would simply be discarded—it would not be part of the traversable wormhole spacetime. |
5 | Additionally we demand to be finite, so that be non-zero at the throat. |
6 | The situation is even worse for intra-universe wormholes, as opposed to inter-universe wormholes, where one additionally has to worry about how to merge the two spatial infinities into a single asymptotic universe. For simplicity let us consider inter-universe wormholes connecting two separate universes. |
7 | |
8 | See for instance reference [33] for one specific example of what to look for. |
9 | We will set up a suitable framework for Kaluza–Klein wormholes in a couple of pages. |
10 | With the usual sign convention, that the Ricci tensor of a 2-sphere be positive definite. |
11 | |
12 | |
13 | Note that the traditional Kaluza–Klein ansatz pre-dates string theory by at least 50 years. Appeals to string theory to justify the Kaluza–Klein ansatz are utterly missing the point. |
14 | In particular there is no pressing need (nor advantage) in suppressing the Kaluza–Klein distance scale all the way down to (or near) the Planck distance. |
15 | Note that no strings were harmed in performing this analysis. |
References
- Kaluza, T. Zum Unitätsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 1921, 966–972. (In German) [Google Scholar]
- Kaluza, T. On the Unification Problem in Physics. Int. J. Mod. Phys. 2018, 27, 1870001. [Google Scholar] [CrossRef]
- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. (Quantum theory and five-dimensional relativity theory). Z. Phys. 1926, 37, 895–906. (In German) [Google Scholar] [CrossRef]
- Klein, O. The Atomicity of Electricity as a Quantum Theory Law. Nature 1926, 118, 516. [Google Scholar] [CrossRef]
- Ravndal, F. Oskar Klein and the fifth dimension. arXiv 2013, arXiv:1309.4113. [Google Scholar] [CrossRef]
- Nordström, G. Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen. Phys. Z. 1914, 15, 504. (In German) [Google Scholar]
- Nordström, G. On the Possibility of a Unification of the Electromagnetic and Gravitation Fields. In Modern Kaluza-Klein Theories; Appelquist, T., Chodos, A., Freund, P.G.O., Eds.; Freund, P.G.O., Translator; Addison-Wesley Pub. Co.: Menlo Park, CA, USA, 1987; pp. 50–56. [Google Scholar]
- Appelquist, T.; Chodos, A.; Freund, P.G.O. Modern Kaluza–Klein Theories; Addison–Wesley: Menlo Park, CA, USA, 1987; ISBN 978-0-201-09829-7. [Google Scholar]
- Wesson, S.P. Space–Time–Matter, Modern Kaluza–Klein Theory; World Scientific: Singapore, 1999; ISBN 978-981-02-3588-8. [Google Scholar]
- Overduin, J.M.; Wesson, P.S. Kaluza-Klein gravity. Phys. Rept. 1997, 283, 303–380. [Google Scholar] [CrossRef]
- Chodos, A.; Detweiler, S.L. Where Has the Fifth-Dimension Gone? Phys. Rev. D 1980, 21, 2167. [Google Scholar] [CrossRef]
- Witten, E. Search for a Realistic Kaluza–Klein Theory. Nucl. Phys. B 1981, 186, 412–428. [Google Scholar] [CrossRef]
- Witten, E. Instability of the Kaluza-Klein Vacuum. Nucl. Phys. B 1982, 195, 481–492. [Google Scholar] [CrossRef]
- Salam, A.; Strathdee, J.A. On Kaluza-Klein Theory. Ann. Phys. 1982, 141, 316–352. [Google Scholar] [CrossRef]
- Freund, P.G.O.; Rubin, M.A. Dynamics of Dimensional Reduction. Phys. Lett. B 1980, 97, 233–235. [Google Scholar] [CrossRef]
- Appelquist, T.; Chodos, A. Quantum Effects in Kaluza-Klein Theories. Phys. Rev. Lett. 1983, 50, 141. [Google Scholar] [CrossRef]
- Appelquist, T.; Chodos, A. The Quantum Dynamics of Kaluza-Klein Theories. Phys. Rev. D 1983, 28, 772. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Wiltshire, D.L. Black Holes in Kaluza-Klein Theory. Ann. Phys. 1986, 167, 201–223, Erratum in Ann. Phys. 1987, 176, 393.. [Google Scholar] [CrossRef]
- Duff, M.J. Kaluza-Klein theory in perspective. arXiv 1994, arXiv:hep-th/9410046. [Google Scholar] [CrossRef]
- Flamm, L. Beiträge zur Einsteinschen Gravitationstheorie. (“Comments on Einstein’s Theory of Gravity”). Phys. Z. 1916, XVII, 448. [Google Scholar]
- Flamm, L. Republication of: Contributions to Einstein’s theory of gravitation. Gen. Rel. Grav. 2015, 47, 72. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Wheeler, J.A. Geons. Phys. Rev. 1955, 97, 511–536. [Google Scholar] [CrossRef]
- Hawking, S.W. Space-Time Foam. Nucl. Phys. B 1978, 144, 349–362. [Google Scholar] [CrossRef]
- Garay, L.J. Space-time foam as a quantum thermal bath. Phys. Rev. Lett. 1998, 80, 2508–2511. [Google Scholar] [CrossRef]
- Carlip, S. Spacetime foam: A review. Rept. Prog. Phys. 2023, 86, 066001. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182–3184. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203–212. [Google Scholar] [CrossRef]
- Hochberg, D. Lorentzian wormholes in higher order gravity theories. Phys. Lett. B 1990, 251, 349–354. [Google Scholar] [CrossRef]
- Frolov, V.P.; Novikov, I.D. Physical Effects in Wormholes and Time Machine. Phys. Rev. D 1990, 42, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Natural wormholes as gravitational lenses. Phys. Rev. D 1995, 51, 3117–3120. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Press: Melville, NY, USA; Now Springer–Verlag: Heidelberg, Germany, 1995. [Google Scholar]
- Poisson, E.; Visser, M. Thin shell wormholes: Linearization stability. Phys. Rev. D 1995, 52, 7318–7321. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, D.; Visser, M. Geometric structure of the generic static traversable wormhole throat. Phys. Rev. D 1997, 56, 4745–4755. [Google Scholar] [CrossRef]
- Visser, M.; Hochberg, D. Generic wormhole throats. Ann. Isr. Phys. Soc. 1997, 13, 249. [Google Scholar]
- Hochberg, D.; Visser, M. General dynamic wormholes and violation of the null energy condition. arXiv 1999, arXiv:gr-qc/9901020. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. Dynamic wormholes, anti-trapped surfaces, and energy conditions. Phys. Rev. D 1998, 58, 044021. [Google Scholar] [CrossRef]
- Teo, E. Rotating traversable wormholes. Phys. Rev. D 1998, 58, 024014. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N.; de Oliveira, S.Q. Morris–Thorne wormholes with a cosmological constant. Phys. Rev. D 2003, 68, 064004. [Google Scholar] [CrossRef]
- Visser, M.; Kar, S.; Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003, 90, 201102. [Google Scholar] [CrossRef]
- Kar, S.; Dadhich, N.; Visser, M. Quantifying energy condition violations in traversable wormholes. Pramana 2004, 63, 859–864. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D 2005, 71, 084011. [Google Scholar] [CrossRef]
- Sushkov, S.V. Wormholes supported by a phantom energy. Phys. Rev. D 2005, 71, 043520. [Google Scholar] [CrossRef]
- Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D 2007, 76, 024016. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Exotic solutions in General Relativity: Traversable wormholes and ‘warp drive’ spacetimes. arXiv 2007, arXiv:0710.4474. [Google Scholar] [CrossRef]
- Nakajima, K.; Asada, H. Deflection angle of light in an Ellis wormhole geometry. Phys. Rev. D 2012, 85, 107501. [Google Scholar] [CrossRef]
- Lobo, F.S.N. From the Flamm–Einstein–Rosen bridge to the modern renaissance of traversable wormholes. Int. J. Mod. Phys. D 2016, 25, 1630017. [Google Scholar] [CrossRef]
- Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions. In Fundamental Theories of Physics; Springer: Berlin/Heidelberg, Germany, 2017; Volume 189, p. 279. ISBN 978-3-319-55181-4/978-3-319-85588-2/978-3-319-55182-1. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Black-bounce to traversable wormhole. JCAP 2019, 2, 042. [Google Scholar] [CrossRef]
- Kuhfittig, P.K.F. A note on wormholes as compact stellar objects. Fund. J. Mod. Phys. 2022, 17, 63–70. [Google Scholar]
- Kuhfittig, P.K.F. Macroscopic traversable wormholes: Minimum requirements. Int. J. Astron. Astrophys. 2024, 14, 230–243. [Google Scholar] [CrossRef]
- Kuhfittig, P.K.F. A viable wormhole model in a five-dimensional spacetime. Fund. J. Mod. Phys. 2025, 23, 17–30. [Google Scholar]
- Kuhfittig, P.K.F. Wormholes supported by small extra dimensions. Adv. Stud. Theor. Phys. 2024, 18, 41–48. [Google Scholar] [CrossRef]
- Kuhfittig, P.K.F. Traversable wormholes sustained by an extra spatial dimension. Phys. Rev. D 2018, 98, 064041. [Google Scholar] [CrossRef]
- Schwarzschild, K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte K. Preuss. Akad. Wiss. 1916, 7, 189–196. [Google Scholar]
- Droste, J. The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Proc. R. Neth. Acad. Arts Sci. 1917, 19, 197–215. [Google Scholar] [CrossRef]
- Droste, J. Golden Oldie: The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit. 2002, 34, 1545–1563. [Google Scholar] [CrossRef]
- Droste, J. Editor’s note: The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Gen. Relativ. Gravit. 2002, 34, 1541–1543. [Google Scholar] [CrossRef]
- Hilbert, D. Die Grundlagen der Physik. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1917, 53, 258–289. [Google Scholar]
- Baines, J.; Gaur, R.; Visser, M. Defect Wormholes Are Defective. Universe 2023, 9, 452. [Google Scholar] [CrossRef]
- Feng, J.C. Smooth metrics can hide thin shells. Class. Quant. Grav. 2023, 40, 197002. [Google Scholar] [CrossRef]
- Curiel, E. A Primer on Energy Conditions. Einstein Stud. 2017, 13, 43–104. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Classical and semi-classical energy conditions. Fundam. Theor. Phys. 2017, 189, 193–213. [Google Scholar] [CrossRef]
- Barceló, C.; Visser, M. Twilight for the energy conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef]
- Borissova, J.; Liberati, S.; Visser, M. Violations of the null convergence condition in kinematical transitions between singular and regular black holes, horizonless compact objects, and bounces. Phys. Rev. D 2025, 111, 104054. [Google Scholar] [CrossRef]
- Borissova, J.; Liberati, S.; Visser, M. Timelike convergence condition in regular black-hole spacetimes with (anti-)de Sitter core. arXiv 2025, arXiv:2509.08590. [Google Scholar]
- Shiltsev, V.; Zimmermann, F. Modern and Future Colliders. Rev. Mod. Phys. 2021, 93, 015006. [Google Scholar] [CrossRef]
- Brüning, O.; Zerlauth, M. LHC operation and the High-Luminosity LHC upgrade project. arXiv 2025, arXiv:2505.03535. [Google Scholar] [CrossRef]
- Visser, M. An Exotic Class of Kaluza–Klein Models. Phys. Lett. B 1985, 159, 22–25. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Shaposhnikov, M.E. Do we live inside a domain wall? Phys. Lett. B 1983, 125, 136–138. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kim, S.W. Possible wormholes in a brane world. Phys. Rev. D 2003, 67, 064027. [Google Scholar] [CrossRef]
- Lobo, F.S.N. A general class of braneworld wormholes. Phys. Rev. D 2007, 75, 064027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmonds, C.; Visser, M. Traversable Kaluza–Klein Wormholes? Universe 2025, 11, 347. https://doi.org/10.3390/universe11100347
Simmonds C, Visser M. Traversable Kaluza–Klein Wormholes? Universe. 2025; 11(10):347. https://doi.org/10.3390/universe11100347
Chicago/Turabian StyleSimmonds, Christopher, and Matt Visser. 2025. "Traversable Kaluza–Klein Wormholes?" Universe 11, no. 10: 347. https://doi.org/10.3390/universe11100347
APA StyleSimmonds, C., & Visser, M. (2025). Traversable Kaluza–Klein Wormholes? Universe, 11(10), 347. https://doi.org/10.3390/universe11100347