Symplectic Realization of Generalized Snyder–Poisson Algebra
Abstract
1. Introduction
2. Generalized Snyder–Poisson Algebra and Canonical Phase-Space Representations
2.1. z-Dependent Solution
2.2. v-Dependent Solution
2.3. u-Dependent Solution
2.4. Arbitrariness and Canonical Transformations
2.5. Yang Model
3. Flat and Commutative Limits and Geometric Interpretation
4. Symplectic Realizations and Deformed Partial Derivative
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. Spacetime quantization induced by classical gravity. Phys. Lett. B 1994, 331, 39–44. [Google Scholar] [CrossRef]
- Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38–41. [Google Scholar] [CrossRef]
- Lukierski, J.; Ruegg, H. Quantum κ-Poincaré in any dimension. Phys. Lett. B 1994, 329, 189–194. [Google Scholar] [CrossRef]
- Kempf, A. Quantum group-symmetric Fock spaces with Bargmann-Fock representation. Lett. Math. Phys. 1992, 26, 1–12. [Google Scholar] [CrossRef]
- Maggiore, M. The Algebraic structure of the generalized uncertainty principle. Phys. Lett. B 1993, 319, 83–86. [Google Scholar] [CrossRef]
- Padmanabhan, T. Physical Significance of Planck Length. Annals Phys. 1985, 165, 38–58. [Google Scholar] [CrossRef]
- Veneziano, G. A Stringy Nature Needs Just Two Constants. EPL 1986, 2, 199. [Google Scholar] [CrossRef]
- Yang, C.N. On quantized space-time. Phys. Rev. 1947, 72, 874. [Google Scholar] [CrossRef]
- Born, M. Reciprocity Theory of Elementary Particles. Rev. Mod. Phys. 1949, 21, 463–473. [Google Scholar] [CrossRef]
- Bilać, T.M.; Meljanac, S.; Mignemi, S. Generalized Yang Poisson Models on Canonical Phase Space. SIGMA 2024, 20, 049. [Google Scholar]
- Amelino-Camelia, G. Testable scenario for relativity with minimum length. Phys. Lett. B 2001, 510, 255–263. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J.; Smolin, L. Triply special relativity. Phys. Rev. D 2004, 70, 065020. [Google Scholar] [CrossRef]
- Guo, H.-Y.; Huang, C.-G.; Wu, H.-T. Yang’s model as triply special relativity and the Snyder’s model–de Sitter special relativity duality. Phys. Lett. B 2008, 663, 270–274. [Google Scholar] [CrossRef]
- Carrisi, M.C.; Mignemi, S. Snyder–de Sitter model from two-time physics. Phys. Rev. D 2010, 82, 105031. [Google Scholar] [CrossRef]
- Nandi, P.; Scholtz, F.G. The hidden Lorentz covariance of quantum mechanics. Ann. Phys. 2024, 464, 169643. [Google Scholar] [CrossRef]
- Mignemi, S. Classical and quantum mechanics of the nonrelativistic Snyder model in curved space. Class. Quant. Grav. 2012, 29, 215019. [Google Scholar] [CrossRef]
- Battisti, M.V.; Meljanac, S. Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry. Phys. Rev. D 2009, 79, 067505. [Google Scholar] [CrossRef]
- Pachoł, A. Generalized Extended Uncertainty Principles, Liouville theorem and density of states: Snyder-de Sitter and Yang models. Nucl. Phys. B 2025, 1010, 116771. [Google Scholar] [CrossRef]
- Lukierski, J.; Meljanac, S.; Mignemi, S.; Pachoł, A.; Woronowicz, M. From Snyder space-times to doubly κ-dependent Yang quantum phase spaces and their generalizations. Phys. Lett. B 2024, 854, 138729. [Google Scholar] [CrossRef]
- Lukierski, J.; Meljanac, S.; Mignemi, S.; Pachoł, A.; Woronowicz, M. Towards new relativistic doubly κ-deformed D = 4 quantum phase spaces. Eur. Phys. J. Plus 2025, 140, 409. [Google Scholar] [CrossRef]
- Kupriyanov, V.G. Poisson gauge theory. J. High Energy Phys. 2021, 9, 16. [Google Scholar] [CrossRef]
- Kurkov, M.; Vitale, P. Four-dimensional noncommutative deformations of U(1) gauge theory and L∞ bootstrap. J. High Energy Phys. 2022, 1, 32. [Google Scholar] [CrossRef]
- Kupriyanov, V.G.; Sharapov, A.A.; Szabo, R.J. Symplectic groupoids and Poisson electrodynamics. J. High Energy Phys. 2024, 3, 39. [Google Scholar] [CrossRef]
- Bascone, F.; Kurkov, M. Hamiltonian analysis in Lie–Poisson gauge theory. Int. J. Geom. Meth. Mod. Phys. 2024, 21, 2450108. [Google Scholar] [CrossRef]
- Sharapov, A.A. Poisson electrodynamics with charged matter fields. J. Phys. A 2024, 57, 315401. [Google Scholar] [CrossRef]
- Abla, O.; Neves, M.J. Poisson electrodynamics on κ-Minkowski space-time. Phys. Lett. B 2025, 864, 139385. [Google Scholar] [CrossRef]
- Kurkov, M. Action principle for κ-Minkowski noncommutative U(1) gauge theory from Lie-Poisson electrodynamics. arXiv 2025, arXiv:2509.03714. [Google Scholar]
- Kupriyanov, V.G.; Szabo, R.J. Symplectic embeddings, homotopy algebras and almost Poisson gauge symmetry. J. Phys. A 2022, 55, 035201. [Google Scholar] [CrossRef]
- Kupriyanov, V.G.; Kurkov, M.A.; Vitale, P. Poisson gauge models and Seiberg-Witten map. J. High Energy Phys. 2022, 11, 62. [Google Scholar] [CrossRef]
- Mignemi, S.; Štrajn, R. Quantum Mechanics on a Curved Snyder Space. Adv. High Energy Phys. 2016, 2016, 1328284. [Google Scholar] [CrossRef]
- Bilać, T.M.; Meljanac, S.; Mignemi, S. Generalized triply special relativity models and their classical limit. Int. J. Mod. Phys. A 2025, 40, 2550027. [Google Scholar] [CrossRef]
- Meljanac, S.; Mignemi, S. Realizations of the Yang–Poisson model on canonical phase space. Int. J. Mod. Phys. A 2023, 38, 2350182. [Google Scholar] [CrossRef]
- Banerjee, R.; Kulkarni, S.; Samanta, S. Deformed symmetry in Snyder space and relativistic particle dynamics. J. High Energy Phys. 2006, 5, 77. [Google Scholar] [CrossRef]
- Mignemi, S. Classical and quantum mechanics of the nonrelativistic Snyder model. Phys. Rev. D 2011, 84, 025021. [Google Scholar] [CrossRef]
- Kupriyanov, V.; Kurkov, M.; Sharapov, A. Classical mechanics in noncommutative spaces: Confinement and more. Eur. Phys. J. C 2024, 84, 1068. [Google Scholar] [CrossRef]
- Basilio, B.S.; Kupriyanov, V.G.; Kurkov, M.A. Charged particle in Lie–Poisson electrodynamics. Eur. Phys. J. C 2025, 85, 175. [Google Scholar] [CrossRef]
- Sharapov, A.A. Quantization of bounded symplectic domains associated with compact Lie groups. arXiv 2025, arXiv:2509.05931. [Google Scholar] [CrossRef]
- Mignemi, S. Doubly special relativity in de Sitter spacetime. Ann. Phys. 2010, 522, 924–940. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupriyanov, V.G.; de Lima, E.L.F. Symplectic Realization of Generalized Snyder–Poisson Algebra. Universe 2025, 11, 339. https://doi.org/10.3390/universe11100339
Kupriyanov VG, de Lima ELF. Symplectic Realization of Generalized Snyder–Poisson Algebra. Universe. 2025; 11(10):339. https://doi.org/10.3390/universe11100339
Chicago/Turabian StyleKupriyanov, V. G., and E. L. F. de Lima. 2025. "Symplectic Realization of Generalized Snyder–Poisson Algebra" Universe 11, no. 10: 339. https://doi.org/10.3390/universe11100339
APA StyleKupriyanov, V. G., & de Lima, E. L. F. (2025). Symplectic Realization of Generalized Snyder–Poisson Algebra. Universe, 11(10), 339. https://doi.org/10.3390/universe11100339

