On the Propagation of Gravitational Waves in the Weyl Invariant Theory of Gravity
Abstract
:1. Introduction
2. The Weyl Invariant Theory
2.1. The Field Equations
2.2. Energy–Momentum Conservation
3. Gravitational Waves
3.1. The Propagation of Gravitational Waves
3.2. The Linearized Equation of the Weyl Field
3.3. Solving the Weyl Field Equation
3.4. Solving the Metric Field Equation
4. Primordial Gravitational Waves
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LIGO | Laser Interferometer Gravitational-Wave Observatory |
1 | It is important to recall that Weyl theory is invariant under the Weyl transformations, in which, in addition to a conformal transformation in the metric, we have to take into account the gauge transformation of the vector field. It is not conformally invariant in the sense that, for instance, Mannheimer’s conformal gravity is (see, for instance, [7]). |
2 | It is important to recall that the original Weyl theory is invariant under the so-called Weyl transformations, in which, in addition to a conformal transformation in the metric, there is also a gauge transformation of the vector field. These two transformations must be carried out simultaneously. It is not conformally invariant in the sense that, for instance, Mannheimer’s conformal gravity is (see, for instance, [7]). |
3 | If is interpreted as the cosmological constant, then we must set . |
4 | The proof of this assertion follows exactly the same reasoning one uses in general relativity. The simplest way to achieve this is to assume a congruence of a pressureless perfect fluid (“dust”) and impose the equation . It then follows in a straightforward manner that the dust particles follow metric geodesics. |
5 | Here, we are adopting the following convention for the Riemann tensor: . |
6 | Just for convenience, we now absorb the parameter by redefining . |
7 | Here, we are setting . |
References
- Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium 1936, 7, 347–353. [Google Scholar] [CrossRef]
- Greiner, W.; Reinhardt, J. Field Quantization; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Tucker, R.W.; Wang, C. An Einstein-Proca-fluid model for dark matter gravitational interactions. Nucl. Phys. B (Proc. Suppl.) 1997, 57, 259–262. [Google Scholar] [CrossRef]
- Gabriel Gómez, L.; Rodríguez, Y. Coupled multi-Proca vector dark energy. Phys. Dark Univ. 2020, 31, 100759. [Google Scholar] [CrossRef]
- Loeb, A.; Weiner, N. Cores in dwarf galaxies from dark matter with a Yukawa potential. Phys. Rev. Lett. 2011, 106, 171302. [Google Scholar] [CrossRef] [PubMed]
- Burikan, P.; Harko, T.; Pimsamarn, K.; Shahidi, S. Dark matter as a Weyl geometric effect. Phys. Rev. D 2023, 107, 064008. [Google Scholar] [CrossRef]
- Mannheim, P.D. Making the Case for Conformal Gravity. Found. Phys. 2012, 42, 388–420. [Google Scholar] [CrossRef]
- Weyl, H. Gravitation und Elektrizität. In Sitzungsberichte der Preussischen Akademie der Wissenschaften; Springer Spektrum: Berlin/Heidelberg, Germany, 1918; p. 465. [Google Scholar]
- Sanomiya, T.A.T.; Lobo, I.P.; Formiga, J.B.; Dahia, F.; Romero, C. Invariant approach to Weyl’s unified field theory. Phys. Rev. D 2020, 102, 124031. [Google Scholar] [CrossRef]
- Tauber, G.E. Massive vector meson interacting with the gravitational field. I. General formalism. J. Math. Phys. 1969, 10, 633–638. [Google Scholar] [CrossRef]
- Changsheng, S.; Liu, Z. Proca Effect in Reissner–Nordstrom de Sitter Metric. Int. J. Theor. Phys. 2005, 44, 303–308. [Google Scholar] [CrossRef]
- Ford, L. Inflation driven by a vector field. Phys. Rev. D 1989, 40, 967. [Google Scholar] [CrossRef] [PubMed]
- Năstase, H. Classical Field Theory; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Romero, C.; Lima, R.G.; Sanomiya, T.A.T. One hundred years of Weyl’s (unfinished) unified field theory. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2019, 66, 180–185. [Google Scholar] [CrossRef]
- Adler, R.; Bazin, M.; Schiffer, M. Introduction to General Relativity; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- O’Raifeartaigh, L. The Dawning of Gauge Theories; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Romero, C.; Duarte, M.P. The Coming Back of the Proca Field. Space Time Fundam. Interact. 2023, 3–4, 247–250. [Google Scholar]
- Einstein, A. Über Gravitationswellen. In Königlich Preußische Akademie derWissenschaften Sitzungsberichte; Springer Spektrum: Berlin/Heidelberg, Germany, 1918; pp. 154–167. [Google Scholar]
- Choquet-Bruhat, Y. The Cauchy Problem in Gravitation: An Introduction to Current Research; Witten, L., Ed.; New J. Wiley: New York, NY, USA, 1962. [Google Scholar]
- Avalos, R.; Lira, J.H. The Einstein Constraint Equations; IMPA: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Wald, R. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Ringström, H. The Cauchy Problem in General Relativity; European Mathematical Society: Helsinki, Finland, 2009. [Google Scholar]
- Adler, R.J. General Relativity and Cosmology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Bernabeu, J.; Espinoza, C.; Mavromatos, N.E. Cosmological constant and local gravity. Phys. Rev. D 2010, 81, 084002. [Google Scholar] [CrossRef]
- Bernabeu, J.; Espriu, D.; Puigdomènech, D. Gravitational waves in the presence of a cosmological constant. Phys. Rev. D 2011, 84, 063523, Erratum in Phys. Rev. D 2012, 86, 069904. [Google Scholar] [CrossRef]
- Taillet, R. (Ed.) The Young Universe: Primordial Cosmology; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Liddle, A.R.; Lyth, D. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cuzinatto, R.R.; de Morais, E.M.; Medeiros, L.G.; Naldoni de Souza, C.; Pimentel, B.M. de Broglie-Proca and Bopp-Podolsky Massive Photon Gases in Cosmology. Eur. Phys. J. C 2017, 118, 19001. [Google Scholar] [CrossRef]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, M.; Dahia, F.; Romero, C. On the Propagation of Gravitational Waves in the Weyl Invariant Theory of Gravity. Universe 2024, 10, 361. https://doi.org/10.3390/universe10090361
Duarte M, Dahia F, Romero C. On the Propagation of Gravitational Waves in the Weyl Invariant Theory of Gravity. Universe. 2024; 10(9):361. https://doi.org/10.3390/universe10090361
Chicago/Turabian StyleDuarte, Mauro, Fabio Dahia, and Carlos Romero. 2024. "On the Propagation of Gravitational Waves in the Weyl Invariant Theory of Gravity" Universe 10, no. 9: 361. https://doi.org/10.3390/universe10090361
APA StyleDuarte, M., Dahia, F., & Romero, C. (2024). On the Propagation of Gravitational Waves in the Weyl Invariant Theory of Gravity. Universe, 10(9), 361. https://doi.org/10.3390/universe10090361