Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology
Abstract
1. Introduction
2. The Standard Cosmological Model
3. Current Research Topics in Cosmology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedman, A.A. Über die Krümmung des Raumes. Z. Phys. 1922, 10, 377–386. [Google Scholar] [CrossRef]
- Friedmann, A.A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Einstein, A. Bemerkung zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes”. Z. Phys. 1922, 11, 326. [Google Scholar] [CrossRef]
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Königlich Preuss. Akad. Wiss. 1917, 6, 142–152, Translated: Cosmological considerations in the general theory of relativity. In The Collected Papers of Albert Einstein. Volume 6: The Berlin Years: Writings, 1914–1917 (English Translation Supplement); Klein, M.J., Kox, A.J., Schulman, R., Eds.; Princeton University Press: Princeton, NJ, USA, 1997; pp. 421–432. [Google Scholar]
- de Sitter, W. On Einstein’s theory of gravitation and its astronomical consequences. First paper. Mon. Not. R. Astron. Soc. 1916, 76, 699–728. [Google Scholar] [CrossRef]
- Lemaître, G. Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A 1927, 47, 49–59. [Google Scholar]
- Robertson, H.P. Kinematics and world structure. Astrophys. J. 1935, 82, 284–301. [Google Scholar] [CrossRef]
- Walker, A.G. On Milne’s theory of world-structure. Proc. Lond. Math. Soc. 1937, 42, 90–127. [Google Scholar] [CrossRef]
- Hubble, E. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef]
- Gamow, G. Expanding universe and the origin of elements. Phys. Rev. 1946, 70, 572–573. [Google Scholar] [CrossRef]
- Alpher, R.A.; Bethe, H.; Gamow, G. The Origin of Chemical Elements. Phys. Rev. 1948, 73, 803–804. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.-H. Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 015004. [Google Scholar] [CrossRef]
- Alpher, R.A.; Herman, R.C. Evolution of the Universe. Nature 1948, 162, 774–775. [Google Scholar] [CrossRef]
- Penzias, A.A.; Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. Lett. 1965, 142, 419–421. [Google Scholar] [CrossRef]
- Gawiser, E.; Silk, J. The cosmic microwave background radiation. Phys. Rep. 2000, 333–334, 245–267. [Google Scholar] [CrossRef]
- Partridge, R.B. The Cosmic Microwave Background Radiation; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Naselsky, P.D.; Novikov, D.I.; Novikov, I.D. The Physics of the Cosmic Microwave Background; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Evans, R. The Cosmic Microwave Background: How It Changed Our Understanding of the Universe; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Durrer, R. The Cosmic Microwave Background; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe. Astrophys. J. 1968, 152, 25–36. [Google Scholar] [CrossRef]
- Hawking, S.W.; Penrose, R. The Singularities of Gravitational Collapse and Cosmology. Proc. Roy. Soc. A Math. Phys. Engin. Sci. 1970, 314, 529–548. [Google Scholar]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Guth, A.H.; Weinberg, E.J. Could the universe have recovered from a slow first-order phase transition? Nucl. Phys. B 1983, 212, 321–364. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins; Basic Books: New York, NY, USA, 1997. [Google Scholar]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Linde, A.D. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Mamayev, S.G.; Mostepanenko, V.M. Isotropic cosmological models determined by the vacuum quantum effects. Zh. Eksp. Teor. Fiz. 1980, 78, 20–27, Translated in Sov. Phys. JETP 1980, 51, 9–13. [Google Scholar]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. A 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.; Starobinsky, A.A. Reheating after Inflation. Phys. Rev. Lett. 1994, 73, 3195–3198. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.D.; Starobinsky, A.A. Towards the theory of reheating after inflation. Phys. Rev. D 1997, 56, 3258–3295. [Google Scholar] [CrossRef]
- Narozhnyi, N.B.; Nikishov, A.I. Pair production by a periodic electric field. Zh. Eksp. Teor. Fiz. 1973, 65, 862–874, Translated in Sov. Phys. JETP 1974, 38, 427–432. [Google Scholar]
- Mostepanenko, V.M.; Frolov, V.M. Production of particles from vacuum by a uniform electric-field with periodic time-dependence. Yad. Fiz. 1974, 19, 885–896, Translated in Sov. J. Nucl. Phys. 1974, 19, 451–456. [Google Scholar]
- Dolgov, A.D.; Kirilova, D.P. On particle creation by a time-dependent scalar field. Yad. Fiz. 1990, 51, 273–282, Translated in Sov. J. Nucl. Phys. 1990, 51, 172–177. [Google Scholar]
- Traschen, J.H.; Brandenberger, R.H. Particle production during out-of-equilibrium phase transitions. Phys. Rev. D 1990, 42, 2491–2504. [Google Scholar] [CrossRef]
- Boyanovsky, D.; de Vega, H.J.; Holman, R.; Lee, D.-S.; Singh, A. Dissipation via particle production in scalar field theories. Phys. Rev. D 1995, 51, 4419–4444. [Google Scholar] [CrossRef]
- Kaiser, D.I. Post-inflation reheating in an expanding universe. Phys. Rev. D 1996, 53, 1776–1783. [Google Scholar] [CrossRef]
- Fujisaki, H.; Kumekawa, K.; Yamaguchi, M.; Yoshimura, M. Particle production and dissipative cosmic field. Phys. Rev. D 1996, 53, 6805–6812. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, S.; Kawasaki, M. Restriction to parametric resonant decay after inflation. Phys. Lett. B 1996, 388, 686–691. [Google Scholar] [CrossRef]
- Son, D.T. Reheating and thermalization in a simple scalar model. Phys. Rev. D 1996, 54, 3745–3761. [Google Scholar] [CrossRef]
- Riotto, A.; Tkachev, I.I. Non-equilibrium symmetry restoration beyond one loop. Phys. Lett. B 1996, 385, 57–62. [Google Scholar] [CrossRef]
- Allahverdi, R.; Campbell, B.A. Cosmological reheating and self-interacting final state bosons. Phys. Lett. B 1997, 395, 169–177. [Google Scholar] [CrossRef]
- Prokopec, T.; Roos, T.G. Lattice study of classical inflaton decay. Phys. Rev. D 1997, 55, 3768–3775. [Google Scholar] [CrossRef]
- Khlebnikov, S.; Tkachev, I. Relic gravitational waves produced after preheating. Phys. Rev. D 1997, 56, 653–660. [Google Scholar] [CrossRef]
- Moss, I.G.; Graham, C. Particle production and reheating of the inflationary universe. Phys. Rev. D 2008, 78, 123526. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Chiba, T.; De Felice, A.; Tsujikawa, S. Observational constraints on quintessence: Thawing, tracker, and scaling models. Phys. Rev. D 2013, 87, 083505. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Joyce, A.; Lombriser, L.; Schmidt, F. Dark energy vs. modified gravity. Ann. Rev. Nucl. Part. Sci. 2016, 66, 95–122. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K.-i. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Quiros, I. Selected topics in scalar-tensor theories and beyond. Int. J. Mod. Phys. D 2019, 28, 1930012. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef]
- Hinterbichler, K.; Khoury, J.; Levy, A.; Matas, A. Symmetron cosmology. Phys. Rev. D 2011, 84, 103521. [Google Scholar] [CrossRef]
- Brax, P.; Fischer, H.; Käding, C.; Pitschmann, M. The environment dependent dilaton in the laboratory and the solar system. Eur. Phys. J. C 2022, 82, 934. [Google Scholar] [CrossRef]
- Deruelle, N.; Uzan, J.-P.; de Forcrand-Millard, P. Relativity in Modern Physics; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–283. [Google Scholar] [CrossRef]
- Mostepanenko, V.M. Prediction of the Expansion of the Universe Made by Alexander Friedmann and the Effect of Particle Creation in Cosmology. Universe 2024, 10, 84. [Google Scholar] [CrossRef]
- de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation. Nature 2020, 404, 955–959. [Google Scholar] [CrossRef]
- Colless, M.; Dalton, G.B.; Maddox, S.J.; Sutherland, W.J.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.J.; Cannon, R.D.; Collins, C.A.; et al. The 2dF Galaxy Redshift Survey: Spectra and redshifts. Mon. Not. R. Astron. Soc. 2001, 328, 1039–1063. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. 2013, 208, 20. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Tristram, M.; Banday, A.J.; Douspis, M.; Garrido, X.; Górski, K.M.; Henrot-Versillé, S.; Hergt, L.T.; Iliĉ, S.; Keskitalo, R.; Lagache, G.; et al. Cosmological parameters derived from the final Planck data release (PR4). Astron. Astrophys. 2024, 682, A37. [Google Scholar] [CrossRef]
- Grib, A.A.; Pavlov, Y.V. Particles of Negative and Zero Energy in Black Holes and Cosmological Models. Universe 2023, 9, 217. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo C 1969, 1, 252–276. [Google Scholar]
- Penrose, R.; Floyd, R.M. Extraction of rotational energy from a black hole. Nat. Phys. Sci. 1971, 229, 177–179. [Google Scholar] [CrossRef]
- Toporensky, A.V.; Zaslavskii, O.B. Zero-momentum trajectories inside a black hole and high energy particle collisions. J. Cosmol. Astropart. Phys. 2019, 12, 063. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kashargin, P.E.; Sushkov, S.V. Possible Wormholes in a Friedmann Universe. Universe 2023, 9, 465. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 1973, 4, 251–266. [Google Scholar]
- Ellis, H.G. Ether flow through a drainhole-A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [Google Scholar] [CrossRef]
- Ellis, H.G. The evolving, flowless drainhole: A nongravitating-particle model in general relativity theory. Gen. Relat. Gravit. 1979, 10, 105–123. [Google Scholar] [CrossRef]
- Clément, G. A class of wormhole solutions to higher dimensional general relativity. Gen. Rel. Grav. 1984, 16, 131–138. [Google Scholar] [CrossRef]
- Clément, G. Axisymmetric regular multiwormhole solutions in five-dimensional general relativity. Gen. Rel. Grav. 1984, 16, 477–489. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Odintsov, S.D.; D’Onofrio, S.; Paul, T. Entropic Inflation in Presence of Scalar Field. Universe 2024, 10, 4. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Statist. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Jahromi, A.S.; Moosavi, S.A.; Moradpour, H.; Graça, J.P.M.; Lobo, I.P.; Salako, I.G.; Jawad, A. Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 2018, 780, 21–24. [Google Scholar] [CrossRef]
- Majhi, A. Non-extensive Statistical Mechanics and Black Hole Entropy from Quantum Geometry. Phys. Lett. B 2017, 775, 32–36. [Google Scholar] [CrossRef]
- Oliveira, V.G.; de Oliveira Neto, G.; Shapiro, I.L. Kantowski-Sachs Model with a Running Cosmological Constant and Radiation. Universe 2024, 10, 83. [Google Scholar] [CrossRef]
- Jacobs, K.C. Spatially homogeneous and euclidean cosmological models with shear. Astrophys. J. 1968, 153, 661–678. [Google Scholar] [CrossRef]
- Weber, E. Kantowski-Sachs cosmological models approaching isotropy. J. Math. Phys. 1984, 25, 3279–3285. [Google Scholar] [CrossRef]
- Grøn, Ø. Transition of a Kantowski-Sachs cosmological model into an inflationary era. J. Math. Phys. 1986, 27, 1490–1491. [Google Scholar] [CrossRef]
- Vargas Moniz, P. Kantowski-Sachs universes and the cosmic no hair conjecture. Phys. Rev. D 1993, 47, 4315–4321. [Google Scholar] [CrossRef] [PubMed]
- Byland, S.; Scialom, D. Evolution of the Bianchi I, The Bianchi III and the Kantowski-Sachs universe: Isotropization and inflation. Phys. Rev. D 1998, 57, 6065–6074. [Google Scholar] [CrossRef]
- Parisi, L.; Radicella, N.; Vilasi, G. Kantowski-Sachs Universes sourced by a Skyrme fluid. Phys. Rev. D 2015, 91, 063533. [Google Scholar] [CrossRef]
- Kamenshchik, A.; Petriakova, P. Regular Friedmann Universes and Matter Transformations. Universe 2024, 10, 137. [Google Scholar] [CrossRef]
- Creminelli, P.; Nicolis, A.; Trincherini, E. Galilean Genesis: An Alternative to inflation. J. Cosmol. Astropart. Phys. 2010, 2010, 021. [Google Scholar] [CrossRef]
- Easson, D.; Sawicki, I.; Vikman, A. G-bounce. J. Cosmol. Astropart. Phys. 2011, 11, 021. [Google Scholar] [CrossRef]
- Spallucci, E.; Smailagic, A. Regular black holes from from semi-classical down to Planckian size. Int. J. Mod. Phys. D 2017, 26, 1730013. [Google Scholar] [CrossRef]
- Sebastiani, L.; Zerbini, S. Some remarks on non-singular spherically symmetric space-times. Astronomy 2022, 1, 99–125. [Google Scholar] [CrossRef]
- Grib, A.A.; Pavlov, Y.V. On Phase Transitions during Collisions near the Horizon of Black Holes. Universe 2024, 10, 131. [Google Scholar] [CrossRef]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Pasechnik, R.; Šumbera, M. Phenomenological review on quark-gluon plasma: Concepts vs. observations. Universe 2017, 3, 7. [Google Scholar] [CrossRef]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Hot Big Bang Theory; World Scientific: Singapore, 2018. [Google Scholar]
- Saha, B. Spinor Field in FLRW Cosmology. Universe 2023, 9, 243. [Google Scholar] [CrossRef]
- De Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Gravitational energy momentum density in teleparallel gravity. Phys. Rev. Lett. 2000, 84, 4533–4536. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.; El Hanafy, W.; Nashed, G.G.L.; Odintsov, S.D.; Oikonomou, V.K. Constant-roll inflation in f(T) teleparallel gravity. J. Cosmol. Astropart. Phys. 2018, 7, 026. [Google Scholar] [CrossRef]
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quantum Grav. 2019, 36, 183001. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P. Conventionalism, Cosmology and Teleparallel Gravity. Universe 2024, 10, 1. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Capozziello, S.; De Falco, V.; Ferrara, C. Comparing equivalent gravities: Common features and differences. Eur. Phys. J. C 2022, 82, 865. [Google Scholar] [CrossRef]
- Saburov, S.; Ketov, S.V. Improved Model of Primordial Black Hole Formation after Starobinsky Inflation. Universe 2023, 9, 323. [Google Scholar] [CrossRef]
- Appleby, S.A.; Battye, R.A.; Starobinsky, A.A. Curing singularities in cosmological evolution of F(R) gravity. J. Cosmol. Astropart. Phys. 2010, 6, 5. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Papanikolaou, T.; Tzerefos, C.; Basilakos, S.; Saridakis, E.N. Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity. J. Cosmol. Astropart. Phys. 2022, 10, 13. [Google Scholar] [CrossRef]
- Chiba, T. 1/R gravity and scalar-tensor gravity. Phys. Lett. B 2003, 575, 1–3. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Kofinas, G. The complete Brans-Dicke theories. Ann. Phys. 2017, 376, 425–435. [Google Scholar] [CrossRef]
- Sola, J.; Gomez-Valent, A.; de Cruz Perez, J.; Moreno-Pulido, C. Brans-Dicke cosmology with a Λ-term: A possible solution to ΛCDM tensions. Class. Quantum Grav. 2020, 37, 245003. [Google Scholar]
- Fabris, J.C.; Falciano, F.T.; Guimarães, L.F.; Pinto-Neto, N. On the Possibility of a Static Universe. Universe 2024, 10, 92. [Google Scholar] [CrossRef]
- Singh, V.; Jokweni, S.; Beesham, A. FRLW transit cosmological model in f(R,T) gravity. Universe 2024, 10, 272. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Tretyakov, P.V. Cosmology in modified f(R,T)-gravity. Eur. Phys. J. C 2018, 78, 896. [Google Scholar] [CrossRef]
- Rudra, P.; Giri, K. Observational constraint in f(R,T) gravity from the cosmic chronometers and some standard distance measurement parameters. Nucl. Phys. B 2021, 967, 115428. [Google Scholar] [CrossRef]
- Bouali, A.; Chaudhary, H.; Harko, T.; Lobo, F.S.N.; Ouali, T.; Pinto, M.A.S. Observational constraints and cosmological implications of scalar-tensor f(R,T) gravity. Month. Not. Roy. Astron. Soc. 2023, 526, 4192–4208. [Google Scholar] [CrossRef]
- Balakin, A.; Shakirzyanov, A. An Isotropic Cosmological Model with Aetherically Active Axionic Dark Matter. Universe 2024, 10, 74. [Google Scholar] [CrossRef]
- Popov, A.A.; Rubin, S.G.; Sakharov, A.S. Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions. Universe 2024, 10, 166. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003. [Google Scholar] [CrossRef]
- Heinicke, C.; Baekler, P.; Hehl, F.W. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D 2005, 72, 025012. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef] [PubMed]
- Ivanchik, A.V.; Kurichin, O.A.; Yurchenko, V.Y. Neutrino at Different Epochs of the Friedmann Universe. Universe 2024, 10, 169. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. The Role of Sterile Neutrinos in Cosmology and Astrophysics. Ann. Rev. Nucl. Part. Sci. 2009, 59, 191–214. [Google Scholar] [CrossRef]
- Chernikov, P.; Ivanchik, A. The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters. Astron. Lett. 2022, 48, 689–701. [Google Scholar] [CrossRef]
- Serebrov, A.; Samoilov, R.; Ivochkin, V.; Fomin, A.K.; Zinoviev, V.G.; Neustroev, P.V.; Golovtsov, V.L.; Volkov, S.S.; Chernyj, A.V.; Zherebtsov, O.M.; et al. Search for sterile neutrinos with the Neutrino-4 experiment and measurement results. Phys. Rev. D 2021, 104, 032003. [Google Scholar] [CrossRef]
- Barinov, V.; Cleveland, B.; Danshin, S.; Ejiri, H.; Elliott, S.R.; Frekers, D.; Gavrin, V.N.; Gorbachev, V.V.; Gorbunov, D.S.; Haxton, W.C.; et al. Results from the Baksan Experiment on Sterile Transitions (BEST). Phys. Rev. Lett. 2022, 128, 232501. [Google Scholar] [CrossRef]
- Capozziello, S.; Sarracino, G.; De Somma, G. A Critical Discussion on the H0 Tension. Universe 2024, 10, 140. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements. Universe 2024, 10, 119. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment. Eur. Phys. J. C 2015, 75, 164. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Phys. Rev. D 2017, 95, 123013. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L. Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics. Eur. Phys. J. C 2017, 77, 315. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Kuusk, P.; Mostepanenko, V.M. Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Phys. Rev. D 2020, 101, 056013. [Google Scholar] [CrossRef]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Mota, D.F.; Shaw, D. Detecting chameleons through Casimir force measurements. Phys. Rev. D 2007, 76, 124034. [Google Scholar] [CrossRef]
- Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.I.P. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration. Phys. Rev. D 2015, 91, 102002. [Google Scholar] [CrossRef]
- Fischer, H.; Käding, C.; Sedmik, R.I.P.; Abele, H.; Brax, P.; Pitschmann, M. Search for environment-dependent dilatons. Phys. Dark Univ. 2024, 43, 101419. [Google Scholar] [CrossRef]
- Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 2013, 87, 107501. [Google Scholar] [CrossRef]
- Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with X-ray reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [Google Scholar] [CrossRef]
- Tripathi, A.; Zhou, B.; Abdikamalov, A.B.; Ayzenberg, D.; Bambi, C. Search for traversable wormholes in active galactic nuclei using X-ray data. Phys. Rev. D 2020, 101, 064030. [Google Scholar] [CrossRef]
- Paul, S.; Shaikh, R.; Banerjee, P.; Sarkar, T. Observational signatures of wormholes with thin accretion disks. J. Cosmol. Astropart. Phys. 2020, 2020, 055. [Google Scholar] [CrossRef]
- Piotrovich, M.; Krasnikov, S.; Buliga, S.; Natsvlishvili, T. Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields. Universe 2024, 10, 108. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. I. Phys. Rev. 1969, 183, 1057–1068. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. II. Phys. Rev. D 1971, 3, 346–356. [Google Scholar] [CrossRef]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Particle creation from vacuum in homogeneous isotropic models of the Universe. Gen. Relat. Gravit. 1976, 7, 535–547. [Google Scholar] [CrossRef]
- Mamayev, S.G.; Mostepanenko, V.M.; Starobinskii, A.A. Particle creation from the vacuum near a homogeneous isotropic singularity. Zh. Eksp. Teor. Fiz. 1976, 70, 1577–1591, Translated in Sov. Phys. JETP 1976, 43, 823–830. [Google Scholar]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Vacuum stress-energy tensor and particle creation in isotropic cosmological models. Fortschr. Der Phys. 1980, 28, 173–199. [Google Scholar] [CrossRef]
- Berezin, V.; Ivanova, I. Conformally Invariant Gravity and Gravitating Mirages. Universe 2024, 10, 147. [Google Scholar] [CrossRef]
- Ray, J.R. Lagrangian Density for Perfect Fluids in General Relativity. J. Math. Phys. 1972, 13, 1451–1453. [Google Scholar] [CrossRef]
- Berezin, V.A. Unusual Hydrodynamics. Int. J. Mod. Phys. A 1987, 2, 1591–1615. [Google Scholar] [CrossRef]
- Boccaletti, D.; De Sabbata, V.; Fortini, P.; Gualdi, C. Space-Time Curvature Mode Quanta. Nuovo Cimento. 1970, 70, 129–146. [Google Scholar] [CrossRef]
- Raffelt, G.; Stodolsky, L. Mixing of the Photon with Low Mass Particles. Phys. Rev. D 1988, 37, 1237–1249. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Ejlli, D. Resonant high energy graviton to photon conversion at post recombination epoch. Phys. Rev. D 2013, 87, 104007. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Panasenko, L.A.; Bochko, V.A. Graviton to Photon Conversion in Curved Space-Time and External Magnetic Field. Universe 2024, 10, 7. [Google Scholar] [CrossRef]
- Jenkovszky, L.; Kurochkin, Y.A.; Shaikovskaya, N.D.; Soloviev, V.O. Nonrelativistic Quantum Mechanical Problem for the Cornell Potential in Lobachevsky Space. Universe 2024, 10, 76. [Google Scholar] [CrossRef]
- Sergeenko, M.N. Masses and widths of Resonances for the Cornell Potential. Adv. High Energy Phys. 2013, 2013, 325431. [Google Scholar] [CrossRef]
- Moschella, U. The Spectral Condition, Plane Waves, and Harmonic Analysis in de Sitter and Anti-de Sitter Quantum Field Theories. Universe 2024, 10, 199. [Google Scholar] [CrossRef]
- Bros, J.; Moschella, U. Two point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 1996, 8, 327–392. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Moschella, U. Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time. Commun. Math. Phys. 1998, 196, 535–570. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Moschella, U. Towards a general theory of quantized fields on the anti-de Sitter space-time. Commun. Math. Phys. 2002, 231, 481–528. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Vilkovisky, G.A. The Generalized Schwinger-DeWitt Technique in Gauge Theories and Quantum Gravity. Phys. Rep. 1985, 119, 1–74. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory. Vol. l; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Carlip, S. Quantum Gravity: A Progress Report. Rep. Progr. Phys. 2001, 64, 885–942. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148, Erratum in Phys. Rev. 1968, 171, 1834. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. II. The Manifestly Covariant Theory. Phys. Rev. 1967, 162, 1195–1238, Erratum in Phys. Rev. 1968, 171, 1834. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. III. Applications of the Covariant Theory. Phys. Rev. 1967, 162, 1239–1255, Erratum in Phys. Rev. 1968, 171, 1834. [Google Scholar] [CrossRef]
- Esposito, G. DeWitt Boundary Condition in One-Loop Quantum Cosmology. Universe 2023, 9, 187. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W.; Hertog, T. Classical universes of the no-boundary quantum state. Phys. Rev. D 2008, 77, 123537. [Google Scholar] [CrossRef]
- Gorobey, N.; Lukyanenko, A.; Goltsev, A.V. No-Boundary Wave Functional and Own Mass of the Universe. Universe 2024, 10, 101. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimchitskaya, G.L.; Mostepanenko, V.M.; Sushkov, S.V. Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology. Universe 2024, 10, 329. https://doi.org/10.3390/universe10080329
Klimchitskaya GL, Mostepanenko VM, Sushkov SV. Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology. Universe. 2024; 10(8):329. https://doi.org/10.3390/universe10080329
Chicago/Turabian StyleKlimchitskaya, Galina L., Vladimir M. Mostepanenko, and Sergey V. Sushkov. 2024. "Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology" Universe 10, no. 8: 329. https://doi.org/10.3390/universe10080329
APA StyleKlimchitskaya, G. L., Mostepanenko, V. M., & Sushkov, S. V. (2024). Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology. Universe, 10(8), 329. https://doi.org/10.3390/universe10080329