Nonlinear Dynamics in Variable-Vacuum Finsler–Randers Cosmology with Triple Interacting Fluids
Abstract
:1. Introduction
2. Interacting Varying Vacuum in FR Geometry
3. Dynamic Analysis
3.1. Dynamic System
3.2. Statefinder Diagnostic
3.3. Classical Stability Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S.S.; Page, L.; Spergel, D.N.; Tucker, G.S.; et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. Ser. 2003, 148, 1–27. [Google Scholar] [CrossRef]
- Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.; Zehavi, I.; Bahcall, N.; et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Allen, S.W.; Schmidt, R.W.; Ebeling, H.; Fabian, A.C.; Speybroeck, L.V. Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 2004, 353, 457–467. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant-the weight of the vacuum. Phys. Rep. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896–899. [Google Scholar] [CrossRef]
- Shapiro, I.L.; Solà, J. The scaling evolution of the cosmological constant. J. High Energy Phys. 2002, 2002, 006. [Google Scholar] [CrossRef]
- Solà, J. Dark energy: A quantum fossil from the inflationary universe? J. Phys. Math. Theor. 2008, 41, 164066. [Google Scholar] [CrossRef]
- Basilakos, S. Solving the main cosmological puzzles with a generalized time varying vacuum energy. Astron. Astrophys. 2009, 508, 575–582. [Google Scholar] [CrossRef]
- Basilakos, S. Cosmological implications and structure formation from a time varying vacuum. Mon. Not. R. Astron. Soc. 2009, 395, 2347–2355. [Google Scholar] [CrossRef]
- Perico, E.L.D.; Lima, J.A.S.; Basilakos, S.; Solà, J. Complete cosmic history with a dynamical Λ = Λ(H) term. Phys. Rev. D 2013, 88, 063531. [Google Scholar] [CrossRef]
- Basilakos, S.; Lima, J.A.S.; Solà, J. From inflation to dark energy through a dynamical λ: An attempt at alleviating fundamental cosmic puzzles. Int. J. Mod. Phys. D 2013, 22, 1342008. [Google Scholar] [CrossRef]
- Peracaula, J.S. The cosmological constant problem and running vacuum in the expanding universe. Philos. Trans. R. Soc. A 2022, 380, 20210182. [Google Scholar] [CrossRef] [PubMed]
- Grande, J.; Solà, J.; Štefančić, H. ΛXCDM: A cosmon model solution to the cosmological coincidence problem? J. Cosmol. Astropart. Phys. 2006, 2006, 11. [Google Scholar] [CrossRef]
- Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62, 043511. [Google Scholar] [CrossRef]
- Amendola, L.; Quercellini, C. Tracking and coupled dark energy as seen by the Wilkinson Microwave Anisotropy Probe. Phys. Rev. D 2003, 68, 023514. [Google Scholar] [CrossRef]
- Pan, S.; Bhattacharya, S.; Chakraborty, S. An analytic model for interacting dark energy and its observational constraints. Mon. Not. R. Astron. Soc. 2015, 452, 3038–3046. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, J.; Zhang, X. Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter. Phys. Dark Univ. 2019, 23, 100261. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Pan, S.; Yang, W. Dynamics of nonlinear interacting dark energy models. Int. J. Mod. Phys. 2019, 28, 1950161. [Google Scholar] [CrossRef]
- Solà, J.; Gómez-Valent, A.; Pérez, J.C. Hints of dynamical vacuum energy in the expanding universe. Astrophys. J. Lett. 2015, 811, L14. [Google Scholar] [CrossRef]
- Solà, J. Running vacuum in the universe: Current phenomenological status. In Proceedings of the Fourteenth Marcel Grossmann Meeting, Rome, Italy, 12–18 July 2015; pp. 2363–2370. [Google Scholar] [CrossRef]
- Solà, J.; Pérez, J.C.; Gómez-Valent, A. Possible signals of vacuum dynamics in the Universe. Mon. Not. R. Astron. Soc. 2018, 478, 4357–4373. [Google Scholar]
- Yang, W.; Pan, S.; Valentino, E.D.; Wang, B.; Wang, A. Forecasting interacting vacuum-energy models using gravitational waves. J. Cosmol. Astropart. Phys. 2020, 2020, 50. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, Á.; Otalora, G.; Videla, N. Dynamical systems methods and statender diagnostic of interacting vacuum energy models. Eur. Phys. J. C 2020, 80, 286. [Google Scholar] [CrossRef]
- Papagiannopoulos, G.; Tsiapi, P.; Basilakos, S.; Paliathanasis, A. Dynamics and cosmological evolution in Λ-varying cosmology. Eur. Phys. J. C 2020, 80, 55. [Google Scholar] [CrossRef]
- Jawad, A.; Maqsood, S.; Rani, S. Dynamical analysis of interacting running vacuum models in DGP braneworld. Phys. Dark Universe 2021, 34, 100876. [Google Scholar] [CrossRef]
- Goenner, H.F.; Bogoslovsky, G.Y. A class of anisotropic (Finsler-) space-time geometries. Gen. Relativ. Gravit. 1999, 31, 1383–1394. [Google Scholar] [CrossRef]
- Perlick, V. Fermat principle in Finsler spacetimes. Gen. Relativ. Gravit. 2006, 38, 365–380. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Gomis, J.; Pope, C.N. General very special relativity is Finsler geometry. Phys. Rev. D 2007, 76, 081701. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Mitsou, V.A.; Sarkar, S.; Vergou, A. Implications of a stochastic microscopic Finsler cosmology. Eur. Phys. J. C 2012, 72, 1956. [Google Scholar] [CrossRef]
- Torromé, R.G.; Piccione, P.; Vitório, H. On Fermat’s principle for causal curves in time oriented Finsler spacetimes. J. Math. Phys. 2012, 53, 123511. [Google Scholar] [CrossRef]
- Caponio, E.; Stancarone, G. Standard static Finsler spacetimes. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1650040. [Google Scholar] [CrossRef]
- Benjamin, R.E.; Kosteleckÿ, A. Riemann-Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 2018, 786, 319–326. [Google Scholar]
- Manuel, H.; Christian, P.; Nicoleta, V. Finsler gravity action from variational completion. Phys. Rev. D 2019, 100, 064035. [Google Scholar]
- Perelman, C.C. Born’s reciprocal relativity theory, curved phase space, finsler geometry and the cosmological constant. Ann. Phys. 2020, 416, 168143. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Kouretsis, A.P.; Stathakopoulos, M. Friedman-like Robertson-Walker model in generalized metric space-time with weak anisotropy. Gen. Relativ. Gravit. 2008, 40, 1403–1425. [Google Scholar] [CrossRef]
- Basilakos, S.; Stavrinos, P. Cosmological equivalence between the Finsler-Randers space-time and the DGP gravity model. Phys. Rev. D 2013, 87, 043506. [Google Scholar] [CrossRef]
- Basilakos, S.; Kouretsis, A.P.; Saridakis, E.N.; Stavrinos, P.C. Resembling dark energy and modified gravity with Finsler-Randers cosmology. Phys. Rev. D 2013, 88, 123510. [Google Scholar] [CrossRef]
- Papagiannopoulos, G.; Basilakos, S.; Paliathanasis, A.; Savvidou, S.; Stavrinos, P.C. Finsler-Randers cosmology: Dynamical analysis and growth of matter perturbations. Class. Quantum Gravity 2017, 34, 225008. [Google Scholar] [CrossRef]
- Chaubey, R.; Tiwari, B.; Shukla, A.K.; Kumar, M. Finsler-Randers cosmological models in modified gravity theories. Proc. Natl. Acad. Sci. India Sect. Phys. Sci. 2019, 89, 757–768. [Google Scholar] [CrossRef]
- Raushan, R.; Chaubey, R. Finsler-Randers cosmology in the framework of a particle creation mechanism: A dynamical systems perspective. Eur. Phys. J. Plus 2020, 132, 228. [Google Scholar] [CrossRef]
- Kapsabelis, E.; Triantafyllopoulos, A.; Basilakos, S.; Stavrinos, P.C. Applications of the Schwarzschild-Finsler-Randers model. Eur. Phys. J. C 2021, 81, 990. [Google Scholar] [CrossRef]
- Nekouee, Z.; Narasimhamurthy, S.K.; Manjunatha, H.M.; Srivastava, S.K. Finsler-Randers model for anisotropic constant-roll inflation. Eur. Phys. J. Plus 2022, 137, 1388. [Google Scholar] [CrossRef]
- Angit, S.; Raushan, R.; Chaubey, R. Stability and bifurcation analysis of Finsler-Randers cosmological model. Pramana 2022, 96, 123. [Google Scholar] [CrossRef]
- Papagiannopoulos, G.; Basilakos, S.; Paliathanasis, A.; Pan, S.; Stavrinos, P. Dynamics in varying vacuum Finsler-Randers cosmology. Eur. Phys. J. C 2020, 80, 816. [Google Scholar] [CrossRef]
- Stavrinos, P.C. Congruences of fluids in a Finslerian anisotropic space-time. Int. J. Theor. Phys. 2005, 44, 245–254. [Google Scholar] [CrossRef]
- Asanov, G.S. Finsler Geometry, Relativity and Gauge Theories; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Triantafyllopoulos, A.; Stavrinos, P.C. Weak field equations and generalized FRW cosmology on the tangent Lorentz bundle. Class. Quantum Gravity 2018, 35, 085011. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Diakogiannis, F.I. Finslerian structure of anisotropic gravitational field. Gravit. Cosmol. 2004, 10, 269–278. [Google Scholar]
- Amendola, L.; Campos, G.C.; Rosenfeld, R. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data. Phys. Rev. D 2007, 75, 083506. [Google Scholar] [CrossRef]
- Guo, Z.K.; Ohta, N.; Tsujikawa, S. Probing the coupling between dark components of the universe. Phys. Rev. D 2007, 76, 023508. [Google Scholar] [CrossRef]
- He, J.H.; Wang, B. Effects of the interaction between dark energy and dark matter on cosmological parameters. J. Cosmol. Astropart. Phys. 2008, 6, 10. [Google Scholar] [CrossRef]
- Opher, R.; Pelinson, A. Decay of the vacuum energy into cosmic microwave background photons. Mon. Not. R. Astron. Soc. 2005, 362, 167–170. [Google Scholar] [CrossRef]
- Opher, R.; Pelinson, A. Strong limits on the possible decay of the vacuum energy into CDM or CMB photons. Braz. J. Phys. 2005, 35, 1206–1209. [Google Scholar] [CrossRef]
- Yu, H.; Yang, K.; Li, J. Constraints on running vacuum models with the baryon-to-photon ratio. Eur. Phys. J. C 2022, 82, 328. [Google Scholar] [CrossRef]
- Gómez-Valent, A.; Solà, J.; Basilakos, S. Dynamical vacuum energy in the expanding universe confronted with observations: A dedicated study. J. Cosmol. Astropart. Phys. 2015, 1, 4. [Google Scholar] [CrossRef]
- Solà, J.; Gómez-Valent, A.; Pérez, J.C. First evidence of running cosmic vacuum: Challenging the concordance model. Astrophys. J. 2017, 863, 43. [Google Scholar] [CrossRef]
- Guo, J.Q.; Frolov, A.V. Cosmological dynamics in f(R) gravity. Phys. Rev. D 2013, 88, 124036. [Google Scholar] [CrossRef]
- Zonunmawia, H.; Khyllep, W.; Dutta, J.; Järv, L. Cosmological dynamics of brane gravity: A grobal dynamical system perspective. Phys. Rev. D 2018, 98, 083532. [Google Scholar] [CrossRef]
- Gao, F.B.; Llibre, J. Global dynamics of the Hořava-Lifshitz cosmological system. Gen. Relativ. Gravit. 2019, 51, 152. [Google Scholar] [CrossRef]
- Gao, F.B.; Llibre, J. Global dynamics of Hořava-Lifshitz cosmology with non-zero curvature and a wide range of potentials. Eur. Phys. J. C 2020, 80, 137. [Google Scholar] [CrossRef]
- Paliathanasis, A. Extended analysis for the evolution of the cosmological history in Einstein-aether scalar field theory. Phys. Rev. D 2020, 101, 064008. [Google Scholar] [CrossRef]
- Gao, F.B.; Llibre, J. Global dynamics of the Hořava-Lifshitz cosmological model in a non-flat universe with non-zero cosmological constant. Universe 2021, 7, 445. [Google Scholar] [CrossRef]
- Gao, F.B.; Llibre, J. Global dynamics of the Hořava-Lifshitz cosmology in the presence of non-zero cosmological constant in a flat space. Phys. Dark Universe 2022, 38, 101139. [Google Scholar] [CrossRef]
- Singh, A.; Singh, G.P.; Pradhan, A. Cosmic dynamics and qualitative study of Rastall model with spatial curvature. Int. J. Mod. Phys. A 2022, 37, 2250104. [Google Scholar] [CrossRef]
- Raushan, R.; Singh, A. Dynamical Chern-Simons gravity with interacting dark energy: Qualitative and observational features. Phys. Dark Universe 2023, 39, 101152. [Google Scholar] [CrossRef]
- Arcia, R.D.; Quiros, I.; Nucamendi, U.; Gonzalez, T. Global asymptotic dynamics of the cubic galileon interacting with dark matter. Phys. Dark Universe 2023, 40, 101183. [Google Scholar] [CrossRef]
- Sahni, V.; Saini, T.D.; Starobinsky, A.A.; Alam, U. Statefinder-a new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. Lett. 2003, 77, 201. [Google Scholar] [CrossRef]
- Alam, U.; Sahni, V.; Saini, T.D.; Starobinsky, A.A. Exploring the expanding universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 2003, 344, 1057. [Google Scholar] [CrossRef]
- Mukherjee, A.; Paul, N.; Jassal, H.K.; Cosmol, J. Constraining the dark energy statefinder hierarchy in a kinematic approach. J. Cosmol. Astropart. Phys. 2019, 2019, 5. [Google Scholar] [CrossRef]
Point | Existence | Acceleration | Eigenvalues | Stability | ||
---|---|---|---|---|---|---|
Always | True | Stable for | ||||
Always | 0 | False | Unstable | |||
Always | False | Unstable | ||||
True for | Stable for |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, R.; Gao, F. Nonlinear Dynamics in Variable-Vacuum Finsler–Randers Cosmology with Triple Interacting Fluids. Universe 2024, 10, 302. https://doi.org/10.3390/universe10070302
Liu J, Wang R, Gao F. Nonlinear Dynamics in Variable-Vacuum Finsler–Randers Cosmology with Triple Interacting Fluids. Universe. 2024; 10(7):302. https://doi.org/10.3390/universe10070302
Chicago/Turabian StyleLiu, Jianwen, Ruifang Wang, and Fabao Gao. 2024. "Nonlinear Dynamics in Variable-Vacuum Finsler–Randers Cosmology with Triple Interacting Fluids" Universe 10, no. 7: 302. https://doi.org/10.3390/universe10070302
APA StyleLiu, J., Wang, R., & Gao, F. (2024). Nonlinear Dynamics in Variable-Vacuum Finsler–Randers Cosmology with Triple Interacting Fluids. Universe, 10(7), 302. https://doi.org/10.3390/universe10070302