Measuring a Gravitomagnetic Effect with the Triple Pulsar PSR J0337+1715
Abstract
:1. Introduction
2. The Gravitomagnetic Orbital Precessions Due to the Orbital Angular Momentum of the Inner Binary
3. The Case of PSR J0337+1715
3.1. The Effect of the 1pN Gravitomagnetic Annular Field
3.2. Prospects for Future Accuracy Improvements
3.3. The 1pN Gravitoelectric Periastron Precession
3.4. The Newtonian Periastron Precession Due to the Quadrupolar Term of the Gravitational Potential of a Matter Ring
4. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
1 | The orbital parameters of the outer companion are written without any label, while those of are dubbed with “b”. |
2 | The angular momentum of the B component of the double pulsar, which rotates more slowly, is smaller by about two orders of magnitude. |
3 | The gravitomagnetic field induced by a rotating matter ring is, far from the latter, identical to the usual one for a rotating body whose angular momentum is replaced with the ring’s one [23]. |
4 | Such an estimate is obtained by dividing Equation (20) by , where . |
References
- Ransom, S.M.; Stairs, I.H.; Archibald, A.M.; Hessels, J.W.T.; Kaplan, D.L.; Van Kerkwijk, M.H.; Boyles, J.; Deller, A.T.; Chatterjee, S.; Schechtman-Rook, A.; et al. A millisecond pulsar in a stellar triple system. Nature 2014, 505, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Thorsett, S.E.; Arzoumanian, Z.; Camilo, F.; Lyne, A.G. The Triple Pulsar System PSR B1620–26 in M4. Astrophys. J. 1999, 523, 763–770. [Google Scholar] [CrossRef]
- Portegies Zwart, S.; van den Heuvel, E.P.J.; van Leeuwen, J.; Nelemans, G. The Formation of the Eccentric–orbit Millisecond Pulsar J1903+0327 and the Origin of Single Millisecond Pulsars. Astrophys. J. 2011, 734, 55. [Google Scholar] [CrossRef]
- Larwood, J.D.; Papaloizou, J.C.B. The hydrodynamical response of a tilted circumbinary disc: Linear theory and non–linear numerical simulations. Mon. Not. Roy. Astron. Soc. 1997, 285, 288–302. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef]
- Wex, N.; Kramer, M. Gravity Tests with Radio Pulsars. Universe 2020, 6, 156. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.A.R.T.A.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.N.; Lyne, A.G.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531–533. [Google Scholar] [CrossRef]
- Lyne, A.G.; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, R.N.; Camilo, F.; McLaughlin, M.A.; Lorimer, D.R.; D’Amico, N.; Joshi, B.C.; et al. A Double–Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science 2004, 303, 1153–1157. [Google Scholar] [CrossRef]
- Nordtvedt, K.L. Testing Relativity with Laser Ranging to the Moon. Phys. Rev. 1968, 170, 1186–1187. [Google Scholar] [CrossRef]
- Nordtvedt, K.L. Equivalence Principle for Massive Bodies. I. Phenomenology. Phys. Rev. 1968, 169, 1014–1016. [Google Scholar] [CrossRef]
- Archibald, A.M.; Gusinskaia, N.V.; Hessels, J.W.T.; Deller, A.T.; Kaplan, D.L.; Lorimer, D.R.; Lynch, R.S.; Ransom, S.M.; Stairs, I.H. Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 2018, 559, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Voisin, G.; Cognard, I.; Freire, P.C.C.; Wex, N.; Guillemot, L.; Desvignes, G.; Kramer, M.; Theureau, G. An improved test of the strong equivalence principle with the pulsar in a triple star system. Astron. Astrophys. 2020, 638, A24. [Google Scholar] [CrossRef]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z 1918, 19, 156–163. [Google Scholar]
- Soffel, M.H. Relativity in Astrometry, Celestial Mechanics and Geodesy; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Hu, H.; Kramer, M.; Wex, N.; Champion, D.J.; Kehl, M.S. Constraining the dense matter equation-of-state with radio pulsars. Mon. Not. Roy. Astron. Soc. 2020, 497, 3118–3130. [Google Scholar] [CrossRef]
- Iorio, L. The impact of the spin-orbit misalignment and of the spin of B on the Lense–Thirring orbital precessions of the double pulsar PSR J0737-3039A/B. Mon. Not. Roy. Astron. Soc. 2021, 507, 421–430. [Google Scholar] [CrossRef]
- Kehl, M.S.; Wex, N.; Kramer, M.; Liu, K. Future measurements of the Lense–Thirring effect in the Double Pulsar. In Proceedings of the Fourteenth Marcel Grossmann Meeting. Proceedings of the MG14 Meeting on General Relativity, Rome, Italy, 12–18 July 2015; Bianchi, M., Jantzen, R., Ruffini, R., Eds.; World Scientific: Singapore, 2017; pp. 1860–1865. [Google Scholar] [CrossRef]
- Hu, H.; Freire, P.C.C. Measuring the Lense–Thirring Precession and the Neutron Star Moment of Inertia with Pulsars. Universe 2024, 10, 160. [Google Scholar] [CrossRef]
- Silva, H.O.; Holgado, A.M.; Cárdenas-Avendaño, A.; Yunes, N. Astrophysical and Theoretical Physics Implications from Multimessenger Neutron Star Observations. Phys. Rev. Lett. 2021, 126, 181101. [Google Scholar] [CrossRef]
- Iorio, L. Frame–Dragging in Extrasolar Circumbinary Planetary Systems. Universe 2022, 8, 546. [Google Scholar] [CrossRef]
- Ruggiero, M.L. Gravitomagnetic field of rotating rings. Astrophys. Space Sci. 2016, 361, 140. [Google Scholar] [CrossRef]
- Ciftja, O.; Babineaux, A.; Hafeez, N. The electrostatic potential of a uniformly charged ring. Eur. J. Phys. 2009, 30, 623–627. [Google Scholar] [CrossRef]
- Demetrian, M. Motion of a testing particle in gravitational field of a ring. arXiv 2006, arXiv:physics/0602034. [Google Scholar] [CrossRef]
- Adkins, G.S.; McDonnell, J. Orbital precession due to central-force perturbations. Phys. Rev. D 2007, 75, 082001. [Google Scholar] [CrossRef]
- Iorio, L. Model–independent constraints on r−3 extra-interactions from orbital motions. Ann. Phys. 2012, 524, 371–377. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L. Measuring a Gravitomagnetic Effect with the Triple Pulsar PSR J0337+1715. Universe 2024, 10, 206. https://doi.org/10.3390/universe10050206
Iorio L. Measuring a Gravitomagnetic Effect with the Triple Pulsar PSR J0337+1715. Universe. 2024; 10(5):206. https://doi.org/10.3390/universe10050206
Chicago/Turabian StyleIorio, Lorenzo. 2024. "Measuring a Gravitomagnetic Effect with the Triple Pulsar PSR J0337+1715" Universe 10, no. 5: 206. https://doi.org/10.3390/universe10050206
APA StyleIorio, L. (2024). Measuring a Gravitomagnetic Effect with the Triple Pulsar PSR J0337+1715. Universe, 10(5), 206. https://doi.org/10.3390/universe10050206