Upper Bound of Barrow Entropy Index from Black Hole Fragmentation
Abstract
:1. Introduction: How Big Can Barrow Entropy Correction Be?
2. Bounding Barrow Entropy Index with Black Hole Fragmentation
3. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Hereinafter, we set . |
2 | |
3 | |
4 | Of course, too close to the Planck scale, higher-order terms in Equation (2) as well as other QG effects, would also start to become important. |
References
- Barrow, J.D. The Area of a Rough Black Hole. Phys. Lett. B 2020, 808, 135643. [Google Scholar] [CrossRef]
- Di Gennaro, S.; Ong, Y.C. Sign Switching Dark Energy from a Running Barrow Entropy. Universe 2022, 8, 541. [Google Scholar] [CrossRef]
- Luciano, G.G.; Saridakis, E.N. Baryon Asymmetry from Barrow Entropy: Theoretical Predictions and Observational Constraints. Eur. Phys. J. C 2022, 82, 558. [Google Scholar] [CrossRef]
- Farsi, B.; Sheykhi, A. Growth of Perturbations in Tsallis and Barrow Cosmology. Eur. Phys. J. C 2022, 82, 1111. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Barrow Entropic Dark Energy: A Member of Generalized Holographic Dark Energy Family. Phys. Lett. B 2022, 825, 136844. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Statist. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Faraoni, V. Area-Law Versus Rényi and Tsallis Black Hole Entropies. Phys. Rev. D 2021, 104, 084030. [Google Scholar] [CrossRef]
- Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. Gen. Rel. Grav. 2001, 33, 2101. [Google Scholar] [CrossRef]
- Mohammadi, H.; Salehi, A. Friedmann Equations with the Generalized Logarithmic Modification of Barrow Entropy and Tsallis Entropy. Phys. Lett. B 2023, 839, 137794. [Google Scholar] [CrossRef]
- McInnes, B.; Ong, Y.C. Event Horizon Wrinklification. Class. Quant. Grav. 2021, 38, 034002. [Google Scholar] [CrossRef]
- Vilela-Mendes, R. Commutative or Noncommutative Spacetime? Two Length Scales of Noncommutativity. Phys. Rev. D 2019, 99, 123006. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational Constraints on Barrow Holographic Dark Energy. Eur. Phys. J. C 2020, 80, 826. [Google Scholar] [CrossRef]
- Barrow, J.D.; Basilakos, S.; Saridakis, E.N. Big Bang Nucleosynthesis Constraints on Barrow Entropy. Phys. Lett. B 2021, 815, 136134. [Google Scholar] [CrossRef]
- Leon, G.; Magaña, J.; Hernández-Almada, A.; García-Aspeitia, M.A.; Verdugo, T.; Motta, V. Barrow Entropy Cosmology: An Observational Approach with a Hint of Stability Analysis. J. Cosmol. Astropart. Phys. 2021, 12, 032. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical Mechanics in the Context of Special Relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Statistical Mechanics in the Context of Special Relativity II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Drepanou, N.; Lymperis, A.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis Holographic Dark Energy and Cosmology. Eur. Phys. J. C 2022, 82, 449. [Google Scholar] [CrossRef]
- Luciano, G.G. Modified Friedmann Equations from Kaniadakis Entropy and Cosmological Implications on Baryogenesis and 7Li-Abundance. Eur. Phys. J. C 2022, 82, 314. [Google Scholar] [CrossRef]
- Lambiase, G.; Luciano, G.G.; Sheykhi, A. Slow-Roll Inflation and Growth of Perturbations in Kaniadakis Modification of Friedmann Cosmology. Eur. Phys. J. C 2023, 83, 936. [Google Scholar] [CrossRef]
- Hernández-Almada, A.; Leon, G.; Magaña, J.; García-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis Holographic Dark Energy: Observational Constraints and Global Dynamics. Mon. Not. R. Astron. Soc. 2022, 511, 4147. [Google Scholar] [CrossRef]
- Hernández-Almada, A.; Leon, G.; Magaña, J.; García-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K.; Millano, A.D. Observational Constraints and Dynamical Analysis of Kaniadakis Horizon-Entropy Cosmology. Mon. Not. R. Astron. Soc. 2022, 512, 5122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Ong, Y.C. Upper Bound of Barrow Entropy Index from Black Hole Fragmentation. Universe 2024, 10, 177. https://doi.org/10.3390/universe10040177
Xia J, Ong YC. Upper Bound of Barrow Entropy Index from Black Hole Fragmentation. Universe. 2024; 10(4):177. https://doi.org/10.3390/universe10040177
Chicago/Turabian StyleXia, Jiayi, and Yen Chin Ong. 2024. "Upper Bound of Barrow Entropy Index from Black Hole Fragmentation" Universe 10, no. 4: 177. https://doi.org/10.3390/universe10040177
APA StyleXia, J., & Ong, Y. C. (2024). Upper Bound of Barrow Entropy Index from Black Hole Fragmentation. Universe, 10(4), 177. https://doi.org/10.3390/universe10040177