Simple Lévy α-Stable Model Analysis of Elastic pp and Low-|t| Data from SPS to LHC Energies
Abstract
:1. Introduction
2. Basic Formalism of High-Energy Elastic Scattering
3. Emergence of Lévy -Stable Distribution in Elastic Scattering
4. SL Model Analysis of Elastic and Low- Data
- type a: point-to-point varying uncorrelated systematic and statistical errors;
- type b: point-to-point varying and 100% correlated systematic errors;
- type c: point-independent, overall correlated systematic uncertainties that scale all the data points up and down by the same factor.
5. Discussion
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Simple Models of Elastic Scattering
Appendix A.1. Black Disc Model
Appendix A.2. Gray Disc Model
Appendix A.3. Gray Disc Model with a Small Real Part
Appendix A.4. Gaussian Model
Appendix A.5. Lévy α-Stable Model
References
- Barbiellini, G.; Bozzo, M.; Darriulat, P.; Diambrini-Palazzi, G.; De Zorzi, G.; Fainberg, A.; Ferrero, M.I.; Holder, M.; McFarland, A.; Maderni, G.; et al. Small angle proton proton elastic scattering at very high-energies (460-GeV2 < s < 2900-GeV2). Phys. Lett. B 1972, 39, 663–667. [Google Scholar] [CrossRef]
- Nagy, E.; Orr, R.S.; Schmidt-Parzefall, W.; Winter, K.; Brandt, A.; Büsser, F.W.; Flügge, G.; Niebergall, F.; Schumacher, P.E.; Eichinger, H.; et al. Measurements of Elastic Proton Proton Scattering at Large Momentum Transfer at the CERN Intersecting Storage Rings. Nucl. Phys. B 1979, 150, 221–267. [Google Scholar] [CrossRef]
- Donnachie, A.; Landshoff, P.V. The Interest of large-t elastic scattering. Phys. Lett. B 1996, 387, 637–641. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] Elastic differential cross-section dσ/dt at = 2.76 TeV and implications on the existence of a colourless C-odd three-gluon compound state. Eur. Phys. J. C 2020, 80, 91. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] Measurement of proton-proton elastic scattering and total cross-section at S**(1/2) = 7-TeV. EPL Europhys. Lett. 2013, 101, 21002. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] Evidence for non-exponential elastic proton–proton differential cross-section at low |t| and s = 8 TeV by TOTEM. Nucl. Phys. B 2015, 899, 527–546. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] Measurement of elastic pp scattering at = 8 TeV in the Coulomb–nuclear interference region: Determination of the æ-parameter and the total cross-section. Eur. Phys. J. C 2016, 76, 661. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] Characterisation of the dip-bump structure observed in proton–proton elastic scattering at s = 8 TeV. Eur. Phys. J. C 2022, 82, 263. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] First determination of the ρ parameter at = 13 TeV: Probing the existence of a colourless C-odd three-gluon compound state. Eur. Phys. J. C 2019, 79, 785. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] Elastic differential cross-section measurement at = 13 TeV by TOTEM. Eur. Phys. J. C 2019, 79, 861. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of the total cross section from elastic scattering in pp collisions at = 7 TeV with the ATLAS detector. Nucl. Phys. B 2014, 889, 486–548. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [ATLAS Collaboration] Measurement of the total cross section from elastic scattering in pp collisions at = 8 TeV with the ATLAS detector. Phys. Lett. B 2016, 761, 158–178. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of the total cross section and ρ-parameter from elastic scattering in pp collisions at = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2023, 83, 441. [Google Scholar] [CrossRef]
- Breakstone, A.; Crawley, H.B.; Dallavalle, G.M.; Doroba, K.; Drijard, D.; Fabbri, F.; Firestone, A.; Fischer, H.G.; Frehse, H.; Geist, W.; et al. A Measurement of p and pp Elastic Scattering in the Dip Region at = 53-GeV. Phys. Rev. Lett. 1985, 54, 2180. [Google Scholar] [CrossRef]
- Bozzo, M. et al. [UA4 Collaboration] Elastic Scattering at the CERN SPS Collider Up to a Four Momentum Transfer of 1.55-GeV2. Phys. Lett. B 1985, 155, 197–202. [Google Scholar] [CrossRef]
- Bernard, D. et al. [UA4 Collaboration] Large t Elastic Scattering at the CERN SPS Collider at = 630-GeV. Phys. Lett. B 1986, 171, 142–144. [Google Scholar] [CrossRef]
- Abazov, V.M. et al. [D0 Collaboration] Measurement of the differential cross section dσ/dt in elastic scattering at = 1.96 TeV. Phys. Rev. D 2012, 86, 012009. [Google Scholar] [CrossRef]
- Battiston, R. et al. [UA4 Collaboration] Proton-Anti-proton Elastic Scattering at Four Momentum Transfer Up to 0.5-GeV2 at the CERN SPS Collider. Phys. Lett. B 1983, 127, 472. [Google Scholar] [CrossRef]
- Bozzo, M. et al. [UA4 Collaboration] Measurement of the Proton-anti-Proton Total and Elastic Cross-Sections at the CERN SPS Collider. Phys. Lett. B 1984, 147, 392. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, G.; Ilyin, V.V.; Jenkovszky, L.L. A model for the pomeron trajectory. Lett. Nuovo Cim. 1972, 5S2, 957–962. [Google Scholar] [CrossRef]
- Anselm, A.A.; Gribov, V.N. Zero pion mass limit in interactions at very high-energies. Phys. Lett. B 1972, 40, 487–490. [Google Scholar] [CrossRef]
- Tan, C.I.; Tow, D.M. Can Pions Be the Dominant Linkage in Multiperipheral Cluster Models? Phys. Lett. B 1975, 53, 452–456. [Google Scholar] [CrossRef]
- Khoze, V.A.; Martin, A.D.; Ryskin, M.G. Soft diffraction and the elastic slope at Tevatron and LHC energies: A MultiPomeron approach. Eur. Phys. J. C 2000, 18, 167–179. [Google Scholar] [CrossRef]
- Jenkovszky, L.; Lengyel, A. Low-|t| structures in elastic scattering at the LHC. Acta Phys. Polon. B 2015, 46, 863–878. [Google Scholar] [CrossRef]
- Fagundes, D.A.; Jenkovszky, L.; Miranda, E.Q.; Pancheri, G.; Silva, P.V.R.G. Fine structure of the diffraction cone: From ISR to the LHC. In Proceedings of the Gribov-85 Memorial Workshop on Theoretical Physics of XXI Century, Chernogolovka, Russia, 17–20 June 2015. [Google Scholar] [CrossRef]
- Jenkovszky, L.; Szanyi, I.; Tan, C.I. Shape of Proton and the Pion Cloud. Eur. Phys. J. A 2018, 54, 116. [Google Scholar] [CrossRef]
- Kohara, A.K. Forward scattering amplitudes of pp and with crossing symmetry and scaling properties. J. Phys. G 2019, 46, 125001. [Google Scholar] [CrossRef]
- Kohara, A.K.; Ferreira, E.; Rangel, M. The interplay of hadronic amplitudes and Coulomb phase in LHC measurements at 13 TeV. Phys. Lett. B 2019, 789, 1–6. [Google Scholar] [CrossRef]
- Csörgő, T.; Hegyi, S.; Szanyi, I. Lévy α-Stable Model for the Non-Exponential Low-|t| Proton–Proton Differential Cross-Section. Universe 2023, 9, 361. [Google Scholar] [CrossRef]
- Uchaikin, V.V.; Zolotarev, V.M. Chance and Stability: Stable Distributions and Their Applications; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Tsallis, C.; Levy, S.V.F.; Souza, A.M.C.; Maynard, R. Statistical-Mechanical Foundation of the Ubiquity of Levy Distributions in Nature. Phys. Rev. Lett. 1995, 75, 3589–3593. [Google Scholar] [CrossRef]
- Prato, D.; Tsallis, C. Nonextensive foundation of Levy distributions. Phys. Rev. E 1999, 60, 2398. [Google Scholar] [CrossRef]
- Nolan, J.P. Univariate Stable Distributions; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Wilk, G.; Wlodarczyk, Z. On the interpretation of nonextensive parameter q in Tsallis statistics and Levy distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef]
- Brax, P.; Peschanski, R.B. Levy stable law description of intermittent behavior and quark-gluon plasma phase transitions. Phys. Lett. B 1991, 253, 225–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.S.; Wu, Y.F. Levy stability for anisotropic dynamical fluctuation in high-energy multiparticle production. Z. Phys. C 1996, 71, 499–502. [Google Scholar] [CrossRef]
- Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. C 2004, 36, 67–78. [Google Scholar] [CrossRef]
- Csörgő, T.; Kittel, W.; Metzger, W.J.; Novák, T. Parametrization of Bose-Einstein Correlations and Reconstruction of the Space-Time Evolution of Pion Production in e+e− Annihilation. Phys. Lett. B 2008, 663, 214–216. [Google Scholar] [CrossRef]
- Achard, P. et al. [The L3 Collaboration] Test of the τ-Model of Bose-Einstein Correlations and Reconstruction of the Source Function in Hadronic Z-boson Decay at LEP. Eur. Phys. J. C 2011, 71, 1648. [Google Scholar] [CrossRef]
- Kurgyis, B.; Kincses, D.; Nagy, M.; Csanád, M. Coulomb Corrections for Bose–Einstein Correlations from One- and Three-Dimensional Lévy-Type Source Functions. Universe 2023, 9, 328. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Lévy-stable two-pion Bose-Einstein correlations in = 200 GeV Au+Au collisions. Phys. Rev. C 2018, 97, 064911, Erratum in Phys. Rev. C 2023, 108, 049905. [Google Scholar] [CrossRef]
- Schegelsky, V.A. Levy Analysis of Bose–Einstein Correlation in pp Collisions at s = 7 TeV Measured with the ATLAS. Phys. Part. Nucl. Lett. 2019, 16, 503–507. [Google Scholar] [CrossRef]
- Tumasyan, A. et al. [CMS Collaboration] Two-particle Bose-Einstein correlations and their Lévy parameters in PbPb collisions at = 5.02 TeV. arXiv 2023, arXiv:2306.11574. [Google Scholar] [CrossRef]
- Lökös, S. Centrality dependent Lévy-stable two-pion Bose-Einstein correlations in = 200 GeV Au+Au collisions at the PHENIX experiment. Universe 2018, 4, 31. [Google Scholar] [CrossRef]
- Kincses, D. Pion interferometry with Lévy-stable sources in = 200 GeV Au+Au collisions at STAR. arXiv 2024, arXiv:2401.11169. [Google Scholar] [CrossRef]
- Pórfy, B. Lévy HBT Results at NA61/SHINE. Universe 2019, 5, 154. [Google Scholar] [CrossRef]
- Porfy, B. Femtoscopic Correlation Measurement with Symmetric Lévy-Type Source at NA61/SHINE. Universe 2023, 9, 298. [Google Scholar] [CrossRef]
- Csanád, M.; Kincses, D. Femtoscopy with Lévy sources from SPS through RHIC to LHC. Universe 2024, 10, 54. [Google Scholar] [CrossRef]
- Novák, T.; Csörgő, T.; Eggers, H.C.; de Kock, M. Model independent analysis of nearly Lévy correlations. Acta Phys. Polon. Supp. 2016, 9, 289. [Google Scholar] [CrossRef]
- Csörgő, T.; Pasechnik, R.; Ster, A. Proton structure and hollowness from Lévy imaging of pp elastic scattering. Eur. Phys. J. C 2020, 80, 126. [Google Scholar] [CrossRef]
- Csörgő, T.; Pasechnik, R.; Ster, A. Odderon and proton substructure from a model-independent Lévy imaging of elastic pp and collisions. Eur. Phys. J. C 2019, 79, 62. [Google Scholar] [CrossRef] [PubMed]
- Glauber, R. Lectures in theoretical physics, ed. WE Brittin and LG Dunham. Interscience 1959, 1, 315. [Google Scholar]
- Glauber, R. Theory of high energy hadron-nucleus collisions. In Proceedings of the High-Energy Physics and Nuclear Structure: Proceedings of the Third International Conference on High Energy Physics and Nuclear Structure sponsored by the International Union of Pure and Applied Physics, held at Columbia University, New York, NY, USA, 8–12 September 1969; Springer: Berlin/Heidelberg, Germany; pp. 207–264.
- Barone, V.; Predazzi, E. High-Energy Particle Diffraction; Springer: Berlin, Germany, 2002. [Google Scholar]
- Glauber, R.J.; Velasco, J. Multiple Diffraction Theory of Scattering at 546-GeV. Phys. Lett. B 1984, 147, 380–384. [Google Scholar] [CrossRef]
- Csörgő, T.; Szanyi, I. Observation of Odderon effects at LHC energies: A real extended Bialas–Bzdak model study. Eur. Phys. J. C 2021, 81, 611. [Google Scholar] [CrossRef]
- Bialas, A.; Bzdak, A. Constituent quark and diquark properties from small angle proton-proton elastic scattering at high energies. Acta Phys. Polon. B 2007, 38, 159–168. [Google Scholar]
- Nemes, F.; Csörgő, T.; Csanád, M. Excitation function of elastic pp scattering from a unitarily extended Bialas–Bzdak model. Int. J. Mod. Phys. A 2015, 30, 1550076. [Google Scholar] [CrossRef]
- Szanyi, I.; Csörgő, T. The ReBB model and its H(x) scaling version at 8 TeV: Odderon exchange is a certainty. Eur. Phys. J. C 2022, 82, 827. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Quantitative Constraints on the Opacity of Hot Partonic Matter from Semi-Inclusive Single High Transverse Momentum Pion Suppression in Au+Au collisions at = 200-GeV. Phys. Rev. C 2008, 77, 064907. [Google Scholar] [CrossRef]
- Amos, N.A. et al. [E-710 Collaboration] p Elastic Scattering at s = 1.8-TeV from |t| = 0.034-GeV/c2 to 0.65-GeV/c2. Phys. Lett. B 1990, 247, 127–130. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, T.T. High-energy elastic scattering in quantum electrodynamics. Phys. Rev. Lett. 1969, 22, 666. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, T.T. High-energy collision processes in quantum electrodynamics. i. Phys. Rev. 1969, 182, 1852–1867. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, T.T. High-energy collision processes in quantum electrodynamics. ii. Phys. Rev. 1969, 182, 1868–1872. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, T.T. Expanding Protons: Scattering at High-Energies; Mit Pr: Cambridge, MA, USA, 1987. [Google Scholar]
- Bourrely, C.; Soffer, J.; Wu, T.T. A New Impact Picture for Low and High-Energy Proton Proton Elastic Scattering. Phys. Rev. D 1979, 19, 3249. [Google Scholar] [CrossRef]
- Bourrely, C.; Soffer, J.; Wu, T.T. Do we understand near-forward elastic scattering up to TeV energies? Int. J. Mod. Phys. A 2015, 30, 1542006. [Google Scholar] [CrossRef]
- Giordano, M.; Meggiolaro, E.; Moretti, N. Asymptotic Energy Dependence of Hadronic Total Cross Sections from Lattice QCD. J. High Energy Phys. 2012, 2012, 31. [Google Scholar] [CrossRef]
- Giordano, M.; Meggiolaro, E. Hadronic total cross sections at high energy and the QCD spectrum. J. High Energy Phys. 2014, 2014, 2. [Google Scholar] [CrossRef]
- Donnachie, S.; Dosch, G.; Landshoff, P.; Nachtmann, O. Pomeron Physics and QCD; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Patrignani, C. Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. [Google Scholar] [CrossRef]
- Martynov, E. Elastic pp and anti-pp scattering in the models of unitarized pomeron. Phys. Rev. D 2007, 76, 074030. [Google Scholar] [CrossRef]
- Martynov, E.; Nicolescu, B. Unified model for small-t and high-t scattering at high energies: Predictions at RHIC and LHC. Eur. Phys. J. C 2008, 56, 57–62. [Google Scholar] [CrossRef]
- Cudell, J.R.; Lengyel, A.; Martynov, E. The Soft and the hard pomerons in hadron elastic scattering at small t. Phys. Rev. D 2006, 73, 034008. [Google Scholar] [CrossRef]
- Cahn, R. Coulombic-Hadronic Interference in an Eikonal Model. Z. Phys. C 1982, 15, 253. [Google Scholar] [CrossRef]
- Martynov, E. Proton (antiproton) elastic scattering at energies from FNAL to the LHC in the tripole Pomeron-Odderon model. Phys. Rev. D 2013, 87, 114018. [Google Scholar] [CrossRef]
- Antchev, G. et al. [TOTEM Collaboration] First measurement of elastic, inelastic and total cross-section at = 13 TeV by TOTEM and overview of cross-section data at LHC energies. Eur. Phys. J. C 2019, 79, 103. [Google Scholar] [CrossRef]
- Csörgő, T.; Szanyi, I. Cross-Checking Odderon Signals at Small Values of Four-Momentum Transfer. Presentation at ISMD 2023, Gyöngyös, Hungary. Available online: https://indico.cern.ch/event/1258038/contributions/5537131/attachments/2702376/4690629/2023-08-24-Csorgo-ISMD-final.pdf (accessed on 5 March 2024).
- Petrov, V.A.; Tkachenko, N.P. ATLAS vs TOTEM: Disturbing Divergence. arXiv 2023, arXiv:2303.01058. [Google Scholar] [CrossRef]
- Block, M.M. Hadronic forward scattering: Predictions for the Large Hadron Collider and cosmic rays. Phys. Rept. 2006, 436, 71–215. [Google Scholar] [CrossRef]
- Broniowski, W.; Jenkovszky, L.; Ruiz Arriola, E.; Szanyi, I. Hollowness in pp and scattering in a Regge model. Phys. Rev. D 2018, 98, 074012. [Google Scholar] [CrossRef]
[GeV] | Data From | [mb/GeV2] | [GeV−2] | CL (%) | |
---|---|---|---|---|---|
546 | UA4 [19] | 1.93 ± 0.09 | 209 ± 15 | 15.8 ± 0.9 | 18.1 |
1800 | E-710 [61] | 2.0 ± 1.5 | 270 ± 24 | 16.2 ± 0.2 | 77.1 |
2760 | TOTEM [4] | 1.6 ± 0.3 | 637 ± 25 | 28 ± 11 | 20.5 |
7000 | TOTEM [5] | 1.95 ± 0.01 | 535 ± 30 | 20.5 ± 0.2 | 8.8 |
7000 | ATLAS [11] | 1.97 ± 0.01 | 463 ± 13 | 19.8 ± 0.2 | 96.0 |
8000 | TOTEM [6] | 1.955 ± 0.005 | 566 ± 31 | 20.09 ± 0.08 | 43.9 |
8000 | TOTEM [7] | 1.90 ± 0.03 | 582 ± 33 | 20.9 ± 0.4 | 19.6 |
8000 | ATLAS [12] | 1.97 ± 0.01 | 480 ± 11 | 19.9 ± 0.1 | 55.8 |
13,000 | TOTEM [9] | 1.959 ± 0.006 | 677 ± 36 | 20.99 ± 0.08 | 76.5 |
13,000 | TOTEM [10] | 1.958 ± 0.003 | 648 ± 95 | 21.06 ± 0.05 | 89.1 |
13,000 | ATLAS [13] | 1.968 ± 0.006 | 569 ± 17 | 20.84 ± 0.07 | 29.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csörgő, T.; Hegyi, S.; Szanyi, I.
Simple Lévy α-Stable Model Analysis of Elastic pp and
Csörgő T, Hegyi S, Szanyi I.
Simple Lévy α-Stable Model Analysis of Elastic pp and
Csörgő, Tamás, Sándor Hegyi, and István Szanyi.
2024. "Simple Lévy α-Stable Model Analysis of Elastic pp and
Csörgő, T., Hegyi, S., & Szanyi, I.
(2024). Simple Lévy α-Stable Model Analysis of Elastic pp and