New Classes of Solutions for Euclidean Scalar Field Theories
Abstract
:1. Introduction
- (1)
- is continuously differentiable;
- (2)
- ;
- (3)
- is not positive definite;
- (4)
- , where and are positive and .
2. The Role of Scale Invariance
3. The Role of Mass
4. Solutions of the Massless Equation
5. Classes of Instanton Solutions
5.1. Solutions with Nonpolynomial
5.2. Solutions with Polynomial
5.3. Conformally Invariant Equations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1 | It was shown in [27] that massive solutions exist in our case for . |
2 | No new solutions are obtained by generalizing to Laurent polynomials. If F is a polynomial of degree p, the term , which is of order , needs to be for F to satisfy (18). |
3 | A conformal field theory has an infinite number of conservation laws at [33]. |
4 | One should be aware of the 1-2-3-infinity fallacy in which one makes a general conclusion based on a few examples. A nice example of small-n behavior giving an incorrect answer for a general n is provided by the integral , where . The integrals for , but this relation fails at . However, we have carefully checked that there are no such problems with the solutions presented in this paper. |
References
- Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Bender, C.M.; Wu, T.T. Anharmonic oscillator. Phys. Rev. 1969, 184, 1231–1260. [Google Scholar] [CrossRef]
- Wong, R. Asymptotic Approximations of Integrals; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001. [Google Scholar] [CrossRef]
- Berry, M.V.; Mount, K.E. Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 1972, 35, 315–397. [Google Scholar] [CrossRef]
- Le Guillou, J.C.; Zinn-Justin, J. (Eds.) Large Order Behavior of Perturbation Theory; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Coleman, S. Aspects of Symmetry: Selected Erice Lectures; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar] [CrossRef]
- Coleman, S. Fate of the false vacuum: Semiclassical theory. Phys. Rev. D 1977, 15, 2929–2936. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.R. The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev. D 1977, 16, 1762–1768. [Google Scholar] [CrossRef]
- Weinberg, E.J. Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Shnir, Y.M. Topological and Non-Topological Solitons in Scalar Field Theories; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Fubini, S. A new approach to conformal invariant field theories. Nuovo C. A 1976, 34, 521–554. [Google Scholar] [CrossRef]
- Lipatov, L.N. Divergence of the Perturbation Theory Series and the Quasiclassical Theory. Sov. Phys. JETP 1977, 45, 216–223. [Google Scholar]
- Guada, V.; Nemevšek, M. Exact one-loop false vacuum decay rate. Phys. Rev. D 2020, 102, 125017. [Google Scholar] [CrossRef]
- Abed, M.G.; Moss, I.G. Bubble nucleation at zero and nonzero temperatures. Phys. Rev. D 2023, 107, 076027. [Google Scholar] [CrossRef]
- Cuspinera, L.; Gregory, R.; Marshall, K.M.; Moss, I.G. Higgs Vacuum Decay in a Braneworld. Int. J. Mod. Phys. D 2020, 29, 2050005. [Google Scholar] [CrossRef]
- Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M., Jr. Delta Expansion for a Quantum Field Theory in the Nonperturbative Regime. J. Math. Phys. 1990, 31, 2722–2725. [Google Scholar] [CrossRef]
- Jones, H.F. The delta expansion—A new method for strong-coupling field theories. Nucl. Phys. B Proc. Suppl. 1990, 16, 592–593. [Google Scholar] [CrossRef]
- Buckley, I.R.C.; Jones, H.F. δ expansion applied to strong-coupling Z(2), U(1), and SU(2) gauge theory on the lattice in four dimensions. Phys. Rev. D 1992, 45, 2073–2080. [Google Scholar] [CrossRef]
- Ai, W.Y.; Bender, C.M.; Sarkar, S. PT-symmetric -gφ4 theory. Phys. Rev. D 2022, 106, 125016. [Google Scholar] [CrossRef]
- Felski, A.; Bender, C.M.; Klevansky, S.P.; Sarkar, S. Towards perturbative renormalization of ϕ2(iϕ)ϵ quantum field theory. Phys. Rev. D 2021, 104, 085011. [Google Scholar] [CrossRef]
- Shalaby, A.; Al-Thoyaib, S.S. Nonperturbative tests for asymptotic freedom in the PT-symmetric (−ϕ4)3+1 theory. Phys. Rev. D 2010, 82, 085013. [Google Scholar] [CrossRef]
- Croney, L.; Sarkar, S. Renormalization group flows connecting a 4-ε dimensional Hermitian field theory to a PT-symmetric theory for a fermion coupled to an axion. Phys. Rev. D 2023, 108, 085024. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Sarkar, S.; Soto, A. PT symmetric fermionic field theories with axions: Renormalization and dynamical mass generation. Phys. Rev. D 2022, 106, 015009. [Google Scholar] [CrossRef]
- Bender, C.M.; Felski, A.; Klevansky, S.P.; Sarkar, S. PT Symmetry and Renormalisation in Quantum Field Theory. J. Phys. Conf. Ser. 2021, 2038, 012004. [Google Scholar] [CrossRef]
- Bender, C.M.; Hassanpour, N.; Klevansky, S.P.; Sarkar, S. PT-symmetric quantum field theory in D dimensions. Phys. Rev. D 2018, 98, 125003. [Google Scholar] [CrossRef]
- Branchina, V.; Chiavetta, A.; Contino, F. Study of the non-Hermitian PT-symmetric gϕ2(iϕ)ϵ theory: Analysis of all orders in ϵ and resummations. Phys. Rev. D 2021, 104, 085010. [Google Scholar] [CrossRef]
- Coleman, S.R.; Glaser, V.; Martin, A. Action Minima Among Solutions to a Class of Euclidean Scalar Field Equations. Commun. Math. Phys. 1978, 58, 211–221. [Google Scholar] [CrossRef]
- Derrick, G.H. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 1964, 5, 1252–1254. [Google Scholar] [CrossRef]
- Andreassen, A.; Farhi, D.; Frost, W.; Schwartz, M.D. Precision decay rate calculations in quantum field theory. Phys. Rev. D 2017, 95, 085011. [Google Scholar] [CrossRef]
- Coleman, S.R.; Weinberg, E.J. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D 1973, 7, 1888–1910. [Google Scholar] [CrossRef]
- Branchina, V.; Messina, E. Stability, Higgs Boson Mass and New Physics. Phys. Rev. Lett. 2013, 111, 241801. [Google Scholar] [CrossRef] [PubMed]
- de Alfaro, V.; Fubini, S.; Furlan, G. Conformal Invariance in Quantum Mechanics. Nuovo C. A 1976, 34, 569. [Google Scholar] [CrossRef]
- Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory. Nucl. Phys. B 1984, 241, 333–380. [Google Scholar] [CrossRef]
- Dauxois, T.; Peyrard, M. Physics of Solitons; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Dunajski, M. Solitons, Instantons, and Twistors; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Di Francesco, P.; Mathieu, P.; Senechal, D. Conformal Field Theory; Graduate Texts in Contemporary Physics; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Awad, A.M.; Johnson, C.V. Scale versus conformal invariance in the AdS/CFT correspondence. Phys. Rev. D 2000, 62, 125010. [Google Scholar] [CrossRef]
- Osborn, H.; Petkou, A.C. Implications of conformal invariance in field theories for general dimensions. Annals Phys. 1994, 231, 311–362. [Google Scholar] [CrossRef]
- Erdmenger, J.; Osborn, H. Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions. Nucl. Phys. B 1997, 483, 431–474. [Google Scholar] [CrossRef]
- Wilson, K.G.; Kogut, J.B. The Renormalization group and the epsilon expansion. Phys. Rept. 1974, 12, 75–199. [Google Scholar] [CrossRef]
- Amit, D. Field Theory, the Renormalization Group, and Critical Phenomena; World Scientific: Hackensack, NJ, USA, 1984; ISBN 9971-966-10-7;9971-966-11-5. [Google Scholar]
- Mukhanov, V.; Sorin, A. About the Coleman instantons in D dimensions. Phys. Lett. B 2022, 827, 136951. [Google Scholar] [CrossRef]
- Mukhanov, V.; Rabinovici, E.; Sorin, A. Quantum Fluctuations and New Instantons II: Quartic Unbounded Potential. Fortsch. Phys. 2021, 69, 2000101. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Huertas, J. Pseudo-bounces vs. new instantons. J. Cosmol. Astropart. Phys. 2021, 2021, 029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bender, C.M.; Sarkar, S. New Classes of Solutions for Euclidean Scalar Field Theories. Universe 2024, 10, 72. https://doi.org/10.3390/universe10020072
Bender CM, Sarkar S. New Classes of Solutions for Euclidean Scalar Field Theories. Universe. 2024; 10(2):72. https://doi.org/10.3390/universe10020072
Chicago/Turabian StyleBender, Carl M., and Sarben Sarkar. 2024. "New Classes of Solutions for Euclidean Scalar Field Theories" Universe 10, no. 2: 72. https://doi.org/10.3390/universe10020072
APA StyleBender, C. M., & Sarkar, S. (2024). New Classes of Solutions for Euclidean Scalar Field Theories. Universe, 10(2), 72. https://doi.org/10.3390/universe10020072