Analogous Hawking Radiation in Dispersive Media
Abstract
:1. Introduction
2. The Master Equation: An Orr–Sommerfeld-Type Fourth-Order Equation
3. Exact Solutions of the Near-Horizon Equation (5) and Connection Formulas
3.1. The Subluminal Case
3.2. The Superluminal Case
4. Application to the Corley Model
4.1. WKB Solutions
4.2. Solutions Near the Turning Point
4.3. Matching: Complete Solutions
4.4. S-Matrix Revisited: A Further Labeling of States, Stokes Matrices Elements, and Particle Creation
5. The 4D Extension of the Corley Model
6. The 4D Extension of the Hopfield Model and the Analogous Hawking Effect
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Corley’s Boundary Condition
Appendix B. The Exact Solution of the Reduced Equation
Appendix B.1. Transcritical Case
Appendix B.2. Subcritical Case
Appendix C. The Corley Model in the Superluminal Case
Appendix C.1. WKB Approximation
Appendix C.2. Near-Horizon Approximation
Appendix C.3. Stokes Matrix and Physical Processes
1 | It would appear puzzling that the Hawking process is so strictly related to an evanescent state like the decaying one, like a sort of evanescent Cheshire Cat. The mathematical ratio behind this fact is that there must be a tail beyond the horizon of the modes and N propagating in the exterior region, and this tail is represented by the decaying mode. This would be mostly evident if, in a still more correct approach, one would use wave packets (see, e.g., [43]). In such a case, the modes and N, which would involve integrals over positive , could not be confined to the half-space with (cf. also [50], where this argument was suggested in the case of the standard Hawking effect.) |
References
- Belgiorno, F.; Cacciatori, S.L.; Viganò, A. Analog Hawking effect: A master equation. Phys. Rev. D 2020, 102, 105003. [Google Scholar] [CrossRef]
- Belgiorno, F.; Cacciatori, S.L.; Farahat, A.; Viganò, A. Analog Hawking effect: BEC and surface waves. Phys. Rev. D 2020, 102, 105004. [Google Scholar] [CrossRef]
- Belgiorno, F.; Cacciatori, S.L. Analogous Hawking Effect: S-Matrix and Thermofield Dynamics. Universe 2022, 8, 105. [Google Scholar] [CrossRef]
- Brout, R.; Massar, S.; Parentani, R.; Spindel, P. Hawking radiation without trans-Planckian frequencies. Phys. Rev. D 1995, 52, 4559. [Google Scholar] [CrossRef] [PubMed]
- Corley, S. Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach. Phys. Rev. D 1998, 57, 6280. [Google Scholar] [CrossRef]
- Himemoto, Y.; Tanaka, T. A generalization of the model of Hawking radiation with modified high frequency dispersion relation. Phys. Rev. D 2000, 61, 064004. [Google Scholar] [CrossRef]
- Saida, H.; Sakagami, M. Black hole radiation with high frequency dispersion. Phys. Rev. D 2000, 61, 084023. [Google Scholar] [CrossRef]
- Schutzhold, R.; Unruh, W.G. On the origin of the particles in black hole evaporation. Phys. Rev. D 2008, 78, 041504. [Google Scholar] [CrossRef]
- Unruh, W.G.; Schützhold, R. Universality of the Hawking effect. Phys. Rev. D 2005, 71, 024028. [Google Scholar] [CrossRef]
- Balbinot, R.; Fabbri, A.; Fagnocchi, S.; Parentani, R. Hawking radiation from acoustic black holes, short distance and back-reaction effects. Riv. Nuovo Cim. 2005, 28, 1. [Google Scholar]
- Coutant, A.; Parentani, R.; Finazzi, S. Black hole radiation with short distance dispersion, an analytical S-matrix approach. Phys. Rev. D 2012, 85, 024021. [Google Scholar] [CrossRef]
- Leonhardt, U.; Robertson, S. Analytical theory of Hawking radiation in dispersive media. New J. Phys. 2012, 14, 053003. [Google Scholar] [CrossRef]
- Coutant, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Anderson, P. Hawking radiation of massive modes and undulations. Phys. Rev. D 2012, 86, 064022. [Google Scholar] [CrossRef]
- Coutant, A.; Parentani, R. Undulations from amplified low frequency surface waves. Phys. Fluids 2014, 26, 044106. [Google Scholar] [CrossRef]
- Schutzhold, R.; Unruh, W.G. Hawking radiation with dispersion versus breakdown of WKB. Phys. Rev. D 2013, 88, 124009. [Google Scholar] [CrossRef]
- Petev, M.; Westerberg, N.; Moss, D.; Rubino, E.; Rimoldi, C.; Cacciatori, S.L.; Belgiorno, F.; Faccio, D. Blackbody emission from light interacting with an effective moving dispersive medium. Phys. Rev. Lett. 2013, 111, 043902. [Google Scholar] [CrossRef]
- Coutant, A.; Parentani, R. Hawking radiation with dispersion: The broadened horizon paradigm. Phys. Rev. D 2014, 90, 121501. [Google Scholar] [CrossRef]
- Belgiorno, F.; Cacciatori, S.L.; Piazza, F.D. Hawking effect in dielectric media and the Hopfield model. Phys. Rev. D 2015, 91, 124063. [Google Scholar] [CrossRef]
- Linder, M.F.; Schutzhold, R.; Unruh, W.G. Derivation of Hawking radiation in dispersive dielectric media. Phys. Rev. D 2016, 93, 104010. [Google Scholar] [CrossRef]
- Philbin, T.G. An exact solution for the Hawking effect in a dispersive fluid. Phys. Rev. D 2016, 94, 064053. [Google Scholar] [CrossRef]
- Belgiorno, F.; Cacciatori, S.L.; Piazza, F.D.; Doronzo, M. Hopfield-Kerr model and analogue black hole radiation in dielectrics. Phys. Rev. D 2017, 96, 096024. [Google Scholar] [CrossRef]
- Coutant, A.; Weinfurtner, S. The imprint of the analogue Hawking effect in subcritical flows. Phys. Rev. D 2016, 94, 064026. [Google Scholar] [CrossRef]
- Coutant, A.; Weinfurtner, S. Low-frequency analogue Hawking radiation: The Korteweg—De Vries mode. Phys. Rev. D 2018, 97, 025005. [Google Scholar] [CrossRef]
- Coutant, A.; Weinfurtner, S. Low frequency analogue Hawking radiation: The Bogoliubov-de Gennes model. Phys. Rev. D 2018, 97, 025006. [Google Scholar] [CrossRef]
- Jacquet, M.J.; König, F. Analytical description of quantum emission in optical analogs to gravity. Phys. Rev. A 2020, 102, 013725. [Google Scholar] [CrossRef]
- Trevisan, S.; Belgiorno, F.; Cacciatori, S.L. Perturbative approach to analog Hawking radiation in dielectric media in subcritical regime. Phys. Rev. D 2023, 108, 025001. [Google Scholar] [CrossRef]
- Trevisan, S.; Belgiorno, F.; Cacciatori, S.L. Exact solutions for analog Hawking effect in dielectric media. Phys. Rev. D 2024, 110, 085009. [Google Scholar] [CrossRef]
- Rousseaux, G.; Mathis, C.; Maissa, P.; Philbin, T.G.; Leonhardt, U. Observation of negative phase velocity waves in a water tank: A classical analogue to the Hawking effect? New J. Phys. 2008, 10, 053015. [Google Scholar] [CrossRef]
- Belgiorno, F.; Cacciatori, S.L.; Clerici, M.; Gorini, V.; Ortenzi, G.; Rizzi, L.; Rubino, E.; Sala, V.G.; Faccio, D. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 2010, 105, 203901. [Google Scholar] [CrossRef]
- Weinfurtner, S.; Tedford, E.W.; Penrice, M.C.J.; Unruh, W.G.; Lawrence, G.A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 2011, 106, 021302. [Google Scholar] [CrossRef]
- Chaline, J.; Jannes, G.; Maissa, P.; Rousseaux, G. Some aspects of dispersive horizons: Lessons from surface waves. Lect. Notes Phys. 2013, 870, 145. [Google Scholar]
- Weinfurtner, S.; Tedford, E.W.; Penrice, M.C.J.; Unruh, W.G.; Lawrence, G.A. Classical aspects of Hawking radiation verified in analogue gravity experiment. Lect. Notes Phys. 2013, 870, 167. [Google Scholar]
- Steinhauer, J. Observation of self-amplifying Hawking radiation in an analog black hole laser. Nat. Phys. 2014, 10, 864. [Google Scholar] [CrossRef]
- Euvé, L.-P.; Michel, F.; Parentani, R.; Philbin, T.G.; Rousseaux, G. Observation of noise correlated by the Hawking effect in a water tank. Phys. Rev. Lett. 2016, 117, 121301. [Google Scholar] [CrossRef]
- de Nova, J.R.M.; Golubkov, K.; Kolobov, V.I.; Steinhauer, J. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 2019, 569, 688. [Google Scholar] [CrossRef]
- Drori, J.; Rosenberg, Y.; Bermudez, D.; Silberberg, Y.; Leonhardt, U. Observation of Stimulated Hawking Radiation in an Optical Analogue. Phys. Rev. Lett. 2019, 122, 010404. [Google Scholar] [CrossRef] [PubMed]
- Euvè, L.P.; Robertson, S.; James, N.; Fabbri, A.; Rousseaux, G. Scattering of co-current surface waves on an analogue black hole. Phys. Rev. Lett. 2020, 124, 141101. [Google Scholar] [CrossRef]
- Fourdrinoy, J.; Robertson, S.; James, N.; Fabbri, A.; Rousseaux, G. Correlations on weakly time-dependent transcritical white-hole flows. Phys. Rev. D 2022, 105, 085022. [Google Scholar] [CrossRef]
- Langer, R.E. The solutions of the differential equation v‴ + λ2zv′ + 3μλ2v = 0. Duke Math. J. 1955, 22, 525. [Google Scholar] [CrossRef]
- Nishimoto, T. Global solutions of certain fourth order differential equations. Kŏdai Math. Sem. Rep. 1976, 27, 128. [Google Scholar] [CrossRef]
- Nishimoto, T. On the Orr-Sommerfeld type equations, II Connection formulas. Kŏdai Math. Sem. Rep. 1978, 29, 233. [Google Scholar] [CrossRef]
- Nishimoto, T. On the Orr-Sommerfeld type equations, I; W.K.B. approximation. Kŏdai Math. Sem. Rep. 1972, 24, 281. [Google Scholar] [CrossRef]
- Corley, S.; Jacobson, T. Hawking spectrum and high frequency dispersion. Phys. Rev. D 1996, 54, 1568. [Google Scholar] [CrossRef]
- Eastham, M.S.P. The Asymptotic Solution of Linear Differential Systems: Application of the Levinson Theorem; London Mathematical Society Monographs New Series; Clarendon Press: Oxford, UK, 1989; Volume 4. [Google Scholar]
- Olver, F.W.I. Asymptotics and Special Functions; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Wong, R. Asymptotic Approximation of Integrals; Academic Press: New York, NY, USA, 1989. [Google Scholar]
- Miller, P.D. Applied Asymptotic Analysis; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2006; Volume 75. [Google Scholar]
- Berk, H.L.; Nevins, W.M.; Roberts, K.V. New Stokes’ line in WKB theory. J. Math. Phys. 1982, 23, 988. [Google Scholar] [CrossRef]
- Nakano, M.; Namiki, M.; Nishimoto, T. On the WKB method for certain third order ordinary differential equations. Kodai Math. J. 1991, 14, 432. [Google Scholar] [CrossRef]
- Damour, T. Klein paradox and vacuum polarization. In Proceedings of the First Marcel Grossmann Meeting on General Relativity, Trieste, Italy, 7–12 July 1975; Ruffini, R., Ed.; North Holland Publishing Company: New York, NY, USA, 1977; p. 459. [Google Scholar]
- Visser, M. Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 2003, 12, 649. [Google Scholar] [CrossRef]
- Jannes, G.; Maissa, P.; Philbin, T.G.; Rousseaux, G. Hawking radiation and the boomerang behaviour of massive modes near a horizon. Phys. Rev. D 2011, 83, 104028. [Google Scholar] [CrossRef]
- Finazzi, S.; Carusotto, I. Spontaneous quantum emission from analog white holes in a nonlinear optical medium. Phys. Rev. A 2014, 89, 053807. [Google Scholar] [CrossRef]
- Macher, J.; Parentani, R. Black/white hole radiation from dispersive theories. Phys. Rev. D 2009, 79, 124008. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Gooding, C.; Biermann, S.; Erne, S.; Louko, J.; Unruh, W.G.; Schmiedmayer, J.; Weinfurtner, S. Interferometric Unruh detectors for Bose-Einstein condensates. Phys. Rev. Lett. 2020, 125, 213603. [Google Scholar] [CrossRef] [PubMed]
- Biermann, S.; Erne, S.; Gooding, C.; Louko, J.; Schmiedmayer, J.; Unruh, W.G.; Weinfurtner, S. Unruh and analogue Unruh temperatures for circular motion in 3+1 and 2+1 dimensions. Phys. Rev. D 2020, 102, 085006. [Google Scholar] [CrossRef]
- Bunney, C.R.D.; Parry, L.; Perche, T.R.; Louko, J. Ambient temperature versus ambient acceleration in the circular motion Unruh effect. Phys. Rev. D 2024, 109, 065001. [Google Scholar] [CrossRef]
- Unruh, W.G. Black Holes, Acceleration Temperature and Low Temperature Analog Experiments. J. Low Temp. Phys. 2022, 208, 196–209. [Google Scholar] [CrossRef]
- Macher, J.; Parentani, R. Black-hole radiation in Bose-Einstein condensates. Phys. Rev. A 2009, 80, 043601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belgiorno, F.; Cacciatori, S.L.; Trevisan, S. Analogous Hawking Radiation in Dispersive Media. Universe 2024, 10, 412. https://doi.org/10.3390/universe10110412
Belgiorno F, Cacciatori SL, Trevisan S. Analogous Hawking Radiation in Dispersive Media. Universe. 2024; 10(11):412. https://doi.org/10.3390/universe10110412
Chicago/Turabian StyleBelgiorno, Francesco, Sergio L. Cacciatori, and Simone Trevisan. 2024. "Analogous Hawking Radiation in Dispersive Media" Universe 10, no. 11: 412. https://doi.org/10.3390/universe10110412
APA StyleBelgiorno, F., Cacciatori, S. L., & Trevisan, S. (2024). Analogous Hawking Radiation in Dispersive Media. Universe, 10(11), 412. https://doi.org/10.3390/universe10110412