Corrections on the Distribution of Nuclei Due to Neutron Degeneracy and Its Effect on R-Process in Neutron Star Black Hole Mergers
Abstract
:1. Introduction
2. Methods
2.1. Trajectories of NS-BH Mergers
2.2. Degeneracy Factor and Neutron Fermi Energy
2.3. SkyNet
2.4. Procedure
3. Results
3.1. Neutron Degeneracy in the R-Process
3.2. Heating Effects on Temperature Changes
3.3. Final Abundances
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phy. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Cowan, J.; Thielemann, F.K.; Truran, J.W. The r-process and nucleochronology. Phys. Rep. 1991, 208, 267–394. [Google Scholar] [CrossRef]
- Thielemann, F.; Arcones, A.; Käppeli, F.; Liebendörfer, M.; Rauscher, T.; Winteler, C.; Fröhlich, C.; Dillmann, I.; Fischer, T.; Martinez-Pinedo, G.; et al. What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys. 2011, 66, 346–353. [Google Scholar] [CrossRef]
- Arcavi, I.; Hosseinzadeh, G.; Howell, D.A.; McCully, C.; Poznanski, D.; Kasen, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 2017, 551, 64–66. [Google Scholar] [CrossRef]
- Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119. [Google Scholar] [CrossRef]
- Smartt, S.J.; Chen, T.-W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75–79. [Google Scholar] [CrossRef]
- Valenti, S.; David, J.; Yang, S.; Cappellaro, E.; Tartaglia, L.; Corsi, A.; Jha, S.W.; Reichart, D.E.; Haislip, J.; Kouprianov, V. The discovery of the electromagnetic counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophys. J. Lett. 2017, 848, L24. [Google Scholar] [CrossRef]
- Cowperthwaite, P.S.; Berger, E.; Villar, V.A.; Metzger, B.D.; Nicholl, M.; Chornock, R.; Blanchard, P.K.; Fong, W.; Margutti, R.; Soares-Santos, M. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova. Astrophys. J. Lett. 2017, 848, L17. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar]
- Broekgaarden, F.S.; Berger, E.; Neijssel, C.J.; Vigna-Gómez, A.; Chattopadhyay, D.; Stevenson, S.; Chruslinska, M.; Justham, S.; de Mink, S.E.; Mandel, I. Impact of massive binary star and cosmic evolution on gravitational wave observations I: Black hole–neutron star mergers. Mon. Not. R. Astron. Soc. 2021, 508, 4. [Google Scholar] [CrossRef]
- Surman, R.; McLaughlin, G.C.; Ruffert, M.; Janka, H.-T.; Hix, W.R. r-Process nucleosynthesis in hot accretion disk flows from black hole-neutron star mergers. Astrophys. J. 2008, 679, L117. [Google Scholar] [CrossRef]
- Goriely, S.; Bauswein, A.; Janka, H.-T. R-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys. J. Lett. 2011, 738, L32. [Google Scholar] [CrossRef]
- Rosswog, S.; Korobkin, O.; Arcones, A.; Thielemann, F.-K.; Piran, T. The long-term evolution of neutron star merger remnants–I. The impact of r-process nucleosynthesis. Mon. Not. R. Astron. Soc. 2013, 430, 2585–2604. [Google Scholar] [CrossRef]
- Wanajo, S.; Sekiguchi, Y.; Nishimura, N.; Kiuchi, K.; Kyutoku, K.; Shibata, M. Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. Lett. 2014, 789, L39. [Google Scholar] [CrossRef]
- Rosswog, S.; Feindt, U.; Korobkin, O.; Wu, M.-R.; Sollerman, J.; Goobar, A.; Martinez-Pinedo, G. Detectability of compact binary merger macronovae. Class. Quantum Gravity 2017, 34, 104001. [Google Scholar] [CrossRef]
- Foucart, F. A brief overview of black hole-neutron star mergers. Front. Astron. Space Sci. 2020, 7, 46. [Google Scholar] [CrossRef]
- Siegel, D. r-Process nucleosynthesis in gravitational-wave and other explosive astrophysical events. Nat. Rev. Phys. 2022, 4, 306–318. [Google Scholar] [CrossRef]
- Barbieri, C.; Salafia, O.S.; Perego, A.; Colpiand, M.; Ghirlanda, G. Light-curve models of black hole–neutron star mergers: Steps towards a multi-messenger parameter estimation. Astron. Astrophys. 2019, 625, A152. [Google Scholar] [CrossRef]
- Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F.E.; Benetti, S.; Bernardini, M.G.; Bhirombhakdi, K.; Botticella, M.T.; Branchesi1, M.; Brocato, E.; et al. Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astron. Astrophys. 2020, 643, A113. [Google Scholar] [CrossRef]
- Barbieri, C.; Salafia, O.S.; Perego, A.; Colpi, M.; Ghirlanda, G. Electromagnetic counterparts of black hole–neutron star mergers: Dependence on the neutron star properties. Eur. Phys. J. A 2020, 56, 8. [Google Scholar] [CrossRef]
- Anand, S.; Coughlin, M.W.; Kasliwal, M.M.; Bulla, M.; Ahumada, T.; Carracedo, A.S.; Almualla, M.; Andreoni, I.; Stein, R.; Foucart, F.; et al. Optical follow-up of the neutron star–black hole mergers S200105ae and S200115j. Nat. Astron. 2021, 5, 46–53. [Google Scholar] [CrossRef]
- Lau, R.; Beard, M.; Gupta, S.S.; Schatz, H.; Afanasjev, A.V.; Brown, E.F.; Deibel, A.L.; Gasques, R.; Hitt, G.W.; Hix, W.R. Nuclear reactions in the crusts of accreting neutron stars. Astrophys. J. 2018, 859, 62. [Google Scholar] [CrossRef]
- Shternin, P.S.; Beard, M.; Wiescher, M.; Yakovlev, D.G. Neutron degeneracy and plasma physics effects on radiative neutron captures in neutron star crust. Phy. Rev. C 2012, 86, 015808. [Google Scholar] [CrossRef]
- Knight, B.; Caballero, L. Computing Neutron Capture Rates in Neutron-Degenerate Matter. Universe 2019, 5, 36. [Google Scholar] [CrossRef]
- Freiburghaus, C.; Rembges, J.-F.; Rauscher, T.; Kolbe, E.; Thielemann, F.-K.; Kratz, K.-L.; Pfeiffer, B.; Cowan, J.J. The astrophysical r-process: A comparison of calculations following adiabatic expansion with classical calculations based on neutron densities and temperatures. Astrophys. J. 1999, 525, L121. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Amthor, A.M.; Ferguson, R.; Meisel, Z.; Smith, K.; Warren, S.; Heger, A.; Hoffman, R.D.; Rauscher, T.; Sakharuk, A. The JINA REACLIB database: Its recent updates and impact on type-I X-ray bursts. Astrophys. J. Suppl. 2010, 189, 240. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Amthor, A.M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz1, H.; Smith, K. Dependence of X-ray burst models on nuclear reaction rates. Astrophys. J. 2016, 830, 55. [Google Scholar] [CrossRef]
- Piran, T.; Nakar, E.; Rosswog, S. The electromagnetic signals of compact binary mergers. Mon. Not. R. Astron. Soc. 2013, 430, 2121–2136. [Google Scholar] [CrossRef]
- Korobkin, O.; Rosswog, S.; Arcones, A.; Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 2012, 426, 1940–1949. [Google Scholar] [CrossRef]
- Lippuner, J.; Roberts, L.R. SkyNet: A modular nuclear reaction network library. Astrophys. J. Suppl. 2017, 233, 18. [Google Scholar] [CrossRef]
- Fuller, G.M.; Fowler, W. Stellar Weak Interaction Rates1 for Intermediate Mass Nuclei. III. Rate Tables for the Free Nucleons and Nuclei with 4 = 21 TO 4 = 60. Astrophys. J. Suppl. 1982, 48, 279–320. [Google Scholar] [CrossRef]
- Langanke, K.; Martinez-Pindo, G. Rate tables for the weak processes of pf-shell nuclei in stellar environments. At. Data Nucl. Data Tables 2001, 79, 1–46. [Google Scholar] [CrossRef]
- Rauscher, T. Evolution and nucleosynthesis of massive stars and related nuclear uncertainties. Astrophys. J. Suppl. 2003, 233, 403. [Google Scholar] [CrossRef]
- Panov, I.V.; Korneev, I.Y.; Rauscher, T.; Martínez-Pinedo, G.; Kelić-Heil, A.; Zinner, N.T.; Thielemann, F.-K. Neutron-induced astrophysical reaction rates for translead nuclei. Astron. Lett. 1995, 21, A61. [Google Scholar] [CrossRef]
- Panov, I.V.; Blinnikov, S.I.; Thielemann, F.-K. Nucleosynthesis of heavy elements: Computational experiment. Astron. Lett. 2001, 27, 239–248. [Google Scholar] [CrossRef]
- Illiadis, C. Nuclear Physics of Stars; Wiely: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lau, K.Y. Nuclear Reaction in the Crust of Accreting Neutron Stars. Ph.D. Thesis, Michiagn State University, East Lansing, MI, USA, 2012. [Google Scholar]
Case | Time (ms) | Temperature (GK) | Densitiy () | Ye |
---|---|---|---|---|
BH10-1 | 13.4 | |||
BH10-2 | 13.0 | |||
BH10-3 | 13.0 | |||
BH10-4 | 13.8 | |||
BH10-5 | 20.4 | |||
BH10-6 | 15.0 | |||
BH10-7 | 14.6 | |||
BH10-8 | 12.0 | |||
BH10-9 | 13.3 | |||
BH10-10 | 11.9 | |||
BH10-11 | 13.5 | |||
BH10-12 | 13.4 | |||
BH10-13 | 13.2 | |||
BH10-14 | 14.3 | |||
BH10-15 | 13.6 | |||
BH10-16 | 18.0 | |||
BH10-17 | 11.7 | |||
BH10-18 | 13.3 | |||
BH10-19 | 12.8 | |||
BH10-20 | 12.9 |
Case | Time (ms) | Temperature (GK) | Densitiy () | Ye |
---|---|---|---|---|
BH10-1 | 17.3 | |||
BH10-2 | 22.8 | |||
BH10-4 | 23.8 | |||
BH10-5 | 19.2 | |||
BH10-6 | 22.0 | |||
BH10-7 | 22.4 | |||
BH10-8 | 13.7 | |||
BH10-9 | 21.1 | |||
BH10-10 | 12.6 | |||
BH10-11 | 23.0 | |||
BH10-12 | 21.9 | |||
BH10-13 | 19.8 | |||
BH10-14 | 23.3 | |||
BH10-15 | 21.5 | |||
BH10-16 | 22.4 | |||
BH10-17 | 13.6 | |||
BH10-18 | 22.8 | |||
BH10-19 | 19.1 | |||
BH10-20 | 19.5 |
Case | Heat per Gram (ergs/g) |
---|---|
BH10-1 | |
BH10-2 | |
BH10-3 | |
BH10-4 | |
BH10-5 | |
BH10-6 | |
BH10-7 | |
BH10-8 | |
BH10-9 | |
BH10-10 | |
BH10-11 | |
BH10-12 | |
BH10-13 | |
BH10-14 | |
BH10-15 | |
BH10-16 | |
BH10-17 | |
BH10-18 | |
BH10-19 | |
BH10-20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, R.K.Y. Corrections on the Distribution of Nuclei Due to Neutron Degeneracy and Its Effect on R-Process in Neutron Star Black Hole Mergers. Universe 2024, 10, 401. https://doi.org/10.3390/universe10100401
Lau RKY. Corrections on the Distribution of Nuclei Due to Neutron Degeneracy and Its Effect on R-Process in Neutron Star Black Hole Mergers. Universe. 2024; 10(10):401. https://doi.org/10.3390/universe10100401
Chicago/Turabian StyleLau, Rita K. Y. 2024. "Corrections on the Distribution of Nuclei Due to Neutron Degeneracy and Its Effect on R-Process in Neutron Star Black Hole Mergers" Universe 10, no. 10: 401. https://doi.org/10.3390/universe10100401
APA StyleLau, R. K. Y. (2024). Corrections on the Distribution of Nuclei Due to Neutron Degeneracy and Its Effect on R-Process in Neutron Star Black Hole Mergers. Universe, 10(10), 401. https://doi.org/10.3390/universe10100401