# Observational Constraints on Varying-Alpha Domain Walls

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Domain Wall Evolution: The Basics

## 3. The Biased Evolution of Varying-α Walls

## 4. Observational Constraints

## 5. Discussion and Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Webb, J.K.; King, J.A.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B. Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett.
**2011**, 107, 191101. [Google Scholar] [CrossRef] [PubMed] - King, J.A.; Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B.; Wilczynska, M.R.; Koch, F.E. Spatial variation in the fine-structure constant–new results from VLT/UVES. Mon. Not. Roy. Astron. Soc.
**2012**, 422, 3370–3413. [Google Scholar] [CrossRef] - Olive, K.A.; Peloso, M.; Uzan, J.P. The Wall of Fundamental Constants. Phys. Rev. D
**2011**, 83, 043509. [Google Scholar] [CrossRef] - Chiba, T.; Yamaguchi, M. Runaway Domain Wall and Space-time Varying alpha. J. Cosmol. Astropart. Phys.
**2011**, 1103, 044. [Google Scholar] [CrossRef] - Bamba, K.; Nojiri, S.; Odintsov, S.D. Domain wall solution in F(R) gravity and variation of the fine structure constant. Phys. Rev. D
**2012**, 85, 044012. [Google Scholar] [CrossRef] - Olive, K.A.; Peloso, M.; Peterson, A.J. Where are the walls? Spatial variation in the fine-structure constant. Phys. Rev. D
**2012**, 86, 043501. [Google Scholar] [CrossRef] - Menezes, J.; Avelino, P.P.; Santos, C. Cosmic strings in Bekenstein-type models. J. Cosmal. Astropart. Phys.
**2005**. [Google Scholar] [CrossRef] - Bucher, M.; Spergel, D.N. Is the dark matter a solid? Phys. Rev. D
**1999**, 60, 043505. [Google Scholar] [CrossRef] - Avelino, P.P.; Martins, C.J.A.P.; Menezes, J.; Menezes, R.; Oliveira, J.C.R.E. Frustrated expectations: Defect networks and dark energy. Phys. Rev. D
**2006**, D73, 123519. [Google Scholar] [CrossRef] - Avelino, P.P.; Martins, C.J.A.P.; Menezes, J.; Menezes, R.; Oliveira, J.C.R.E. Dynamics of domain wall networks with junctions. Phys. Rev. D
**2008**, 78, 103508. [Google Scholar] [CrossRef] - Sousa, L.; Avelino, P.P. Impact of string and monopole-type junctions on domain wall dynamics: implications for dark energy. Phys. Lett. B
**2010**, 689, 145–148. [Google Scholar] [CrossRef] - Avelino, P.P.; Menezes, R.; Oliveira, J.C.R.E. Unified paradigm for interface dynamics. Phys. Rev. E
**2011**, 83, 011602. [Google Scholar] [CrossRef] - Sousa, L.; Avelino, P.P. The cosmological evolution of p-brane networks. Phys. Rev. D
**2011**, 84, 063502. [Google Scholar] [CrossRef] - Sousa, L.; Avelino, P.P. Evolution of domain wall networks: The Press-Ryden-Spergel algorithm. Phys. Rev. D
**2010**, 81, 087305. [Google Scholar] [CrossRef] - Avelino, P.P.; Sousa, L. Domain wall network evolution in (N+1)-dimensional FRW universes. Phys. Rev. D
**2011**, 83, 043530. [Google Scholar] [CrossRef] - Sousa, L.; Avelino, P.P. p-brane dynamics in (N+1)-dimensional FRW universes: A unified framework. Phys. Rev. D
**2011**, 83, 103507. [Google Scholar] [CrossRef] - Gasser, J.; Leutwyler, H. Quark Masses. Phys. Rep.
**1982**, 87, 77–169. [Google Scholar] [CrossRef] - Zeldovich, Y.B.; Kobzarev, I.Y.; Okun, L.B. Cosmololgical consequences of the spontaneous breakdown of discrete symmetry. Zh. Eksp. Teor. Fiz.
**1974**, 67, 3–11. [Google Scholar] - Freese, K.; Liu, J.T.; Spolyar, D. Devaluation: A dynamical mechanism for a naturally small cosmological constant. Phys. Lett. B
**2006**, 634, 119–124. [Google Scholar] [CrossRef] - Sikivie, P. Of Axions, Domain Walls and the Early Universe. Phys. Rev. Lett.
**1982**, 48, 1156–1159. [Google Scholar] [CrossRef] - Gelmini, G.B.; Gleiser, M.; Kolb, E.W. Cosmology of Biased Discrete Symmetry Breaking. Phys. Rev. D
**1989**, 39, 1558. [Google Scholar] [CrossRef] - Larsson, S.E.; Sarkar, S.; White, P.L. Evading the cosmological domain wall problem. Phys. Rev. D
**1997**, 55, 5129–5135. [Google Scholar] [CrossRef] - Avelino, P.P.; Martins, C.J.A.P.; Sousa, L. Dynamics of Biased Domain Walls and the Devaluation Mechanism. Phys. Rev. D
**2008**, 78, 043521. [Google Scholar] [CrossRef] - Avelino, P.P.; Bazeia, D.; Menezes, R.; Oliveira, J.C.R.E. Bifurcation and pattern changing with two real scalar fields. Phys. Rev. D
**2009**, 79, 085007. [Google Scholar] [CrossRef] - Murphy, M.T.; Webb, J.K.; Flambaum, V.V. Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. Mon. Not. Roy. Astron. Soc.
**2003**, 345, 609–638. [Google Scholar] [CrossRef] - Webb, J.K.; Flambaum, V.V.; Churchill, C.W.; Drinkwater, M.J.; Barrow, J.D. Evidence for time variation of the fine structure constant. Phys. Rev. Lett.
**1999**, 82, 884–887. [Google Scholar] [CrossRef] - Murphy, M.T.; Webb, J.; Flambaum, V.V.; Dzuba, V.A.; Churchill, C.W.; Prochaska, J.X.; Barrow, J.D.; Wolfe, A.M. Possible evidence for a variable fine structure constant from QSO absorption lines: Motivations, analysis and results. Mon. Not. Roy. Astron. Soc.
**2001**, 327, 1208–1222. [Google Scholar] [CrossRef] - Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Dzuba, V.A.; Barrow, J.D.; Churchill, C.W.; Prochaska, J.X.; Wolfe, A.M. Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett.
**2001**, 87, 091301. [Google Scholar] [CrossRef] [PubMed] - Chand, H.; Srianand, R.; Petitjean, P.; Aracil, B. Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample. Astron. Astrophys.
**2004**, 417, 853–871. [Google Scholar] [CrossRef] - Quast, R.; Reimers, D.; Levshakov, S.A. Probing the variability of the fine-structure constant with the VLT UVES. Astron. Astrophys.
**2004**, 415, L7–L11. [Google Scholar] [CrossRef] - Uzan, J.P. Varying Constants, Gravitation and Cosmology. Living Rev. Rel.
**2011**, 14. [Google Scholar] [CrossRef] - Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S. Accurate Calibration of the Velocity-dependent One-scale Model for Domain Walls. Phys. Lett. B
**2013**, 718, 740–744. [Google Scholar] [CrossRef] - Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys.
**2014**, 571, A16. [Google Scholar] [CrossRef] - Seljak, U.; Slosar, A. B polarization of cosmic microwave background as a tracer of strings. Phys. Rev. D
**2006**, 74, 063523. [Google Scholar] [CrossRef] - Pogosian, L.; Wyman, M. B-modes from cosmic strings. Phys. Rev. D
**2008**, 77, 083509. [Google Scholar] [CrossRef] - Bevis, N.; Hindmarsh, M.; Kunz, M.; Urrestilla, J. CMB polarization power spectra contributions from a network of cosmic strings. Phys. Rev. D
**2007**, 76, 043005. [Google Scholar] [CrossRef] - Sanidas, S.A.; Battye, R.A.; Stappers, B.W. Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array. Phys. Rev. D
**2012**, 85, 122003. [Google Scholar] [CrossRef] - Kuroyanagi, S.; Miyamoto, K.; Sekiguchi, T.; Takahashi, K.; Silk, J. Forecast constraints on cosmic string parameters from gravitational wave direct detection experiments. Phys. Rev. D
**2012**, 86, 023503. [Google Scholar] [CrossRef] - Sousa, L.; Avelino, P.P. Stochastic Gravitational Wave Background generated by Cosmic String Networks: Velocity-Dependent One-Scale model versus Scale-Invariant Evolution. Phys. Rev. D
**2013**, 88, 023516. [Google Scholar] [CrossRef] - Sousa, L.; Avelino, P.P. The Stochastic Gravitational Wave Background Generated by Cosmic String Networks: the Small-Loop Regime. Phys. Rev. D
**2014**, 89, 083503. [Google Scholar] [CrossRef] - Hiramatsu, T.; Kawasaki, M.; Saikawa, K. On the estimation of gravitational wave spectrum from cosmic domain walls. J. Cosmol. Astropart. Phys.
**2014**, 1402, 031. [Google Scholar] [CrossRef] - Ade, P.; Aikin, R.W.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Brevik, J.A.; Buder, I.; Bullock, E.; Dowell, C.D.; et al. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2. Phys. Rev. Lett.
**2014**, 112, 241101. [Google Scholar] [CrossRef] [PubMed] - Lizarraga, J.; Urrestilla, J.; Daverio, D.; Hindmarsh, M.; Kunz, M.; Liddle, A.R. Can topological defects mimic the BICEP2 B-mode signal? Phys. Rev. Lett.
**2014**, 112, 171301. [Google Scholar] [CrossRef] [PubMed] - Moss, A.; Pogosian, L. Did BICEP2 see vector modes? First B-mode constraints on cosmic defects. Phys. Rev. Lett.
**2014**, 112, 171302. [Google Scholar] [CrossRef] [PubMed] - Lizarraga, J.; Urrestilla, J.; Daverio, D.; Hindmarsh, M.; Kunz, M.; Liddle, A.R. Constraining topological defects with temperature and polarization anisotropies. Phys. Rev. D
**2014**, 90, 103504. [Google Scholar] [CrossRef] - Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; et al. Planck 2013 results. I. Overview of Products and Scientific Results.
**2013**. arXiv:1303.5062. [Google Scholar] - Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.L.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl.
**2013**, 208. [Google Scholar] [CrossRef] - Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl.
**2013**, 208, 20. [Google Scholar] [CrossRef] - Chluba, J.; Dai, L.; Jeong, D.; Kamionkowski, M.; Yoho, A. Linking the BICEP2 result and the hemispherical power asymmetry through spatial variation of r. Mon. Not. Roy. Astron. Soc.
**2014**, 442, 670–673. [Google Scholar] [CrossRef] - Mortonson, M.J.; Seljak, U. A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty. J. Cosmol. Astropart. Phys.
**2014**, 1410, 035. [Google Scholar] [CrossRef] - Flauger, R.; Hill, J.C.; Spergel, D.N. Toward an Understanding of Foreground Emission in the BICEP2 Region. J. Cosmol. Astropart. Phys.
**2014**. [Google Scholar] [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Avelino, P.P.; Sousa, L.
Observational Constraints on Varying-Alpha Domain Walls. *Universe* **2015**, *1*, 6-16.
https://doi.org/10.3390/universe1010006

**AMA Style**

Avelino PP, Sousa L.
Observational Constraints on Varying-Alpha Domain Walls. *Universe*. 2015; 1(1):6-16.
https://doi.org/10.3390/universe1010006

**Chicago/Turabian Style**

Avelino, Pedro P., and Lara Sousa.
2015. "Observational Constraints on Varying-Alpha Domain Walls" *Universe* 1, no. 1: 6-16.
https://doi.org/10.3390/universe1010006