Chronic Intermittent Low-Pressure Hypoxia Suppresses Inflammation and Regulates Glycolipids by Modulating Mitochondrial Respiration in db/db Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
CIHH Treatment
- Normal control group: healthy male C57BL/6J mice (no CIHH treatment);
- Model group: male db/db mice (no CIHH treatment);
- Treatment group: male db/db mice with CIHH intervention;
- Positive control group: male C57BL/6J mice with CIHH intervention.
2.2. Methods for Index Detection
2.2.1. Histological Analysis
2.2.2. Mitochondrial Respiratory Capacity Assay
2.2.3. Glycolipid-Related Indexes
2.2.4. Insulin Resistance Related Tests
- HOMA-IR = fasting blood glucose (FBG, mmol/L) × fasting insulin (FINS, um/mL)/22.5
- HOMA-IS = 20 × FINS/(FBG-3.5)
2.2.5. Inflammatory-Factor-Related Assays
2.2.6. Hepatic Gluconeogenesis Related Assay
- Liver index = liver mass (g) × 100/mouse mass (g)
2.3. Data Analysis
3. Results
3.1. Indicators Related to the Improvement of Glycolipid Metabolism in db/db Mice by CIHH
3.2. CIHH Ameliorates Hepatic Gluconeogenesis in db/db Mice
3.3. CIHH Improves Hepatic Mitochondrial Respiratory Capacity
3.4. Effect of CIHH on Inhibition of Inflammatory Markers in Liver of db/db Mice
3.5. CIHH Ameliorates INSULIN Resistance in db/db Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018, 14, 491–509. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef]
- Thipsawat, S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211058856. [Google Scholar] [CrossRef]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull. Exp. Biol. Med. 2021, 171, 179–189. [Google Scholar] [CrossRef]
- O’Kell, A.L.; Davison, L.J. Etiology and Pathophysiology of Diabetes Mellitus in Dogs. Vet. Clin. N. Am. Small Anim. Pract. 2023, 53, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Bielka, W.; Przezak, A.; Molęda, P.; Pius-Sadowska, E.; Machaliński, B. Double diabetes-when type 1 diabetes meets type 2 diabetes: Definition, pathogenesis and recognition. Cardiovasc. Diabetol. 2024, 23, 62. [Google Scholar] [CrossRef]
- Lewgood, J.; Oliveira, B.; Korzepa, M.; Forbes, S.C.; Little, J.P.; Breen, L.; Bailie, R.; Candow, D.G. Efficacy of Dietary and Supplementation Interventions for Individuals with Type 2 Diabetes. Nutrients 2021, 13, 2378. [Google Scholar] [CrossRef]
- Hostalek, U.; Gwilt, M.; Hildemann, S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs 2015, 75, 1071–1094. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, N.; Arora, S.; Verma, S. Diabetes: A review of its pathophysiology, and advanced methods of mitigation. Curr. Med. Res. Opin. 2024, 40, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-M.; Liu, Y.; Wang, S.; Dong, Y.; Su, T.; Ma, H.-J.; Zhang, Y. Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sci. 2016, 150, 1–7. [Google Scholar] [CrossRef]
- Tian, Y.-M.; Guan, Y.; Li, N.; Ma, H.-J.; Zhang, L.; Wang, S.; Zhang, Y. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res. Clin. Pract. 2016, 118, 90–97. [Google Scholar] [CrossRef]
- Yu, B.; Chen, H.; Guo, X.-Q.; Hua, H.; Guan, Y.; Cui, F.; Tian, Y.-M.; Zhang, H.-X.; Zhang, X.-J.; Zhang, Y.; et al. CIHH protects the heart against left ventricular remodelling and myocardial fibrosis by balancing the renin-angiotensin system in SHR. Life Sci. 2021, 278, 119540. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Ma, H.; Guan, Y.; Cao, Y.; Tian, Y.; Zhang, Y. Enhancement of Glucose Metabolism via PGC-1α Participates in the Cardioprotection of Chronic Intermittent Hypobaric Hypoxia. Front. Physiol. 2016, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Li, N.; Tian, Y.-M.; Zhang, L.; Ma, H.-J.; Maslov, L.N.; Wang, S.; Zhang, Y. Chronic intermittent hypobaric hypoxia antagonizes renal vascular hypertension by enhancement of vasorelaxation via activating BKCa. Life Sci. 2016, 157, 74–81. [Google Scholar] [CrossRef]
- Li, H.-S.; Liu, H.-J.; Zhang, Y.; Zhang, J.; Yan, H.-Y.; Yuan, W.-C.; Wang, S.; Yu, S.; Yang, S.-Q.; Sun, M.-W.; et al. Chronic intermittent hypobaric hypoxia prevents pulmonary arterial hypertension through maintaining eNOS homeostasis. Arch. Biochem. Biophys. 2025, 767, 110340. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-J.; Liu, X.; Zhang, L.; Guo, X.-Q.; Wang, F.-W.; Zhang, Y.; Tian, Y.-M. Chronic intermittent hypobaric hypoxia attenuates skeletal muscle ischemia-reperfusion injury in mice. Life Sci. 2019, 231, 116533. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.E.; Deighton, K.; Matu, J.; Misra, S.; Oliver, N.S.; Newman, C.; Mellor, A.; O’hAra, J.; Woods, D. Continuous Glucose Monitoring at High Altitude-Effects on Glucose Homeostasis. Med. Sci. Sports Exerc. 2018, 50, 1679–1686. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Ader, M.; Bergman, R.N. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr. Rev. 2015, 36, 149–173. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Castillo, O.A.; Gutierrez, C.; Elashoff, R.M.; Stefanovski, D.; Bergman, R.N. Inverse association between diabetes and altitude: A cross-sectional study in the adult population of the United States. Obesity 2014, 22, 2080–2090. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Q.; Liu, J.; Bian, B.; Yu, X.; Yu, X.; Ning, X.; Wang, J. The prevalence of and risk factors for diabetes mellitus and impaired glucose tolerance among Tibetans in China: A cross-sectional study. Oncotarget 2017, 8, 112467–112476. [Google Scholar] [CrossRef]
- Rocca, J.; Calderón, M.; La Rosa, A.; Seclén, S.; Castillo, O.; Pajuelo, J.; Arbañil, H.; Medina, F.; Garcia, L.; Abuid, J. Type 2 diabetes mellitus in Peru: A literature review including studies at high-altitude settings. Diabetes Res. Clin. Pract. 2021, 182, 109132. [Google Scholar] [CrossRef]
- Santos, J.L.; Pérez-Bravo, F.; Carrasco, E.; Calvillán, M.; Albala, C. Low prevalence of type 2 diabetes despite a high average body mass index in the Aymara natives from Chile. Nutrition 2001, 17, 305–309. [Google Scholar] [CrossRef]
- Friederich-Persson, M.; Fasching, A.; Liss, P.; Shoji, K.; Nangaku, M.; Hansell, P.; Palm, F. Activation of hypoxia-inducible factors prevents diabetic nephropathy. J. Am. Soc. Nephrol. 2015, 26, 328–338. [Google Scholar] [CrossRef]
- Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 2019, 9, 850. [Google Scholar] [CrossRef]
- Bahiru, E.; Hsiao, R.; Phillipson, D.; Watson, K.E. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr. Cardiol. Rep. 2021, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Serebrovska, T.V.; Grib, O.N.; Portnichenko, V.I.; Serebrovska, Z.O.; Egorov, E.; Shatylo, V.B. Intermittent Hypoxia/Hyperoxia Versus Intermittent Hypoxia/Normoxia: Comparative Study in Prediabetes. High. Alt. Med. Biol. 2019, 20, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Mi, H.; Wang, R.; Du, Y.; Li, F.; Chang, S.; Su, Y.; Liu, A.; Shi, M. The effect of chronic intermittent hypobaric hypoxia improving liver damage in metabolic syndrome rats through ferritinophagy. Pflügers Arch.-Eur. J. Physiol. 2023, 475, 1251–1263. [Google Scholar] [CrossRef]
- Cui, F.; Hu, H.F.; Guo, J.; Sun, J.; Shi, M. The Effect of Autophagy on Chronic Intermittent Hypobaric Hypoxia Ameliorating Liver Damage in Metabolic Syndrome Rats. Front. Physiol. 2020, 11, 13. [Google Scholar] [CrossRef]
- Veerababu, G.; Tang, J.; Hoffman, R.T.; Daniels, M.C.; Hebert, L.F.; Crook, E.D.; Cooksey, R.C.; A McClain, D. Overexpression of glutamine: Fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 2000, 49, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, Y.; Hu, S.; Liang, X.; Li, Y.; Yu, Z.; Liu, Y.; Bian, Y.; Man, Y.; Zhao, S.; et al. TOX3 deficiency mitigates hyperglycemia by suppressing hepatic gluconeogenesis through FoxO1. Metabolism 2024, 152, 155766. [Google Scholar] [CrossRef]
- Luo, Y.-Y.; Ruan, C.-S.; Zhao, F.-Z.; Yang, M.; Cui, W.; Cheng, X.; Luo, X.-H.; Zhang, X.-X.; Zhang, C. ZBED3 exacerbates hyperglycemia by promoting hepatic gluconeogenesis through CREB signaling. Metabolism 2025, 162, 156049. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, L.; Zhou, S.; Zhang, Y.; Wang, X.-H.; He, Y.-Y.; Davie, A.; Broadbent, S. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS ONE 2018, 13, e0203551. [Google Scholar] [CrossRef]
- Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.-M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014, 510, 542–546. [Google Scholar] [CrossRef]
- Entezari, M.; Hashemi, D.; Taheriazam, A.; Zabolian, A.; Mohammadi, S.; Fakhri, F.; Hashemi, M.; Hushmandi, K.; Ashrafizadeh, M.; Zarrabi, A.; et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed. Pharmacother. 2022, 146, 112563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Liu, X.; Chen, X.; Zhang, S.; Chen, Y.; Chen, J.; Chen, J.; Wu, F.; Chen, G.-Q. 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARγ Ser273 phosphorylation in type 2 diabetic mice. Signal Transduct. Target. Ther. 2023, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.N.; Hubálek, F.; Brand, C.L.; Helleberg, H.; Kurtzhals, P.; Sturis, J. Chain splitting of insulin: An underlying mechanism of insulin resistance? npj Metab. Health Dis. 2024, 2, 38. [Google Scholar] [CrossRef]
- Yang, M.; Wei, Y.; Liu, J.; Wang, Y.; Wang, G. Contributions of Hepatic Insulin Resistance and Islet β-Cell Dysfunction to the Blood Glucose Spectrum in Newly Diagnosed Type 2 Diabetes Mellitus. Diabetes Metab. J. 2025, 49, 883–892. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Q.; Zou, J.; Fan, J.; Li, Y.; Luo, Z. Chronic Intermittent Hypoxia Exposure Alternative to Exercise Alleviates High-Fat-Diet-Induced Obesity and Fatty Liver. Int. J. Mol. Sci. 2022, 23, 5209. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Ma, H.; Yang, S.; Liu, Z.; Wu, X.; Wang, S.; Zhang, Y.; Liu, Y. Chronic Intermittent Hypobaric Hypoxia Pretreatment Ameliorates Ischemia-Induced Cognitive Dysfunction Through Activation of ERK1/2-CREB-BDNF Pathway in Anesthetized Mice. Neurochem. Res. 2017, 42, 501–512. [Google Scholar] [CrossRef]
- Rodrigues, K.C.d.C.; Pereira, R.M.; Peruca, G.F.; Barbosa, L.W.T.; Sant’ana, M.R.; Muñoz, V.R.; Morelli, A.P.; Simabuco, F.M.; da Silva, A.S.R.; Cintra, D.E.; et al. Short-Term Strength Exercise Reduces Hepatic Insulin Resistance in Obese Mice by Reducing PTP1B Content, Regardless of Changes in Body Weight. Int. J. Mol. Sci. 2021, 22, 6402. [Google Scholar] [CrossRef]
- Keenan, S.N.; Watt, M.J.; Montgomery, M.K. Inter-organelle Communication in the Pathogenesis of Mitochondrial Dysfunction and Insulin Resistance. Curr. Diabetes Rep. 2020, 20, 20. [Google Scholar] [CrossRef]
- Miotto, P.M.; Bayliss, J.; Fidelito, G.; Bell, J.R.; Delbridge, L.M.; Watt, M.J.; Montgomery, M.K. Diabetic heart shows preferential secretion of inner mitochondrial membrane proteins in the presence of mitochondrial oxidative stress. Am. J. Physiol.-Endocrinol. Metab. 2025; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.F.; Myatt, L. Metformin Impacts Human Syncytiotrophoblast Mitochondrial Function from Pregnancies Complicated by Obesity and Gestational Diabetes Mellitus in a Sexually Dimorphic Manner. Antioxidants 2023, 12, 719. [Google Scholar] [CrossRef]
- Mansouri, A.; Gattolliat, C.H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, M.; Zhang, R.; Zhang, H.; Liu, Y.; Li, W.; Sun, X.; Yu, Q.; Tipoe, G.L.; Xiao, J. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm. Sin. B 2021, 11, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Wang, S.; Sun, L.; Huang, X.; Zhang, Y.; Shen, T.; Guo, J.; Man, Y.; Tang, W.; Li, J. Mir-338-3p Mediates Tnf-A-Induced Hepatic Insulin Resistance by Targeting PP4r1 to Regulate PP4 Expression. Cell. Physiol. Biochem. 2017, 41, 2419–2431. [Google Scholar] [CrossRef]
- Lv, S.; Qiu, X.; Li, J.; Li, W.; Zhang, C.; Zhang, Z.-N.; Luan, B. Suppression of CRTC2-mediated hepatic gluconeogenesis by TRAF6 contributes to hypoglycemia in septic shock. Cell Discov. 2016, 2, 16046. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; He, Y.; Guo, J.; Pan, Q.; Wei, X.; Xu, C.; Qi, Z.; Li, Q.; Ma, S.; Lin, J.; et al. BACH1 controls hepatic insulin signaling and glucose homeostasis in mice. Nat. Commun. 2023, 14, 8428. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Yuan, K.; Ge, X.; Yu, L.; Cui, Y.; Jin, L.; Chang, Y. Chronic Intermittent Low-Pressure Hypoxia Suppresses Inflammation and Regulates Glycolipids by Modulating Mitochondrial Respiration in db/db Mice. Metabolites 2025, 15, 707. https://doi.org/10.3390/metabo15110707
Jiang X, Yuan K, Ge X, Yu L, Cui Y, Jin L, Chang Y. Chronic Intermittent Low-Pressure Hypoxia Suppresses Inflammation and Regulates Glycolipids by Modulating Mitochondrial Respiration in db/db Mice. Metabolites. 2025; 15(11):707. https://doi.org/10.3390/metabo15110707
Chicago/Turabian StyleJiang, Xin, Keqing Yuan, Xiaofeng Ge, Lili Yu, Yufei Cui, Lianhai Jin, and Ying Chang. 2025. "Chronic Intermittent Low-Pressure Hypoxia Suppresses Inflammation and Regulates Glycolipids by Modulating Mitochondrial Respiration in db/db Mice" Metabolites 15, no. 11: 707. https://doi.org/10.3390/metabo15110707
APA StyleJiang, X., Yuan, K., Ge, X., Yu, L., Cui, Y., Jin, L., & Chang, Y. (2025). Chronic Intermittent Low-Pressure Hypoxia Suppresses Inflammation and Regulates Glycolipids by Modulating Mitochondrial Respiration in db/db Mice. Metabolites, 15(11), 707. https://doi.org/10.3390/metabo15110707

