Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review
Abstract
:1. Introduction
2. Plant Sources of Glutathione
3. Structure and Chemistry of Glutathione
4. Extraction and Sample Preparation Methods
Source Material | Extraction Method | Glutathione Amount | Detection Method | Reference |
---|---|---|---|---|
Beta vulgaris (leaf), Prunus persica (leaf), Medicago truncatula (nodule), Hordeum vulgare (leaf), Lycopersicon esculentum (leaf), Beta vulgaris (root), Trifolium sp. (leaf), Oryza sativa (leaf) | Plant tissue (100–500 mg) was frozen in liquid nitrogen, grounded, 200–1000 μL of cold (4 °C) extraction solution (5% (w/v) MPA and 1 mM EDTA in 0.1% formic acid), supplemented with 1% (m/v) polyvinylpolypyrrolidone (PVPP). Homogenates were centrifuged and the pellet was extracted again. The supernatants were combined and syringe-filtered to obtain extracted glutathione. | Beta vulgaris (leaf)—152 nmol/g GSH; 23 nmol/g GSSG, Prunus persica (leaf)—155 nmol/g GSH; 6 nmol/g, Medicago truncatula (nodule)—202 nmol/g GSH; 7 nmol/g, Hordeum vulgare (leaf)—not detected GSH; not detected, Lycopersicon esculentum (leaf)—707 nmol/g GSH; 47 nmol/g, Beta vulgaris (root)—92 nmol/g GSH; 46 nmol/g, Trifolium sp. (leaf)—42 nmol/g GSH, Oryza sativa (leaf)—252 nmol/g GSH; 13 nmol/g | High-pressure liquid chromatography (HPLC) | [42] |
Kappaphycus alvarezii seaweed extract sprayed maize | Leaf tissue (1 g) was frozen in liquid nitrogen, homogenized with 25% H3PO3 (1 mL) and 3 mL of 0.1 M sodium phosphate–EDTA buffer (pH 8.0). The solution was centrifuged, and the supernatant was collected. | GSH—44–194 µg/g FW | O-phthalaldehyde (OPT)/spectrofluorimetry | [43] |
Salvia species (Salvia nemorosa L., and Salvia reuterana Boiss) | Leaf tissue (0.2 g) was homogenized with 6% metaphosphoric acid (2 mL) containing 1 mM EDTA, centrifuged, and the supernatant was collected. | GSH–36,352 nmol/g FW; GSSG–86 nmol/g FW | DTNB/UV vis spectroscopy | [44] |
Cashew plants (Anacardium occidentale L.) | The leaf samples (0.1 g FW) were homogenized in cold 6% trichloroacetic acid (TCA) (w/v), the homogenate was centrifuged, and the supernatant was collected. | GSH—1.4–2.3 µmol/g | DTNB/UV vis spectroscopy | [45] |
Seed of wheat (Triticum aestivum L.) | - | 2 µmol/g DW | DTNB/UV vis spectroscopy | [46] |
Brassica juncea | Fresh shoot sample (200 g) was homogenized with 5% w/v sulfosalicylic acid, centrifuged, and the supernatant was collected. | glutathione 230–350 nmol/min.mg protein | DTNB/UV vis spectroscopy | [47] |
Arabidopsis thaliana | Leaf or root tissues (500 mg) were homogenized with 1 mL of 5% trichloroacetic acid (TCA), centrifuged, and the supernatant was collected. | GSH—1100–6500 nmol/g FW, GSSG—100–680 nmol/g FW | DTNB/UV vis spectroscopy | [48] |
Tomato (Solanum lycopersicum L. cv. Condine Red) | Leaf tissue (0.2 g) was homogenized with 2% metaphosphoric acid (2 mL), centrifuged, and the supernatant was neutralized with 0.2 M NaOH before analysis. | GSH+GSSG–350–420 nmol/g FW | DTNB/UV vis spectroscopy | [49] |
Vicia faba L. | Leaf tissue (0.25 g) was homogenized with 2% metaphosphoric acid (2 mL) and 2 mM EDTA, centrifuged, and the supernatant was collected. | GSH—400–1250 nmol/g FW, GSSG—55–90 nmol/g FW | DTNB/UV vis spectroscopy | [50] |
Cassia alata | - | GSH—3–7 µmol/g FW | DTNB/UV vis spectroscopy | [51] |
Maize (Zea mays) | - | Leaves GSH—0.8–1.5 µmol/g FW, roots GSH—0.6–1.1 µmol/g FW | DTNB/UV vis spectroscopy | [52] |
Oilseed rape (Brassica napus L.) roots | - | GSH—1–1.7 µmol/g FW, GSSG—1.2–2 µmol/g FW | DTNB/UV vis spectroscopy | [53] |
Tomato plants (Solanum lycopersicum L. cv. Badun) | - | GSH—120–500 nmol/g FW, GSSG—160–430 nmol/g FW | DTNB/UV vis spectroscopy | [54] |
Olive fruits (Olea europaea L.) | Olive powder (0.4 g) was homogenized with 0.1 M of cold HCl (7 mL), centrifuged, and the supernatant was collected. | GSH—1.3–5.2 mg/g FW, GSSG—0.3–0.7 mg/g FW | Liquid chromatography–electrospray/mass spectrometry (LC–ES/MS) | [55] |
Cucumber (Cucumis sativus L.) seeds | Plant tissue was homogenized with 5% metaphosphoric acid (5 mL), centrifuged, and the supernatant was collected. | Shoot GSH—580–800 µmol/g FW, GSSG—80–90 µmol/g FW; roots GSH—270–370 µmol/g FW, GSSG—40–58 µmol/g FW | DTNB/UV vis spectroscopy | [56] |
Tomato (Solanum lycopersicum L. cv. Micro-Tom) | Leaves were homogenized with 3% trichloroacetic acid containing 0.5 mM EDTA, centrifuged, and the supernatant was collected. | GSH/GSSG ratio-4–9 | DTNB/UV vis spectroscopy | [57]. |
Red beetroot vacuoles (Beta vulgaris L.) | - | OPT: GSH—0.059 µmol/mg protein; GSSG—0.019 µmol/mg protein, DTNB: GSH—0.091 µmol/mg protein; GSSG—0.031 µmol/mg protein, HPLC: GSH—0.039 µmol/mg protein; GSSG—0.007 µmol/mg protein | OPT/spectrofluorimetry, DTNB/UV vis spectroscopy, HPLC | [58] |
Pepper (Capsicum annuum L.) | Pericarps and placentas were frozen in liquid nitrogen and crushed into a powder. Powdered tissue (0.4 g) was homogenized with 0.1 M HCl (1 mL), centrifuged, and filtered. | GSH—50–80 µg/g FW, GSSG–2.5–13 µg/g FW | LC–ES/MS | [59] |
Raspberry fruit (Rubus idaeus L.) | Frozen raspberry tissue was frozen in liquid nitrogen and crushed into a powder. Powdered tissue (5 g) was homogenized with chilled 50 mM sodium phosphate buffer (pH 8.0) containing 5 mM EDTA, centrifuged, and the supernatant was collected. | GSH—40–75 mg/kg DW | OPT/spectrofluorimetry | [60] |
Sweet pepper (Capsicum annuum L.) | Frozen leaf tissues were homogenized with cold 5% sulfosalicylic acid (10 mL), centrifuged, and the supernatant was collected. | GSH—11–14 mg/100 g FW, GSSG—1.5–2.6 mg/100 g FW | [61] | |
Perilla frutescens | Tissues were frozen in liquid nitrogen and crushed into a powder. Powdered tissue (0.2 g) was homogenized with 0.1% trifluoroacetic acid, centrifuged, and the supernatant was collected. | GSH—3 µg/mL | HPLC | [62] |
Brassica rapa L. | Frozen powdered sample (0.1 g) was homogenized with 0.1 M of cold HCl (1 mL), centrifuged, and the supernatant was collected. | GSH—200–850 nmol/g FW, GSSG—20–50 nmol/g FW | HPLC | [63] |
Upland Cotton (Gossypium hirsutum L.) | Plant samples (0.4 g) were homogenized in trichloroacetic acid (4 mL, 5% v/v), the homogenate was centrifuged, and the supernatant was collected. | GSH—0.05–0.6 µM/g FW | DTNB/UV vis spectroscopy | [64] |
Apricot fruits | - | GSH—86–914 µg/g FW, GSSG—17–35 µg/g FW | HPLC | [38] |
Tylophora pauciflora | - | GSH—61 µg/mg FW | DTNB/UV vis spectroscopy | [65] |
5. Identification and Quantification of Glutathione
6. Role of Glutathione in Food
7. Role of Glutathione in Human Diseases
8. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [Green Version]
- Rizwana, N.; Agarwal, V.; Nune, M. Antioxidant for Neurological Diseases and Neurotrauma and Bioengineering Approaches. Antioxidants 2022, 11, 72. [Google Scholar] [CrossRef]
- Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant-Microbe Interactions. Antioxidants 2023, 12, 268. [Google Scholar] [CrossRef]
- Kebede, M.; Emire, S. Application of Antioxidants in Food Processing Industry: Options to Improve the Extraction Yields and Market Value of Natural Products. Adv. Food Technol. Nutr. Sci. 2019, 5, 38–49. [Google Scholar] [CrossRef]
- Al-Hilifi, S.A.; Al-Ali, R.M.; Al-Ibresam, O.T.; Kumar, N.; Paidari, S.; Trajkovska Petkoska, A.; Agarwal, V. Physicochemical, Morphological, and Functional Characterization of Edible Anthocyanin-Enriched Aloevera Coatings on Fresh Figs (Ficus carica L.). Gels 2022, 8, 645. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Ugliano, M.; Kwiatkowski, M.; Vidal, S.; Capone, D.; Siebert, T.; Dieval, J.-B.; Aagaard, O.; Waters, E.J. Evolution of 3-Mercaptohexanol, Hydrogen Sulfide, and Methyl Mercaptan during Bottle Storage of Sauvignon blanc Wines. Effect of Glutathione, Copper, Oxygen Exposure, and Closure-Derived Oxygen. J. Agric. Food Chem. 2011, 59, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Abidullah, S.; Rauf, A.; Khan, S.W.; Ayaz, A.; Liaquat, F.; Saqib, S. A comprehensive review on distribution, paharmacological uses and biological activities of Argyrolobium roseum (Cambess.) Jaub. & Spach. Acta Ecol. Sin. 2022, 42, 198–205. [Google Scholar] [CrossRef]
- Minich, D.M.; Brown, B.I. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, J.B.; Butterfield, D.A. Measurement of Oxidized/Reduced Glutathione Ratio. In Protein Misfolding and Cellular Stress in Disease and Aging: Concepts and Protocols; Bross, P., Gregersen, N., Eds.; Humana Press: Totowa, NJ, USA, 2010; pp. 269–277. [Google Scholar] [CrossRef]
- Noctor, G.; Arisi, A.-C.M.; Jouanin, L.; Kunert, K.J.; Rennenberg, H.; Foyer, C.H. Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 1998, 49, 623–647. [Google Scholar] [CrossRef]
- Bjørklund, G.; Peana, M.; Maes, M.; Dadar, M.; Severin, B. The glutathione system in Parkinson’s disease and its progression. Neurosci. Biobehav. Rev. 2021, 120, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Townsend, D.M.; Tew, K.D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Bianchetti, A. Glutathione: Pharmacological aspects and implications for clinical use. Geriatr. Care 2022, 8. [Google Scholar] [CrossRef]
- Kennedy, L.; Sandhu, J.K.; Harper, M.-E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Matuz-Mares, D.; Riveros-Rosas, H.; Vilchis-Landeros, M.M.; Vázquez-Meza, H. Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants 2021, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
- Raj Rai, S.; Bhattacharyya, C.; Sarkar, A.; Chakraborty, S.; Sircar, E.; Dutta, S.; Sengupta, R. Glutathione: Role in Oxidative/Nitrosative Stress, Antioxidant Defense, and Treatments. ChemistrySelect 2021, 6, 4566–4590. [Google Scholar] [CrossRef]
- Saed-Moucheshi, A.; Pakniyat, H.; Pirasteh-Anosheh, H.; Azooz, M.M. Chapter 20—Role of ROS as Signaling Molecules in Plants. In Oxidative Damage to Plants; Ahmad, P., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 585–620. [Google Scholar] [CrossRef]
- Jenkins, N.L.; James, S.A.; Salim, A.; Sumardy, F.; Speed, T.P.; Conrad, M.; Richardson, D.R.; Bush, A.I.; McColl, G. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. eLife 2020, 9, e56580. [Google Scholar] [CrossRef]
- Thaipratum, R. Glutathione levels in the five healthy fruits for skin care. In Proceedings of the 2016 International Academic Research Conference, Milan, Italy, 9–11 November 2016; pp. 36–40. [Google Scholar]
- Moskaug, J.Ø.; Carlsen, H.; Myhrstad, M.C.; Blomhoff, R. Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 2005, 81, 277S–283S. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, D.; Grosini, M.; Giardina, S.; Michelotti, A.; Carrabetta, M.; Seneci, A.; Verri, M.; Dossena, M.; Marzatico, F. Bioavailability Study of an Innovative Orobuccal Formulation of Glutathione. Oxidative Med. Cell. Longev. 2016, 2016, 3286365. [Google Scholar] [CrossRef] [Green Version]
- Bachhawat, A.K.; Yadav, S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life 2018, 70, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jefferies, H.; Coster, J.; Khalil, A.; Bot, J.; McCauley, R.D.; Hall, J.C. Glutathione. ANZ J. Surg. 2003, 73, 517–522. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Mostafa, G.A.E.; Al-Badr, A.A. Chapter Two—Glutathione. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 40, pp. 43–158. [Google Scholar]
- Meister, A. On the discovery of glutathione. Trends Biochem. Sci. 1988, 13, 185–188. [Google Scholar] [CrossRef]
- Kendall, E.C.; McKenzie, B.F.; Mason, H.L. A study of glutathione: I. Its prepration in crystalline form and its identification. J. Biol. Chem. 1929, 84, 657–674. [Google Scholar] [CrossRef]
- Harington, C.R.; Mead, T.H. Synthesis of glutathione. Biochem. J. 1935, 29, 1602–1611. [Google Scholar] [CrossRef]
- Li, Y.; Wei, G.; Chen, J. Glutathione: A review on biotechnological production. Appl. Microbiol. Biotechnol. 2004, 66, 233–242. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Zagorchev, L.; Seal, C.E.; Kranner, I.; Odjakova, M. A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci. 2013, 14, 7405–7432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlowski, M.; Meister, A. The γ-Glutamyl Cycle: A Possible Transport System for Amino Acids. Proc. Natl. Acad. Sci. USA 1970, 67, 1248–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef] [PubMed]
- Bloch, K. The Synthesis of glutathione in isolated liver. J. Biol. Chem. 1949, 179, 1245–1254. [Google Scholar] [CrossRef]
- Lata, B.; Trampczynska, A.; Oles, M. Antioxidant content in the fruit peel, flesh and seeds of selected apple cultivars during cold storage. Folia Hortic. 2005, 17, 47–60. [Google Scholar]
- Xu, L.; Wang, X.; Han, C. Study on the Oxidative Activity of Corn Glutathione. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–3. [Google Scholar]
- Wang, Y.; Xiao, T.; Zhang, Z.; Feng, X. Extraction and concentration of glutathione from yeast by membranes. Can. J. Chem. Eng. 2022, 100, S195–S204. [Google Scholar] [CrossRef]
- Ahmet Baysar, F.k. Investigation of some water soluble parameters in apricot fruit of different varieties cultivated. Gida 2018, 43, 925–929. [Google Scholar] [CrossRef]
- Dogan, H.; Coteli, E.; Karatas, F. Determination of Glutathione, Selenium, and Malondialdehyde in Different Edible Mushroom Species. Biol. Trace Elem. Res. 2016, 174, 459–463. [Google Scholar] [CrossRef]
- Wei, G.; Li, Y.; Du, G.; Chen, J. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem. 2003, 38, 1133–1138. [Google Scholar] [CrossRef]
- Rollini, M.; Musatti, A.; Manzoni, M. Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process Biochem. 2010, 45, 441–445. [Google Scholar] [CrossRef]
- Rellán-Álvarez, R.; Hernández, L.E.; Abadía, J.; Álvarez-Fernández, A. Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography–electrospray/mass spectrometry in plant tissue extracts. Anal. Biochem. 2006, 356, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, K.; Vijay Anand, K.G.; Vaghela, P.; Ghosh, A. Differential growth, yield and biochemical responses of maize to the exogenous application of Kappaphycus alvarezii seaweed extract, at grain-filling stage under normal and drought conditions. Algal Res. 2018, 35, 236–244. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; VanderWeide, J.; Sabbatini, P. Exogenous melatonin improves glutathione content, redox state and increases essential oil production in two Salvia species under drought stress. Sci. Rep. 2020, 10, 6883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.S.; Ferreira-Silva, S.L.; Carvalho, F.E.L.; Lima Neto, M.C.; Aragão, R.M.; Silva, E.N.; Sousa, R.M.J.; Silveira, J.A.G. Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environ. Exp. Bot. 2018, 149, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, Y.; Rady, M.M. Compared to antioxidants and polyamines, the role of maize grain-derived organic biostimulants in improving cadmium tolerance in wheat plants. Ecotoxicol. Environ. Saf. 2019, 182, 109378. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, W.U.; Ali Shah, A.; Yasin, N.A.; Naz, S.; Ali, A.; Tahir, A.; Iram Batool, A. Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere 2021, 262, 128384. [Google Scholar] [CrossRef] [PubMed]
- Csiszár, J.; Brunner, S.; Horváth, E.; Bela, K.; Ködmön, P.; Riyazuddin, R.; Gallé, Á.; Hurton, Á.; Papdi, C.; Szabados, L.; et al. Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regul. 2018, 86, 181–194. [Google Scholar] [CrossRef]
- Hou, J.; Sun, Q.; Li, J.; Ahammed, G.J.; Yu, J.; Fang, H.; Xia, X. Glutaredoxin S25 and its interacting TGACG motif-binding factor TGA2 mediate brassinosteroid-induced chlorothalonil metabolism in tomato plants. Environ. Pollut. 2019, 255, 113256. [Google Scholar] [CrossRef]
- Alamri, S.A.; Siddiqui, M.H.; Al-Khaishany, M.Y.; Khan, M.N.; Ali, H.M.; Alakeel, K.A. Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L. Environ. Exp. Bot. 2019, 161, 290–302. [Google Scholar] [CrossRef]
- Silva, J.R.R.; Fernandes, A.R.; Silva Junior, M.L.; Santos, C.R.C.; Lobato, A.K.S.J.P. Tolerance mechanisms in Cassia alata exposed to cadmium toxicity—potential use for phytoremediation. Photosynthetica 2018, 56, 495–504. [Google Scholar] [CrossRef]
- de Freitas, P.A.F.; de Souza Miranda, R.; Marques, E.C.; Prisco, J.T.; Gomes-Filho, E. Salt Tolerance Induced by Exogenous Proline in Maize Is Related to Low Oxidative Damage and Favorable Ionic Homeostasis. J. Plant Growth Regul. 2018, 37, 911–924. [Google Scholar] [CrossRef]
- Farooq, M.A.; Islam, F.; Yang, C.; Nawaz, A.; Athar, H.-u.-R.; Gill, R.A.; Ali, B.; Song, W.; Zhou, W. Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots. Plant Growth Regul. 2018, 84, 135–148. [Google Scholar] [CrossRef]
- Li, Z.; Min, D.; Fu, X.; Zhao, X.; Wang, J.; Zhang, X.; Li, F.; Li, X. The roles of SlMYC2 in regulating ascorbate-glutathione cycle mediated by methyl jasmonate in postharvest tomato fruits under cold stress. Sci. Hortic. 2021, 288, 110406. [Google Scholar] [CrossRef]
- López-Huertas, E.; Palma, J.M. Changes in Glutathione, Ascorbate, and Antioxidant Enzymes during Olive Fruit Ripening. J. Agric. Food Chem. 2020, 68, 12221–12228. [Google Scholar] [CrossRef]
- Sun, C.; Dudley, S.; Trumble, J.; Gan, J. Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environ. Pollut. 2018, 234, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, S.; Ding, F. Melatonin Mitigates Chilling-Induced Oxidative Stress and Photosynthesis Inhibition in Tomato Plants. Antioxidants 2020, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Pradedova, E.V.; Nimaeva, O.D.; Putilina, T.E.; Semenova, N.V.; Sobenin, A.M.; Salyaev, R.K. Determination of Glutathione and Its Redox Status in Isolated Vacuoles of Red Beetroot Cells. J. Stress Physiol. Biochem. 2016, 12, 87–107. [Google Scholar]
- Palma, J.M.; Terán, F.; Contreras-Ruiz, A.; Rodríguez-Ruiz, M.; Corpas, F.J. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants 2020, 9, 878. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Balawejder, M. Changes in phenolic compounds profile and glutathione status in raspberry fruit during storage in ozone-enriched atmosphere. Postharvest Biol. Technol. 2020, 168, 111277. [Google Scholar] [CrossRef]
- Endo, H.; Miyazaki, K.; Ose, K.; Imahori, Y. Hot water treatment to alleviate chilling injury and enhance ascorbate-glutathione cycle in sweet pepper fruit during postharvest cold storage. Sci. Hortic. 2019, 257, 108715. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, S.; Zheng, M.; Peng, J.; He, X.; Han, Y.; Zhu, J.; Xiao, Q.; Lv, R.; Lin, R. Development of the HPLC-ELSD method for the determination of phytochelatins and glutathione in Perilla frutescens under cadmium stress conditions. R. Soc. Open Sci. 2018, 5, 171659. [Google Scholar] [CrossRef] [Green Version]
- Nacca, F.; Cozzolino, C.; Carillo, P.; Woodrow, P.; Fuggi, A.; Ciarmiello, L.F. An HPLC-automated Derivatization for Glutathione and Related Thiols Analysis in Brassica rapa L. Agronomy 2021, 11, 1157. [Google Scholar] [CrossRef]
- Khan, M.; Samrana, S.; Zhang, Y.; Malik, Z.; Khan, M.D.; Zhu, S. Reduced Glutathione Protects Subcellular Compartments From Pb-Induced ROS Injury in Leaves and Roots of Upland Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2020, 11, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangarajan, S.; Gopalakrishnan, V.K. Enzymatic and non-enzymatic antioxidant properties of Tylophora pauciflora wight and arn—An in vitro study. Asian J. Pharm. Clin. Res. 2013, 6, 68–71. [Google Scholar]
- Santos, A.C.F.; de Araújo, O.R.P.; Moura, F.A.; Khan, S.; Tanaka, A.A.; Santana, A.E.G.; Pividori, M.I.; Taboada-Sotomayor, M.d.P.; Goulart, M.O.F. Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sens. Actuators B Chem. 2021, 344, 130171. [Google Scholar] [CrossRef]
- Zhang, J.; Pei, W.; Xu, Q.; Jiang, H.; Chen, J. Desolvation-induced formation of recombinant camel serum albumin-based nanocomposite for glutathione colorimetric determination. Sens. Actuators B Chem. 2022, 357, 131417. [Google Scholar] [CrossRef]
- Hamad, A.; Elshahawy, M.; Negm, A.; Mansour, F.R. Analytical methods for determination of glutathione and glutathione disulfide in pharmaceuticals and biological fluids. Rev. Anal. Chem. 2019, 38, 20190019. [Google Scholar] [CrossRef]
- Giustarini, D.; Colombo, G.; Garavaglia, M.L.; Astori, E.; Portinaro, N.M.; Reggiani, F.; Badalamenti, S.; Aloisi, A.M.; Santucci, A.; Rossi, R.; et al. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic. Biol. Med. 2017, 112, 360–375. [Google Scholar] [CrossRef]
- Yılmaz, Ö.; Keser, S.; Tuzcu, M.; Guvenc, M.A.; Çetintaş, B.; Irtegun, S.; Taştan, H.; Şahin, K. A practical HPLC method to measure reduced (GSH) and oxidized (GSSG) glutathione concentrations in animal tissues. J. Anim. Vet. Adv. 2009, 8, 343–347. [Google Scholar]
- du Toit, W.J.; Lisjak, K.; Stander, M.; Prevoo, D. Using LC-MSMS To Assess Glutathione Levels in South African White Grape Juices and Wines Made with Different Levels of Oxygen. J. Agric. Food Chem. 2007, 55, 2765–2769. [Google Scholar] [CrossRef] [PubMed]
- Fracassetti, D.; Lawrence, N.; Tredoux, A.G.J.; Tirelli, A.; Nieuwoudt, H.H.; Du Toit, W.J. Quantification of glutathione, catechin and caffeic acid in grape juice and wine by a novel ultra-performance liquid chromatography method. Food Chem. 2011, 128, 1136–1142. [Google Scholar] [CrossRef]
- Kand’ár, R.; Žáková, P.; Lotková, H.; Kučera, O.; Červinková, Z. Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection. J. Pharm. Biomed. Anal. 2007, 43, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Varghese, N.; Dasgupta, S.; Sood, A.K.; Chatterjee, K. Engineering a 3D MoS2 foam using keratin exfoliated nanosheets. Chem. Eng. J. 2019, 374, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 2006, 1, 3159–3165. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, H.; Dong, Y.; Chi, Y.; Fu, F. Colorimetric determination of glutathione by using a nanohybrid composed of manganese dioxide and carbon dots. Microchim. Acta 2018, 185, 291. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Harfield, J.C.; Batchelor-McAuley, C.; Compton, R.G. Electrochemical determination of glutathione: A review. Analyst 2012, 137, 2285–2296. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Cheng, D.; Li, P.; Xu, Z.; Zhu, X.; Zhang, Y.; Li, H.; Liu, X.; Liu, M.; Yao, S. Au/Metal–Organic Framework Nanocapsules for Electrochemical Determination of Glutathione. ACS Appl. Nano Mater. 2021, 4, 4853–4862. [Google Scholar] [CrossRef]
- Liu, T.; Chen, S.; Ruan, K.; Zhang, S.; He, K.; Li, J.; Chen, M.; Yin, J.; Sun, M.; Wang, X.; et al. A handheld multifunctional smartphone platform integrated with 3D printing portable device: On-site evaluation for glutathione and azodicarbonamide with machine learning. J. Hazard. Mater. 2022, 426, 128091. [Google Scholar] [CrossRef]
- Monostori, P.; Wittmann, G.; Karg, E.; Túri, S. Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J. Chromatogr. B 2009, 877, 3331–3346. [Google Scholar] [CrossRef] [PubMed]
- Tsiasioti, A.; Tzanavaras, P.D. Determination of glutathione and glutathione disulfide using zone fluidics and fluorimetric detection. Talanta 2021, 222, 121559. [Google Scholar] [CrossRef]
- Jones, D.P.; Coates, R.J.; Flagg, E.W.; Eley, J.W.; Block, G.; Greenberg, R.S.; Gunter, E.W.; Jackson, B. Glutathione in foods listed in the national cancer institute’s health habits and history food frequency questionnaire. Nutr. Cancer 1992, 17, 57–75. [Google Scholar] [CrossRef]
- MECCHI, E.P.; PIPPEN, E.L.; LINEWEAVER, H. Origin of Hydrogen Sulfide in Heated Chicken Muscle. J. Food Sci. 1964, 29, 393–399. [Google Scholar] [CrossRef]
- Yano, H. Comparison of Oxidized and Reduced Glutathione in the Bread-Making Qualities of Rice Batter. J. Food Sci. 2012, 77, C182–C188. [Google Scholar] [CrossRef]
- Pophaly, S.D.; Singh, R.; Pophaly, S.D.; Kaushik, J.K.; Tomar, S.K. Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb. Cell Factories 2012, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Jänsch, A.; Korakli, M.; Vogel, R.F.; Gänzle, M.G. Glutathione Reductase from Lactobacillus sanfranciscensis DSM20451-T: Contribution to Oxygen Tolerance and Thiol Exchange Reactions in Wheat Sourdoughs. Appl. Environ. Microbiol. 2007, 73, 4469–4476. [Google Scholar] [CrossRef] [Green Version]
- Yano, H. Improvements in the Bread-Making Quality of Gluten-Free Rice Batter by Glutathione. J. Agric. Food Chem. 2010, 58, 7949–7954. [Google Scholar] [CrossRef]
- Verheyen, C.; Albrecht, A.; Herrmann, J.; Strobl, M.; Jekle, M.; Becker, T. The contribution of glutathione to the destabilizing effect of yeast on wheat dough. Food Chem. 2015, 173, 243–249. [Google Scholar] [CrossRef]
- Webber, V.; Dutra, S.V.; Spinelli, F.R.; Marcon, Â.R.; Carnieli, G.J.; Vanderlinde, R. Effect of glutathione addition in sparkling wine. Food Chem. 2014, 159, 391–398. [Google Scholar] [CrossRef]
- Vaimakis, V.; Roussis, I.G. Must oxygenation together with glutathione addition in the oxidation of white wine. Food Chem. 1996, 57, 419–422. [Google Scholar] [CrossRef]
- Kritzinger, E.C.; Bauer, F.F.; du Toit, W.J. Role of Glutathione in Winemaking: A Review. J. Agric. Food Chem. 2013, 61, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Teskey, G.; Abrahem, R.; Cao, R.; Gyurjian, K.; Islamoglu, H.; Lucero, M.; Martinez, A.; Paredes, E.; Salaiz, O.; Robinson, B.; et al. Chapter Five—Glutathione as a Marker for Human Disease. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 87, pp. 141–159. [Google Scholar]
- Wrotek, S.; Sobocińska, J.; Kozłowski, H.M.; Pawlikowska, M.; Jędrzejewski, T.; Dzialuk, A. New Insights into the Role of Glutathione in the Mechanism of Fever. Int. J. Mol. Sci. 2020, 21, 1393. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.M.; Eady, S.J. Glutathione: Its implications for animal health, meat quality, and health benefits of consumers %J Australian Journal of Agricultural Research. Aust. J. Agric. Res. 2005, 56, 775–780. [Google Scholar] [CrossRef]
- Becker, K.; Pons-Kühnemann, J.; Fechner, A.; Funk, M.; Gromer, S.; Gross, H.J.; Grünert, A.; Schirmer, R.H. Effects of antioxidants on glutathione levels and clinical recovery from the malnutrition syndrome kwashiorkor—A pilot study. Redox Rep. 2005, 10, 215–226. [Google Scholar] [CrossRef]
- Manley, R.C. Comparing Glutathione in the Plasma of Vegetarian and Omnivore Populations. Academic Thesis, Arizona State University, Tempe, AZ, USA, 2019. [Google Scholar]
- Venketaraman, V.; Millman, A.; Salman, M.; Swaminathan, S.; Goetz, M.; Lardizabal, A.; David, H.; Connell, N.D. Glutathione levels and immune responses in tuberculosis patients. Microb. Pathog. 2008, 44, 255–261. [Google Scholar] [CrossRef]
- Judy, L.; Minette, L.; Tommy, S.; Manpreet, K.S.; Enrique, V.T.; Devin, M.; Jessica, A.; John, D.; Cesar, O.; Nishita, P.; et al. Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to Mycobacterium tuberculosis Infection in HIV-Infected Individuals. J. Interferon Cytokine Res. 2015, 35, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Venketaraman, V.; Dayaram, Y.K.; Talaue, M.T.; Connell, N.D. Glutathione and Nitrosoglutathione in Macrophage Defense against Mycobacterium tuberculosis. Infect. Immun. 2005, 73, 1886–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariel, C.; Millman, M.S.; Yaswant, K.; Dayaram Nancy, D. Connell, and Vishwanath Venketaraman. Natural Killer Cells, Glutathione, Cytokines, and Innate Immunity Against Mycobacterium tuberculosis. J. Interferon Cytokine Res. 2008, 28, 153–165. [Google Scholar] [CrossRef]
- Polonikov, A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect. Dis. 2020, 6, 1558–1562. [Google Scholar] [CrossRef]
- Poe, F.L.; Corn, J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Med. Hypotheses 2020, 143, 109862. [Google Scholar] [CrossRef]
- De Flora, S.; Balansky, R.; La Maestra, S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J. 2020, 34, 13185–13193. [Google Scholar] [CrossRef] [PubMed]
- Lomaestro, B.M.; Malone, M. Glutathione in Health and Disease: Pharmacotherapeutic Issues. Ann. Pharmacother. 1995, 29, 1263–1273. [Google Scholar] [CrossRef]
- Schmitt, B.; Vicenzi, M.; Garrel, C.; Denis, F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol. 2015, 6, 198–205. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Temimi, A.A.; Al-Mossawi, A.-E.-B.; Al-Hilifi, S.A.; Korma, S.A.; Esatbeyoglu, T.; Rocha, J.M.; Agarwal, V. Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review. Metabolites 2023, 13, 465. https://doi.org/10.3390/metabo13040465
Al-Temimi AA, Al-Mossawi A-E-B, Al-Hilifi SA, Korma SA, Esatbeyoglu T, Rocha JM, Agarwal V. Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review. Metabolites. 2023; 13(4):465. https://doi.org/10.3390/metabo13040465
Chicago/Turabian StyleAl-Temimi, Anfal Alwan, Aum-El-Bashar Al-Mossawi, Sawsan A. Al-Hilifi, Sameh A. Korma, Tuba Esatbeyoglu, João Miguel Rocha, and Vipul Agarwal. 2023. "Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review" Metabolites 13, no. 4: 465. https://doi.org/10.3390/metabo13040465
APA StyleAl-Temimi, A. A., Al-Mossawi, A. -E. -B., Al-Hilifi, S. A., Korma, S. A., Esatbeyoglu, T., Rocha, J. M., & Agarwal, V. (2023). Glutathione for Food and Health Applications with Emphasis on Extraction, Identification, and Quantification Methods: A Review. Metabolites, 13(4), 465. https://doi.org/10.3390/metabo13040465