Non-Negligible Role of Trace Elements in Influenza Virus Infection
Abstract
:1. Introduction
2. Selenium-Deficiency Enhance the Replication of Influenza Virus
3. Zinc Show Potential Anti-Influenza Activity by Decreasing HA Stability
4. Copper Inactivate Influenza Virus by Targeting Key Viral Proteins
5. Iron Inactivate Influenza Virus by Inducing Viral Lipid Peroxidation
6. Manganese Modulate Influenza Virus PA Activity
7. Chromium Protect against Avian Influenza Virus
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- WHO. Up to 650 000 People Die of Respiratory Diseases Linked to Seasonal Flu Each Year. 2017. Available online: https://www.who.int/news/item/13-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year (accessed on 10 January 2023).
- CDC. Types of Influenza Viruses. 2022. Available online: https://www.cdc.gov/flu/about/viruses/types.htm (accessed on 10 January 2023).
- Kordyukova, L.V.; Mintaev, R.R.; Rtishchev, A.A.; Kunda, M.S.; Ryzhova, N.N.; Abramchuk, S.S.; Serebryakova, M.V.; Khrustalev, V.V.; Khrustaleva, T.A.; Poboinev, V.V.; et al. Filamentous Versus Spherical Morphology: A Case Study of the Recombinant a/Wsn/33 (H1n1) Virus. Microsc. Microanal. 2020, 26, 297–309. [Google Scholar] [CrossRef]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- FDA. Influenza (Flu) Antiviral Drugs and Related Information. 2022. Available online: https://www.fda.gov/drugs/information-drug-class/influenza-flu-antiviral-drugs-and-related-information (accessed on 10 January 2023).
- Ilyushina, N.A.; Komatsu, T.E.; Ince, W.L.; Donaldson, E.F.; Lee, N.; O’Rear, J.J.; Donnelly, R.P. Influenza a Virus Hemagglutinin Mutations Associated with Use of Neuraminidase Inhibitors Correlate with Decreased Inhibition by Anti-Influenza Antibodies. Virol. J. 2019, 16, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prachanronarong, K.L.; Canale, A.S.; Liu, P.; Somasundaran, M.; Hou, S.; Poh, Y.P.; Han, T.; Zhu, Q.; Renzette, N.; Zeldovich, K.B.; et al. Mutations in Influenza a Virus Neuraminidase and Hemagglutinin Confer Resistance against a Broadly Neutralizing Hemagglutinin Stem Antibody. J. Virol. 2019, 93, e01639-18. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.A.; Read, A.F. Why the Evolution of Vaccine Resistance Is Less of a Concern Than the Evolution of Drug Resistance. Proc. Natl. Acad. Sci. USA 2018, 115, 12878–12886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 317–374. [Google Scholar] [CrossRef]
- Islam, M.R.; Akash, S.; Jony, M.H.; Alam, M.N.; Nowrin, F.T.; Rahman, M.M.; Rauf, A.; Thiruvengadam, M. Exploring the potential function of trace elements in human health: A therapeutic perspective. Mol. Cell Biochem. 2023, 1–31. [Google Scholar] [CrossRef]
- Shayganfard, M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol. Trace Elem. Res. 2022, 200, 1032–1059. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Pan, C.F.; Lin, C.J.; Chen, S.H.; Huang, C.F.; Lee, C.C. Association between trace element concentrations and anemia in patients with chronic kidney disease: A cross-sectional population-based study. J. Investig. Med. 2019, 67, 995–1001. [Google Scholar] [CrossRef]
- Matthews, N.H.; Fitch, K.; Li, W.Q.; Morris, J.S.; Christiani, D.C.; Qureshi, A.A.; Cho, E. Exposure to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol. Biomark. Prev. 2019, 28, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Shimada, B.K.; Alfulaij, N.; Seale, L.A. The Impact of Selenium Deficiency on Cardiovascular Function. Int. J. Mol. Sci. 2021, 22, 713. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P.; Duntas, L.H. Selenium Deficiency and Thyroid Disease. In The Thyroid and Its Diseases. Selenium Deficiency and Thyroid Disease; Luster, M., Duntas, L., Wartofsky, L., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Lammi, M.J.; Qu, C. Selenium-Related Transcriptional Regulation of Gene Expression. Int. J. Mol. Sci. 2018, 19, 2665. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharm. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; Jiang, W.; Wang, X.; Shahid, S.; Saba, N.; Ahmad, M.; Dar, A.; Masood, S.U.; Imran, M.; Mustafa, A. Mechanistic Impact of Zinc Deficiency in Human Development. Front. Nutr. 2022, 9, 717064. [Google Scholar] [CrossRef]
- Zou, P.; Du, Y.; Yang, C.; Cao, Y. Trace Element Zinc and Skin Disorders. Front. Med. 2023, 9, 3868. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron Deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; von Haehling, S.; Butler, J.; Cleland, J.G.F.; Ponikowski, P.; Anker, S.D. Iron Deficiency and Cardiovascular Disease. Eur. Heart J. 2023, 44, 14–27. [Google Scholar] [CrossRef]
- Vazquez, M.; Calatayud, M.; Jadan Piedra, C.; Chiocchetti, G.M.; Velez, D.; Devesa, V. Toxic Trace Elements at Gastrointestinal Level. Food Chem. Toxicol. 2015, 86, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.M.; de Sousa, T.L.; Latif, A.L.O.; Lobo, L.S.; da Silva, G.R.; Magalhaes, H.I.F.; Lopes, M.V.; de Jesus Benevides, C.M.; Araujo, R.G.O.; Dos Santos, D.; et al. Multielement Determination (Essential and Potentially Toxic Elements) in Eye Shadows Exposed to Consumption in Brazil Using Icp Oes. Biometals 2022, 35, 1281–1297. [Google Scholar] [CrossRef]
- Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020, 12, 3198. [Google Scholar] [CrossRef]
- Sadeghsoltani, F.; Mohammadzadeh, I.; Safari, M.M.; Hassanpour, P.; Izadpanah, M.; Qujeq, D.; Moein, S.; Vaghari-Tabari, M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-Viral Response and Immune Regulation. Biol. Trace Elem. Res. 2022, 200, 2556–2571. [Google Scholar] [CrossRef]
- Djordjevic, B.; Milenkovic, J.; Stojanovic, D.; Velickov, A.; Djindjic, B.; Jevtovic Stoimenov, T. Vitamins, Microelements and the Immune System: Current Standpoint in the Fight against Coronavirus Disease 2019. Br. J. Nutr. 2022, 128, 2131–2146. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, I.; Zhang, W.; Brighton, L.E.; Carson, J.L.; Styblo, M.; Beck, M.A. Selenium Deficiency Alters Epithelial Cell Morphology and Responses to Influenza. Free Radic Biol. Med. 2007, 42, 1826–1837. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, D.; Su, J.; Zheng, R.; Ning, Z.; Zhao, M.; Zhu, B.; Li, Y. Selenium Nanoparticles Inhibited H1n1 Influenza Virus-Induced Apoptosis by Ros-Mediated Signaling Pathways. RSC Adv. 2022, 12, 3862–3870. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Kulkarni, R.R.; Yitbarek, A.; Laursen, A.; Taha-Abdelaziz, K.; Negash Alkie, T.; Barjesteh, N.; Quinteiro-Filho, W.M.; Smith, T.K.; Sharif, S. Dietary Selenium Supplementation Enhances Antiviral Immunity in Chickens Challenged with Low Pathogenic Avian Influenza Virus Subtype H9n2. Vet. Immunol. Immunopathol. 2019, 207, 62–68. [Google Scholar] [CrossRef]
- Yu, L.; Sun, L.; Nan, Y.; Zhu, L.Y. Protection from H1n1 Influenza Virus Infections in Mice by Supplementation with Selenium: A Comparison with Selenium-Deficient Mice. Biol. Trace Elem. Res. 2011, 141, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.A.; Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium Deficiency Increases the Pathology of an Influenza Virus Infection. FASEB J. 2001, 15, 1481–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The Health Benefits of Selenium in Food Animals: A Review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef]
- Ueno, H.; Hasegawa, G.; Ido, R.; Okuno, T.; Nakamuro, K. Effects of Selenium Status and Supplementary Seleno-Chemical Sources on Mouse T-Cell Mitogenesis. J. Trace Elem. Med. Biol. 2008, 22, 9–16. [Google Scholar] [CrossRef]
- Camini, F.C.; da Silva Caetano, C.C.; Almeida, L.T.; de Brito Magalhaes, C.L. Implications of Oxidative Stress on Viral Pathogenesis. Arch. Virol. 2017, 162, 907–917. [Google Scholar] [CrossRef]
- Gong, G.; Li, Y.; He, K.; Yang, Q.; Guo, M.; Xu, T.; Wang, C.; Zhao, M.; Chen, Y.; Du, M. The Inhibition of H1n1 Influenza Induced Apoptosis by Sodium Selenite through Ros-Mediated Signaling Pathways. RSC Adv. 2020, 10, 8002–8007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrimali, R.K.; Irons, R.D.; Carlson, B.A.; Sano, Y.; Gladyshev, V.N.; Park, J.M.; Hatfield, D.L. Selenoproteins Mediate T Cell Immunity through an Antioxidant Mechanism. RSC Adv. 2008, 10, 8002–8007. [Google Scholar] [CrossRef] [Green Version]
- Maraskovsky, E.; Chen, W.F.; Shortman, K. Il-2 and Ifn-Gamma Are Two Necessary Lymphokines in the Development of Cytolytic T Cells. J. Immunol. 1989, 143, 1210–1214. [Google Scholar] [CrossRef]
- Abbas, A.K.; Murphy, K.M.; Sher, A. Functional Diversity of Helper T Lymphocytes. Nature 1996, 383, 787–793. [Google Scholar] [CrossRef]
- Johnson, V.J.; Tsunoda, M.; Sharma, R.P. Increased Production of Proinflammatory Cytokines by Murine Macrophages Following Oral Exposure to Sodium Selenite but Not to Seleno-L-Methionine. Arch. Environ. Contam. Toxicol. 2000, 39, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Harthill, M. Review: Micronutrient Selenium Deficiency Influences Evolution of Some Viral Infectious Diseases. Biol. Trace Elem. Res. 2011, 143, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Dewhurst, S.; Takimoto, T.; Kim, B. Biochemical Impact of the Host Adaptation-Associated Pb2 E627k Mutation on the Temperature-Dependent Rna Synthesis Kinetics of Influenza a Virus Polymerase Complex. J. Biol. Chem. 2011, 286, 34504–34513. [Google Scholar] [CrossRef] [Green Version]
- Kuzuhara, T.; Kise, D.; Yoshida, H.; Horita, T.; Murazaki, Y.; Nishimura, A.; Echigo, N.; Utsunomiya, H.; Tsuge, H. Structural Basis of the Influenza a Virus Rna Polymerase Pb2 Rna-Binding Domain Containing the Pathogenicity-Determinant Lysine 627 Residue. J. Biol. Chem. 2009, 284, 6855–6860. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhan, D.; Li, L.; Lei, F.; Liu, B.; Liu, D.; Xiao, H.; Feng, Y.; Li, J.; Yang, B.; et al. H5n1 Avian Influenza Re-Emergence of Lake Qinghai: Phylogenetic and Antigenic Analyses of the Newly Isolated Viruses and Roles of Migratory Birds in Virus Circulation. J. Gen. Virol. 2008, 89, 697–702. [Google Scholar] [CrossRef]
- Song, R.; Li, G.; Fen, S.; Wang, Y.; Li, W.; Takeda, H.; Hasegawa, N.; Makimura, S.; Sonoda, T. Selenium Contents in the Blood of Grazing Yaks and Rangeland Plants in the Eastern Tibet-High Plateau, China. Jpn. J. Livest. Manag. 2003, 39, 105–113. [Google Scholar]
- Yu, Z.; Song, Y.; Zhou, H.; Xu, X.; Hu, Q.; Wu, H.; Zhang, A.; Zhou, Y.; Chen, J.; Dan, H.; et al. Avian Influenza (H5n1) Virus in Waterfowl and Chickens, Central China. Emerg. Infect Dis. 2007, 13, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, Y. Biogeochemical Cycling of Selenium in Chinese Environments. Appl. Geochem. 2001, 16, 1345–1351. [Google Scholar] [CrossRef]
- Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A.; Beck, M.A. Host Nutritional Selenium Status as a Driving Force for Influenza Virus Mutations. FASEB J. 2001, 15, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.A.; Handy, J.; Levander, O.A. Host Nutritional Status: The Neglected Virulence Factor. Trends Microbiol. 2004, 12, 417–423. [Google Scholar] [CrossRef]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. 2019, 10, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Sandstead, H.H.; Prasad, A.S. Zinc Intake and Resistance to H1n1 Influenza. Am. J. Public Health 2010, 100, 970–971. [Google Scholar] [CrossRef]
- Abioye, A.I.; Bromage, S.; Fawzi, W. Effect of Micronutrient Supplements on Influenza and Other Respiratory Tract Infections among Adults: A Systematic Review and Meta-Analysis. BMJ Glob. Health. 2021, 6, e003176. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tavakoli, A.; Moradi, A.; Tabarraei, A.; Bokharaei-Salim, F.; Zahmatkeshan, M.; Farahmand, M.; Javanmard, D.; Kiani, S.J.; Esghaei, M. Inhibition of H1n1 Influenza Virus Infection by Zinc Oxide Nanoparticles: Another Emerging Application of Nanomedicine. J. Biomed. Sci. 2019, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Barnard, D.L.; Wong, M.H.; Bailey, K.; Day, C.W.; Sidwell, R.W.; Hickok, S.S.; Hall, T.J. Effect of Oral Gavage Treatment with Znal42 and Other Metallo-Ion Formulations on Influenza a H5n1 and H1n1 Virus Infections in Mice. Antivir. Chem. Chemother. 2007, 18, 125–132. [Google Scholar] [CrossRef] [Green Version]
- El Habbal, M.H. Combination Therapy of Zinc and Trimethoprim Inhibits Infection of Influenza a Virus in Chick Embryo. Virol. J. 2021, 18, 113. [Google Scholar] [CrossRef]
- Wang, Z.; Burwinkel, M.; Chai, W.; Lange, E.; Blohm, U.; Breithaupt, A.; Hoffmann, B.; Twardziok, S.; Rieger, J.; Janczyk, P. Dietary Enterococcus Faecium Ncimb 10415 and Zinc Oxide Stimulate Immune Reactions to Trivalent Influenza Vaccination in Pigs but Do Not Affect Virological Response Upon Challenge Infection. PLoS ONE 2014, 9, e87007. [Google Scholar] [CrossRef] [PubMed]
- Gopal, V.; Nilsson-Payant, B.E.; French, H.; Siegers, J.Y.; Yung, W.S.; Hardwick, M.; Te Velthuis, A.J.W. Zinc-Embedded Polyamide Fabrics Inactivate Sars-Cov-2 and Influenza a Virus. ACS Appl. Mater Interfaces 2021, 13, 30317–30325. [Google Scholar] [CrossRef]
- Wessels, I.; Fischer, H.J.; Rink, L. Dietary and Physiological Effects of Zinc on the Immune System. Annu. Rev. Nutr. 2021, 41, 133–175. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and Its Role in Immunity and Inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.B.; Dao, M.C.; Hamer, D.H.; Kandel, R.; Brandeis, G.; Wu, D.; Dallal, G.E.; Jacques, P.F.; Schreiber, R.; Kong, E.; et al. Effect of Zinc Supplementation on Serum Zinc Concentration and T Cell Proliferation in Nursing Home Elderly: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2016, 103, 942–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolles, B.; Maywald, M.; Rink, L. Influence of Zinc Deficiency and Supplementation on Nk Cell Cytotoxicity. J. Funct. Foods 2018, 48, 322–328. [Google Scholar] [CrossRef]
- Rosenkranz, E.; Metz, C.H.; Maywald, M.; Hilgers, R.D.; Wessels, I.; Senff, T.; Haase, H.; Jager, M.; Ott, M.; Aspinall, R.; et al. Zinc Supplementation Induces Regulatory T Cells by Inhibition of Sirt-1 Deacetylase in Mixed Lymphocyte Cultures. Mol. Nutr. Food Res. 2016, 60, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Adaway, M.; Du, J.; Huang, S.; Sun, J.; Bidwell, J.P.; Zhou, B. Nmp4 Regulates the Innate Immune Response to Influenza a Virus Infection. Mucosal. Immunol. 2021, 14, 209–218. [Google Scholar] [CrossRef]
- Chen, S.C.; Jeng, K.S.; Lai, M.M.C. Zinc Finger-Containing Cellular Transcription Corepressor Zbtb25 Promotes Influenza Virus Rna Transcription and Is a Target for Zinc Ejector Drugs. J. Virol. 2017, 91, e00842-17. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Rawall, S.; Vijayan, V.K.; Khanna, M. Influenza a Virus Induced Apoptosis: Inhibition of DNA Laddering & Caspase-3 Activity by Zinc Supplementation in Cultured Hela Cells. Indian J. Med. Res. 2009, 129, 579–586. [Google Scholar] [PubMed]
- Seok, J.H.; Kim, H.; Lee, D.B.; An, J.S.; Kim, E.J.; Lee, J.H.; Chung, M.S.; Kim, K.H. Divalent Cation-Induced Conformational Changes of Influenza Virus Hemagglutinin. Sci. Rep. 2020, 10, 15457. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Miura, T.; Takeuchi, H. Zinc- and Ph-Dependent Conformational Transition in a Putative Interdomain Linker Region of the Influenza Virus Matrix Protein M1. Biochemistry 2003, 42, 1978–1984. [Google Scholar] [CrossRef]
- Cady, S.D.; Schmidt-Rohr, K.; Wang, J.; Soto, C.S.; Degrado, W.F.; Hong, M. Structure of the Amantadine Binding Site of Influenza M2 Proton Channels in Lipid Bilayers. Nature 2010, 463, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Puchkova, L.V.; Kiseleva, I.V.; Polishchuk, E.V.; Broggini, M.; Ilyechova, E.Y. The Crossroads between Host Copper Metabolism and Influenza Infection. Int. J. Mol. Sci. 2021, 22, 5498. [Google Scholar] [CrossRef]
- Pyo, C.W.; Shin, N.; Jung, K.I.; Choi, J.H.; Choi, S.Y. Alteration of Copper-Zinc Superoxide Dismutase 1 Expression by Influenza a Virus Is Correlated with Virus Replication. Biochem. Biophys. Res. Commun. 2014, 450, 711–716. [Google Scholar] [CrossRef]
- Rupp, J.C.; Locatelli, M.; Grieser, A.; Ramos, A.; Campbell, P.J.; Yi, H.; Steel, J.; Burkhead, J.L.; Bortz, E. Host Cell Copper Transporters Ctr1 and Atp7a Are Important for Influenza a Virus Replication. Virol. J. 2017, 14, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, A.A.; Zuniga, J.M. The Use of Copper to Help Prevent Transmission of Sars-Coronavirus and Influenza Viruses. A General Review. Diagn. Microbiol. Infect. Dis. 2020, 98, 115176. [Google Scholar] [CrossRef]
- Miyamoto, D.; Kusagaya, Y.; Endo, N.; Sometani, A.; Takeo, S.; Suzuki, T.; Arima, Y.; Nakajima, K.; Suzuki, Y. Thujaplicin-Copper Chelates Inhibit Replication of Human Influenza Viruses. Antivir. Res. 1998, 39, 89–100. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Zhu, L.M. Two Cu(ii) Coordination Polymers: Photocatalytic Cr(Vi) Reduction and Treatment Activity on Influenza a Virus Infection by Inducing Ifitm Expression. Arab. J. Chem. 2020, 13, 6662–6671. [Google Scholar] [CrossRef]
- Horie, M.; Ogawa, H.; Yoshida, Y.; Yamada, K.; Hara, A.; Ozawa, K.; Matsuda, S.; Mizota, C.; Tani, M.; Yamamoto, Y.; et al. Inactivation and Morphological Changes of Avian Influenza Virus by Copper Ions. Arch. Virol. 2008, 153, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Inactivation of Influenza a Virus on Copper Versus Stainless Steel Surfaces. Appl. Environ. Microbiol. 2007, 73, 2748–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, C.S.; Shuck, K.; Lear, J.D.; Dieckmann, G.R.; DeGrado, W.F.; Lamb, R.A.; Pinto, L.H. Cu(ii) Inhibition of the Proton Translocation Machinery of the Influenza a Virus M2 Protein. J. Biol. Chem. 1999, 274, 5474–5482. [Google Scholar] [CrossRef] [Green Version]
- McGuire, K.L.; Smit, P.; Ess, D.H.; Hill, J.T.; Harrison, R.G.; Busath, D.D. Mechanism and Kinetics of Copper Complexes Binding to the Influenza a M2 S31n and S31n/G34e Channels. Biophys. J. 2021, 120, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Hu, F.; Hong, M. Paramagnetic Cu(ii) for Probing Membrane Protein Structure and Function: Inhibition Mechanism of the Influenza M2 Proton Channel. J. Am. Chem. Soc. 2012, 134, 8693–8702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minoshima, M.; Lu, Y.; Kimura, T.; Nakano, R.; Ishiguro, H.; Kubota, Y.; Hashimoto, K.; Sunada, K. Comparison of the Antiviral Effect of Solid-State Copper and Silver Compounds. J. Hazard Mater. 2016, 312, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.; Pham, T.T.M.; Kim, M.; Kim, Y.H.; Park, J.H.; Seo, J.H.; Kim, K.M.; Ha, E. Antiviral Activities of High Energy E-Beam Induced Copper Nanoparticles against H1n1 Influenza Virus. Nanomater 2022, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Das Jana, I.; Kumbhakar, P.; Banerjee, S.; Gowda, C.C.; Kedia, N.; Kuila, S.K.; Banerjee, S.K.; Das, N.C.; Das, A.K.; Manna, I. Development of a Copper-Graphene Nanocomposite Based Transparent Coating with Antiviral Activity against Influenza Virus. BioRxiv 2020. [Google Scholar] [CrossRef]
- Dhur, A.; Galan, P.; Hannoun, C.; Huot, K.; Hercberg, S. Effects of Iron Deficiency Upon the Antibody Response to Influenza Virus in Rats. J. Nutr. Biochem. 1990, 1, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, X.; Wu, X.; Liu, J.; Yan, Y.; Wang, F.; Li, L.; Zhou, J.; Liao, M. Iron Status Is Linked to Disease Severity after Avian Influenza Virus H7n9 Infection. Asia Pac. J. Clin. Nutr. 2020, 29, 593–602. [Google Scholar] [CrossRef]
- Larin, N.M.; Gallimore, P.H. The Kinetics of Influenza-Virus Adsorption on Iron Oxide in the Process of Viral Purification and Concentration. J. Hyg. 1971, 69, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Nayak, M.; Sahoo, G.C.; Pandey, K.; Sarkar, M.C.; Ansari, Y.; Das, V.N.R.; Topno, R.K.; Bhawna; Madhukar, M.; et al. Iron Oxide Nanoparticles Based Antiviral Activity of H1n1 Influenza a Virus. J. Infect. Chemother. 2019, 25, 325–329. [Google Scholar] [CrossRef]
- Motamedi-Sedeh, F.; Saboorizadeh, A.; Khalili, I.; Sharbatdaran, M.; Wijewardana, V.; Arbabi, A. Carboxymethyl Chitosan Bounded Iron Oxide Nanoparticles and Gamma-Irradiated Avian Influenza Subtype H9n2 Vaccine to Development of Immunity on Mouse and Chicken. Vet. Med. Sci. 2022, 8, 626–634. [Google Scholar] [CrossRef]
- Qin, T.; Ma, R.; Yin, Y.; Miao, X.; Chen, S.; Fan, K.; Xi, J.; Liu, Q.; Gu, Y.; Yin, Y.; et al. Catalytic Inactivation of Influenza Virus by Iron Oxide Nanozyme. Theranostics 2019, 9, 6920–6935. [Google Scholar] [CrossRef]
- Wang, C.; Guan, Y.; Lv, M.; Zhang, R.; Guo, Z.; Wei, X.; Du, X.; Yang, J.; Li, T.; Wan, Y. Manganese Increases the Sensitivity of the Cgas-Sting Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 2018, 48, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, C.; Guan, Y.; Wei, X.; Sha, M.; Yi, M.; Jing, M.; Lv, M.; Guo, W.; Xu, J. Manganese Salts Function as Potent Adjuvants. Cell. Mol. Immunol. 2021, 18, 1222–1234. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.W.; Huffman, J.H.; Bailey, K.W.; Wong, M.H.; Nimrod, A.; Panet, A. Inhibitory Effects of Recombinant Manganese Superoxide Dismutase on Influenza Virus Infections in Mice. Antimicrob. Agents Chemother. 1996, 40, 2626–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bantle, C.M.; French, C.T.; Cummings, J.E.; Sadasivan, S.; Tran, K.; Slayden, R.A.; Smeyne, R.J.; Tjalkens, R.B. Manganese Exposure in Juvenile C57bl/6 Mice Increases Glial Inflammatory Responses in the Substantia Nigra Following Infection with H1n1 Influenza Virus. PLoS ONE 2021, 16, e0245171. [Google Scholar] [CrossRef]
- Kowalinski, E.; Zubieta, C.; Wolkerstorfer, A.; Szolar, O.H.; Ruigrok, R.W.; Cusack, S. Structural Analysis of Specific Metal Chelating Inhibitor Binding to the Endonuclease Domain of Influenza Ph1n1 (2009) Polymerase. PLoS Pathog. 2012, 8, e1002831. [Google Scholar] [CrossRef] [Green Version]
- DuBois, R.M.; Slavish, P.J.; Baughman, B.M.; Yun, M.K.; Bao, J.; Webby, R.J.; Webb, T.R.; White, S.W. Structural and Biochemical Basis for Development of Influenza Virus Inhibitors Targeting the Pa Endonuclease. PLoS Pathog. 2012, 8, e1002830. [Google Scholar] [CrossRef]
- Dias, A.; Bouvier, D.; Crepin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W. The Cap-Snatching Endonuclease of Influenza Virus Polymerase Resides in the Pa Subunit. Nature 2009, 458, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.B. New Evidence against Chromium as an Essential Trace Element. J. Nutr. 2017, 147, 2212–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khodavirdipour, A.; Haddadi, F.; Keshavarzi, S. Chromium Supplementation; Negotiation with Diabetes Mellitus, Hyperlipidemia and Depression. J. Diabetes Metab. Disord. 2020, 19, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Lashkari, S.; Habibian, M.; Jensen, S.K. A Review on the Role of Chromium Supplementation in Ruminant Nutrition-Effects on Productive Performance, Blood Metabolites, Antioxidant Status, and Immunocompetence. Biol. Trace Elem. Res. 2018, 186, 305–321. [Google Scholar] [CrossRef]
- Hajializadeh, F.; Ghahri, H.; Talebi, A. Effects of Supplemental Chromium Picolinate and Chromium Nanoparticles on Performance and Antibody Titers of Infectious Bronchitis and Avian Influenza of Broiler Chickens under Heat Stress Condition. Vet. Res. Forum. 2017, 8, 259–264. [Google Scholar] [PubMed]
- Lu, L.; Zhao, L.L.; Dong, S.Y.; Liao, X.D.; Dong, X.Y.; Zhang, L.Y.; Luo, X.G. Dietary Supplementation of Organic or Inorganic Chromium Modulates the Immune Responses of Broilers Vaccinated with Avian Influenza Virus Vaccine. Animal 2019, 13, 983–991. [Google Scholar] [CrossRef]
- Jain, S.K.; Rains, J.L.; Croad, J.L. Effect of Chromium Niacinate and Chromium Picolinate Supplementation on Lipid Peroxidation, Tnf-Alpha, Il-6, Crp, Glycated Hemoglobin, Triglycerides, and Cholesterol Levels in Blood of Streptozotocin-Treated Diabetic Rats. Free Radic. Biol. Med. 2007, 43, 1124–1131. [Google Scholar] [CrossRef] [Green Version]
- Sahin, N.; Akdemir, F.; Tuzcu, M.; Hayirli, A.; Smith, M.O.; Sahin, K. Effects of Supplemental Chromium Sources and Levels on Performance, Lipid Peroxidation and Proinflammatory Markers in Heat-Stressed Quails. Anim. Feed. Sci. Technol. 2010, 159, 143–149. [Google Scholar] [CrossRef]
- Dworzanski, W.; Sembratowicz, I.; Cholewinska, E.; Tutaj, K.; Fotschki, B.; Juskiewicz, J.; Ognik, K. Effects of Different Chromium Compounds on Hematology and Inflammatory Cytokines in Rats Fed High-Fat Diet. Front. Immunol. 2021, 12, 614000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.J.; Weng, X.G.; Wang, J.F.; Zhou, D.; Zhang, W.; Zhai, C.C.; Hou, Y.X.; Zhu, Y.H. Effects of Temperature-Humidity Index and Chromium Supplementation on Antioxidant Capacity, Heat Shock Protein 72, and Cytokine Responses of Lactating Cows. J. Anim. Sci. 2014, 92, 3026–3034. [Google Scholar] [CrossRef] [PubMed]
- Orhan, C.; Akdemir, F.; Sahin, N.; Tuzcu, M.; Komorowski, J.R.; Hayirli, A.; Sahin, K. Chromium Histidinate Protects against Heat Stress by Modulating the Expression of Hepatic Nuclear Transcription Factors in Quail. Br. Poult. Sci. 2012, 53, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Levada, K.; Guldiken, N.; Zhang, X.; Vella, G.; Mo, F.R.; James, L.P.; Haybaeck, J.; Kessler, S.M.; Kiemer, A.K.; Ott, T.; et al. Hsp72 protects against liver injury via attenuation of hepatocellular death, oxidative stress, and JNK signaling. J. Hepatol. 2018, 68, 996–1005. [Google Scholar] [CrossRef]
- Yuan, P.; Bartlam, M.; Lou, Z.; Chen, S.; Zhou, J.; He, X.; Lv, Z.; Ge, R.; Li, X.; Deng, T.; et al. Crystal Structure of an Avian Influenza Polymerase Pa(N) Reveals an Endonuclease Active Site. Nature 2009, 458, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Crepin, T.; Dias, A.; Palencia, A.; Swale, C.; Cusack, S.; Ruigrok, R.W. Mutational and Metal Binding Analysis of the Endonuclease Domain of the Influenza Virus Polymerase Pa Subunit. J. Virol. 2010, 84, 9096–9104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Klein, M.L.; LeBard, D.N.; Levine, B.G.; Liang, H.; MacDermaid, C.M.; Alfonso-Prieto, M. Magnesium-Dependent Rna Binding to the Pa Endonuclease Domain of the Avian Influenza Polymerase. J. Phys. Chem. B 2014, 118, 873–889. [Google Scholar] [CrossRef] [PubMed]
- Derry, D.C.L. Iodine: The Forgotten Weapon against Influenza Viruses. Thyroid. Sci. 2009, 4, R1–R5. [Google Scholar]
- De Aragão Tannus, C.; de Souza Dias, F.; Santana, F.B.; Dos Santos, D.; Magalhães, H.I.F.; de Souza Dias, F.; de Freitas Santos Júnior, A. Multielement Determination in Medicinal Plants and Herbal Medicines Containing Cynara Scolymus L., Harpagophytum Procumbens D.C., and Maytenus Ilifolia (Mart.) Ex Reiss from Brazil Using Icp Oes. Biol. Trace Elem. Res. 2021, 199, 2330–2341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Wang, D.; Zhao, W.; Wei, Q.; Tong, Y. Non-Negligible Role of Trace Elements in Influenza Virus Infection. Metabolites 2023, 13, 184. https://doi.org/10.3390/metabo13020184
Xu S, Wang D, Zhao W, Wei Q, Tong Y. Non-Negligible Role of Trace Elements in Influenza Virus Infection. Metabolites. 2023; 13(2):184. https://doi.org/10.3390/metabo13020184
Chicago/Turabian StyleXu, Shan, Duanyang Wang, Wenqi Zhao, Qinglin Wei, and Yigang Tong. 2023. "Non-Negligible Role of Trace Elements in Influenza Virus Infection" Metabolites 13, no. 2: 184. https://doi.org/10.3390/metabo13020184
APA StyleXu, S., Wang, D., Zhao, W., Wei, Q., & Tong, Y. (2023). Non-Negligible Role of Trace Elements in Influenza Virus Infection. Metabolites, 13(2), 184. https://doi.org/10.3390/metabo13020184