Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer
Abstract
:1. Introduction
2. NMR Metabolomics in Lung Cancer Research
No. | Aim of the Study | Sample | Participants | Altered Metabolites Associated with Lung Cancer | Ref. |
---|---|---|---|---|---|
1 | Investigating the altered metabolic pathways in lung cancer | Tissues | 12 | ↑ Alanine ↑ Lactate ↑ Glutamic acid | [9] |
2 | Investigating the metabolomic changes in primary and secondary lung cancer patients vs. control | Plasma | 256 | ↑ Glucose, ↑ Citrate, ↑ Acetate, ↑ Hydroxybutyrate, and↑ Creatinine, ↓ Pyruvate, ↓ Tyrosine, ↓ Tryptophan | [42] |
3 | Biomarker discovery to support the early diagnosis and prognosis of NSCLC | Serum | 269 | ↑ Leucine, ↑ Acetate, ↑ Glutamate, ↑ Creatine, ↑ Lactate, ↓ Adipic acid, | [43] |
4 | Investigating the metabolomic changes after complete NSCLC removal | Plasma | 74 | ↑ Lactate, ↑ Cysteine, ↑ Asparagine, ↓ Acetate | [44] |
5 | Investigating the response to immune checkpoint inhibitors in patients with NSCLC | Serum | 50 | ↑Pyruvate, ↑ Alanine | [37] |
6 | Investigating the metabolic disturbances and metabolites of diagnostic potential in lung cancer | Serum | 81 | ↓ Histidine, ↓ Glutamine, ↓ Glycine, ↓ Threonine, ↓ Alanine, ↓ Valine | [48] |
7 | Investigating lung cancer metabolic signatures in urine and assessing the diagnostic potential of this approach | Urine | 125 | ↑ N-Acetylglutamine, ↑ Hydroxyisobutyrate, ↑ Creatinine, ↓ Trigonelline, ↓ Hippurate | [49] |
8 | Investigating the variations in the metabolicprofile of lung cancer patients and healthy control | Plasma | 163 | ↑ Pyruvate, ↑ Lactate, ↓ Glucose, ↓ Citrate, ↓ Acetate, ↓ Formate, ↓ Methanol, ↓ Histidine, ↓ Glutamine, ↓ Tyrosine, ↓ Alanine | [50] |
9 | Investigating metabolomic characteristics and identifying possible biomarkers in lung tissue | Tissues | 17 | ↑ aspartate, ↑ phosphocholine, ↑ glycerophosphocholine, ↑ lactate, ↓glucose, ↓ valine | [46] |
10 | Investigate the metabolic changes in A549 human lung cells in response to cisplatin exposure | A549 Cell line | -- | ↓ unsaturated triglycerides, ↓ nucleotide sugars | [20] |
3. GC-MS Metabolomics in Lung Cancer Research
No. | Aim of the Study | Sample | Participants | Altered Metabolites Associated with Lung Cancer | Ref. |
---|---|---|---|---|---|
1 | Developing a non-invasive lung diagnostic method for detection of lung cancer | Breath | 96 | ↓ Isoprene, ↓ Acetone, ↓ Methanol | [53] |
2 | Investigating the difference of VOCs in breath exhaled by patients with lung cancer from healthy control and after resection surgery | Breath | 136 | ↑ Nonanal, ↑ Acetoin, ↑ Acetic acid, ↑ Propanoic acid | [54] |
3 | Identifying VOC biomarkers in patients with NSCLC vs. healthy smokers, non-smokers, and patients with COPD | Breath | 136 | ↑ 2-Methylpentane, ↑ Isoprene, ↓ Ethylbenzene, ↓ Styrene | [70] |
4 | Investigating the potential of GC × GC-MS for lung cancer screening | Breath | 29 | ↑ Fatty acid methyl esters, ↑ Ketones | [58] |
5 | Investigating the use of needle trap device with GC-MS for assessment of asthma, COPD and lung cancer patients VOCs | Breath | 56 | ↑ 2-Propanol, ↑ Undecane, ↑ 4-Methyl Octane, ↑ Dodecanone, ↑ 3-Amino butanoic Acid, ↑ Nonanal | [61] |
6 | Investigating the difference of VOCs in breath exhaled by patients with lung cancer from healthy control | Breath | 53 | ↑ Propane, ↑ Carbon disulfide, ↓ 2-Propenal, ↓ Ethylbenzene, ↑ Isopropyl alcohol | [62] |
7 | Studying VOCs emitted by the in vitro cultured human lung cancer cells and non-cancerous lung cells | (A549), (WI38VA13) Cell lines | -- | ↑ Decane, ↑ Heneicosane, ↓ 1-Heptanol, ↓ Heptadecane | [55] |
8 | Evaluating prognostic markers of clinical outcomes for lung cancer patients undergoing chemotherapy and/or radiation treatment | Serum | 25 | ↓ Hydroxylamine, ↓ Tridecan-1-ol, ↓ Octadecan-1-ol, ↑ Tagatose, ↑ Hydroxylamine, ↑ Glucopyranose, ↑ Threonine | [45] |
9 | Investigating the pathophysiological changes during early lung adenocarcinoma development | Plasma | 59 | ↓ Alanine, ↓ Glutamine, ↓ Glycine, ↓ 5-Hydroxytryptophan, ↓ 3-Hydroxy butyric acid, ↓ Pipecolic acid, ↓ Uric acid, ↑ Palmitic acid | [64] |
10 | Investigating the difference of primary metabolites in blood of patients with lung cancer from healthy control | Plasma | 62 | ↑ Maltose, ↑ Glycerol, ↑ Palmitic acid, ↑ Glutamic acid, ↑ Lactic acid, ↑ Ethanolamine, ↓ Lysine, ↓ Tryptophan, ↓ Histidine | [65] |
4. LC-MS Metabolomics in Lung Cancer Research
No. | Aim of the Study | Sample | Participants | Altered Metabolites Associated with Lung Cancer | Ref. |
---|---|---|---|---|---|
1 | Applying LC-MS orbitrap-based global metabolomic approach for studying NSCLC potential markers | Serum | 75 | ↓ Histidine, ↑ Carnitine, ↓ Malic acid, ↓ Methionine, ↓ pyroglutamic acid, ↓ Leucine, ↓ Tyrosine | [11] |
2 | Comparing plasma and serum metabolomes of SCLC patients undergoing treatment with standard chemotherapy | Serum Plasma | 29 | No significant difference between the two biofluids | [77] |
3 | Characterize the metabolic alteration of NSCLC and biomarkers discovery | Serum | 436 | ↑ Hypoxanthine, ↑Glycoursodeoxycholic acid, ↓ Linoleic acid, ↓ 2,4-Dihydroxybenzoic acid, ↓ Testosterone sulfate, ↓ Choline, ↓ Piperine | [78] |
4 | Development of an LC-QTOF-MS method that could discriminate NSCLC histological subtypes | Tissue | 15 | ↑ Acylcarnitines, ↑ Fatty acids, ↑ Phospholipids, ↑ Amino acids | [79] |
5 | Identifying metabolites differentially regulated in lung cancer from healthy controls | Serum | 46 | ↓ Choline, ↓ Linoleic Acid, ↑ Lysophosphatidylcholines | [80] |
6 | Investigating plasma free amino acids for detecting lung cancer | Plasma | 4020 | ↑ Proline, ↑ Isoleucine, ↑ Ornithine, ↓ Glutamine, ↓ Histidine, ↓ Tryptophan | [81] |
7 | Investigating serum organic acids for detecting lung cancer | Serum | 152 | ↑ 2-Hydroxybutyric acid, ↓ Fumaric acid, ↓ Lactic acid, ↓ Pyroglutamic acid | [86] |
8 | Investigating the role of free fatty acids in lung cancer development | Serum | 220 | ↑ Arachidonic acid, ↑ linoleic acid, ↑ Hydroxyeicosatetraenoic acids | [87] |
9 | Identifying potential plasma biomarkers for NSCL | Plasma | 211 | ↑ Cortisol, ↑ Cortisone, ↓ 4-Methoxyphenylacetic acid | [88] |
10 | Identifying potential biomarker for lung cancer early detection | Urine | 1005 | ↑ Creatine riboside, ↑N-Acetylneuraminic acid | [89] |
5. Mass Spectrometry Imaging in Lung Cancer Research
6. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Goodacre, R.; Vaidyanathan, S.; Dunn, W.B.; Harrigan, G.G.; Kell, D.B. Metabolomics by numbers: Acquiring and understanding global metabolite data. TRENDS Biotechnol. 2004, 22, 245–252. [Google Scholar] [CrossRef]
- Tebani, A.; Afonso, C.; Bekri, S. Advances in metabolome information retrieval: Turning chemistry into biology. Part I: Analytical chemistry of the metabolome. J. Inherit. Metab. Dis. 2018, 41, 379–391. [Google Scholar] [CrossRef]
- Begou, O.; Gika, H.; Wilson, I.; Theodoridis, G. Hyphenated MS-based targeted approaches in metabolomics. Analyst 2017, 142, 3079–3100. [Google Scholar] [CrossRef]
- Serag, A.; Shakkour, Z.; Halboup, A.M.; Kobeissy, F.; Farag, M.A. Sweat metabolome and proteome: Recent trends in analytical advances and potential biological functions. J. Proteom. 2021, 246, 104310. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Wang, D.; Jasbi, P.; Zhang, P.; Nagana Gowda, G.A.; Raftery, D.; Gu, H. Combining NMR and MS with Chemical Derivatization for Absolute Quantification with Reduced Matrix Effects. Anal. Chem. 2019, 91, 4055–4062. [Google Scholar] [CrossRef]
- Pan, Z.; Raftery, D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem. 2007, 387, 525–527. [Google Scholar] [CrossRef]
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2022, 10, 451. [Google Scholar]
- Hsu, P.P.; Sabatini, D.M. Cancer Cell Metabolism: Warburg and Beyond. Cell 2008, 134, 703–707. [Google Scholar] [CrossRef]
- Fan, T.W.M.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 2009, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, K.; Derveaux, E.; Graulus, G.-J.; Mesotten, L.; Thomeer, M.; Noben, J.-P.; Guedens, W.; Adriaensens, P. Glutamine Addiction and Therapeutic Strategies in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 252. [Google Scholar] [CrossRef] [PubMed]
- Klupczynska, A.; Dereziński, P.; Garrett, T.J.; Rubio, V.Y.; Dyszkiewicz, W.; Kasprzyk, M.; Kokot, Z.J. Study of early stage non-small-cell lung cancer using Orbitrap-based global serum metabolomics. J. Cancer Res. Clin. Oncol. 2017, 143, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Bayet-Robert, M.; Morvan, D.; Chollet, P.; Barthomeuf, C. Pharmacometabolomics of docetaxel-treated human MCF7 breast cancer cells provides evidence of varying cellular responses at high and low doses. Breast Cancer Res. Treat. 2010, 120, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wu, J.; Kim, S.; LoRusso, P.; Li, J. Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients. J. Clin. Pharmacol. 2019, 59, 20–34. [Google Scholar] [CrossRef]
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473. [Google Scholar] [CrossRef]
- Cameron, S.J.S.; Lewis, K.E.; Beckmann, M.; Allison, G.G.; Ghosal, R.; Lewis, P.D.; Mur, L.A.J. The metabolomic detection of lung cancer biomarkers in sputum. Lung Cancer 2016, 94, 88–95. [Google Scholar] [CrossRef]
- Wen, C.-P.; Zhang, F.; Liang, D.; Wen, C.; Gu, J.; Skinner, H.; Chow, W.-H.; Ye, Y.; Pu, X.; Hildebrandt, M.A.T.; et al. The Ability of Bilirubin in Identifying Smokers with Higher Risk of Lung Cancer: A Large Cohort Study in Conjunction with Global Metabolomic Profiling. Clin. Cancer Res. 2015, 21, 193–200. [Google Scholar] [CrossRef]
- Deja, S.; Porebska, I.; Kowal, A.; Zabek, A.; Barg, W.; Pawelczyk, K.; Stanimirova, I.; Daszykowski, M.; Korzeniewska, A.; Jankowska, R.; et al. Metabolomics provide new insights on lung cancer staging and discrimination from chronic obstructive pulmonary disease. J. Pharm. Biomed. Anal. 2014, 100, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Humpfer, E.; Spraul, M.; Carreira, I.M.; Melo, J.B.; Bernardo, J.; Gomes, A.; et al. Metabolic Profiling of Human Lung Cancer Tissue by 1H High Resolution Magic Angle Spinning (HRMAS) NMR Spectroscopy. J. Proteome Res. 2010, 9, 319–332. [Google Scholar] [CrossRef]
- Paes de Araújo, R.; Bertoni, N.; Seneda, A.L.; Felix, T.F.; Carvalho, M.; Lewis, K.E.; Hasimoto, É.N.; Beckmann, M.; Drigo, S.A.; Reis, P.P.; et al. Defining Metabolic Rewiring in Lung Squamous Cell Carcinoma. Metabolites 2019, 9, 47. [Google Scholar] [CrossRef]
- Duarte, I.F.; Ladeirinha, A.F.; Lamego, I.; Gil, A.M.; Carvalho, L.; Carreira, I.M.; Melo, J.B. Potential Markers of Cisplatin Treatment Response Unveiled by NMR Metabolomics of Human Lung Cells. Mol. Pharm. 2013, 10, 4242–4251. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.-G.; Hu, J.; Wu, X.; Xu, Y.-J. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics. Crit. Rev. Anal. Chem. 2017, 47, 325–331. [Google Scholar] [CrossRef]
- Ivanisevic, J.; Want, E.J. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data. Metabolites 2019, 9, 308. [Google Scholar] [CrossRef]
- Li, N.; Song, Y.P.; Tang, H.; Wang, Y. Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch. Biochem. Biophys. 2016, 589, 4–9. [Google Scholar] [CrossRef]
- Sun, J.; Xia, Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. 2023; in press. [Google Scholar] [CrossRef]
- Ebbels, T.M.D.; van der Hooft, J.J.J.; Chatelaine, H.; Broeckling, C.; Zamboni, N.; Hassoun, S.; Mathé, E.A. Recent advances in mass spectrometry-based computational metabolomics. Curr. Opin. Chem. Biol. 2023, 74, 102288. [Google Scholar] [CrossRef]
- Yu, H.; Low, B.; Zhang, Z.; Guo, J.; Huan, T. Quantitative challenges and their bioinformatic solutions in mass spectrometry-based metabolomics. TrAC Trends Anal. Chem. 2023, 161, 117009. [Google Scholar] [CrossRef]
- Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef]
- Vignoli, A.; Risi, E.; McCartney, A.; Migliaccio, I.; Moretti, E.; Malorni, L.; Luchinat, C.; Biganzoli, L.; Tenori, L. Precision Oncology via NMR-Based Metabolomics: A Review on Breast Cancer. Int. J. Mol. Sci. 2021, 22, 4687. [Google Scholar] [CrossRef] [PubMed]
- Casadei-Gardini, A.; Del Coco, L.; Marisi, G.; Conti, F.; Rovesti, G.; Ulivi, P.; Canale, M.; Frassineti, G.L.; Foschi, F.G.; Longo, S.; et al. (1)H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma Stages. Cancers 2020, 12, 241. [Google Scholar] [CrossRef]
- Bliziotis, N.G.; Engelke, U.F.H.; Aspers, R.; Engel, J.; Deinum, J.; Timmers, H.; Wevers, R.A.; Kluijtmans, L.A.J. A comparison of high-throughput plasma NMR protocols for comparative untargeted metabolomics. Metabolomics 2020, 16, 64. [Google Scholar] [CrossRef]
- Serkova, N.J.; Davis, D.M.; Steiner, J.; Agarwal, R. Quantitative NMR-Based Metabolomics on Tissue Biomarkers and Its Translation into In Vivo Magnetic Resonance Spectroscopy. Methods Mol. Biol. 2019, 1978, 369–387. [Google Scholar] [CrossRef]
- Vignoli, A.; Paciotti, S.; Tenori, L.; Eusebi, P.; Biscetti, L.; Chiasserini, D.; Scheltens, P.; Turano, P.; Teunissen, C.; Luchinat, C.; et al. Fingerprinting Alzheimer’s disease by 1H nuclear magnetic resonance spectroscopy of cerebrospinal fluid. J. Proteome Res. 2020, 19, 1696–1705. [Google Scholar] [CrossRef]
- Graca, G.; Duarte, I.F.; Goodfellow, B.J.; Carreira, I.M.; Couceiro, A.B.; Domingues, M.d.R.; Spraul, M.; Tseng, L.-H.; Gil, A.M. Metabolite profiling of human amniotic fluid by hyphenated nuclear magnetic resonance spectroscopy. Anal. Chem. 2008, 80, 6085–6092. [Google Scholar] [CrossRef]
- Maher, A.D.; Cloarec, O.; Patki, P.; Craggs, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Dynamic biochemical information recovery in spontaneous human seminal fluid reactions via 1H NMR kinetic statistical total correlation spectroscopy. Anal. Chem. 2009, 81, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, G.; Noor, S.O.; Ridgway, K.; Scovell, L.; Jamieson, C.; Johnson, I.T.; Colquhoun, I.J.; Kemsley, E.K.; Narbad, A. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 2011, 10, 4208–4218. [Google Scholar] [CrossRef]
- Tiziani, S.; Kang, Y.; Choi, J.S.; Roberts, W.; Paternostro, G. Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat. Commun. 2011, 2, 545. [Google Scholar] [CrossRef]
- Ghini, V.; Laera, L.; Fantechi, B.; Monte, F.D.; Benelli, M.; McCartney, A.; Leonardo, T.; Luchinat, C.; Pozzessere, D. Metabolomics to Assess Response to Immune Checkpoint Inhibitors in Patients with Non-Small-Cell Lung Cancer. Cancers 2020, 12, 3574. [Google Scholar] [CrossRef]
- Ludwig, C.; Ward, D.R.; Martin, A.J.; Viant, M.R.; Ismail, T.; Johnson, P.J.; Wakelam, M.J.; Günther, U.L. Fast Targeted Multidimensional NMR Metabolomics of Colorectal Cancer. Magn. Reson. Chem. 2009, 47, S68–S73. [Google Scholar] [CrossRef]
- Serag, A.; Salem, M.A.; Gong, S.; Wu, J.-L.; Farag, M.A. Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites 2023, 13, 424. [Google Scholar] [CrossRef]
- Raja, G.; Jung, Y.; Jung, S.H.; Kim, T.-J. 1H-NMR-based metabolomics for cancer targeting and metabolic engineering—A review. Process. Biochem. 2020, 99, 112–122. [Google Scholar] [CrossRef]
- Chung, Y.-H.; Hung, T.-H.; Yu, C.-F.; Tsai, C.-K.; Weng, C.-C.; Jhang, F.; Chen, F.-H.; Lin, G. Glycolytic Plasticity of Metastatic Lung Cancer Captured by Noninvasive 18F-FDG PET/CT and Serum 1H-NMR Analysis: An Orthotopic Murine Model Study. Metabolites 2023, 13, 110. [Google Scholar] [CrossRef]
- Sarlinova, M.; Baranovicova, E.; Skaličanová, M.; Dzian, A.; Petras, M.; Lehotský, J.; Kalenska, D.; Racay, P.; Matáková, T.; Halasova, E. Metabolomic Profiling of Blood Plasma of Patients with Lung Cancer and Malignant Tumors with Metastasis in the Lungs Showed Similar Features and Promising Statistical Discrimination Against Controls. Neoplasma 2021, 68, 852–860. [Google Scholar] [CrossRef]
- Puchades-Carrasco, L.; Jantus-Lewintre, E.; Pérez-Rambla, C.; García-García, F.; Lucas, R.; Calabuig, S.; Blasco, A.; Dopazo, J.; Camps, C.; Pineda-Lucena, A. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget 2016, 7, 12904–12916. [Google Scholar] [CrossRef] [PubMed]
- Derveaux, E.; Geubbelmans, M.; Criel, M.; Demedts, I.; Himpe, U.; Tournoy, K.; Vercauter, P.; Johansson, E.; Valkenborg, D.; Vanhove, K.; et al. NMR-Metabolomics Reveals a Metabolic Shift after Surgical Resection of Non-Small Cell Lung Cancer. Cancers 2023, 15, 2127. [Google Scholar] [CrossRef]
- Hao, D.; Sarfaraz, M.O.; Farshidfar, F.; Bebb, D.G.; Lee, C.Y.; Card, C.M.; David, M.; Weljie, A.M. Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment. Metabolomics 2016, 12, 58. [Google Scholar] [CrossRef]
- Chen, W.; Zu, Y.; Huang, Q.; Chen, F.; Wang, G.; Lan, W.; Bai, C.; Lu, S.; Yue, Y.; Deng, F. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Magn. Reson. Med. 2011, 66, 1531–1540. [Google Scholar] [CrossRef]
- Vermathen, M.; von Tengg-Kobligk, H.; Hungerbühler, M.N.; Vermathen, P.; Ruprecht, N. 1H HR-MAS NMR Based Metabolic Profiling of Lung Cancer Cells with Induced and De-Induced Cisplatin Resistance to Reveal Metabolic Resistance Adaptations. Molecules 2021, 26, 6766. [Google Scholar] [CrossRef]
- Singh, A.; Prakash, V.; Gupta, N.; Kumar, A.; Kant, R.; Kumar, D. Serum Metabolic Disturbances in Lung Cancer Investigated through an Elaborative NMR-Based Serum Metabolomics Approach. ACS Omega 2022, 7, 5510–5520. [Google Scholar] [CrossRef]
- Carrola, J.; Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Urine. J. Proteome Res. 2011, 10, 221–230. [Google Scholar] [CrossRef]
- Rocha, C.M.; Carrola, J.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Blood Plasma. J. Proteome Res. 2011, 10, 4314–4324. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.-A.; Kumar, U.; Chen, D.D. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta 2017, 996, 1–9. [Google Scholar] [CrossRef]
- Gashimova, E.; Osipova, A.; Temerdashev, A.; Porkhanov, V.; Polyakov, I.; Perunov, D.; Dmitrieva, E. Exhaled breath analysis using GC-MS and an electronic nose for lung cancer diagnostics. Anal. Methods 2021, 13, 4793–4804. [Google Scholar] [CrossRef] [PubMed]
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive Detection of Lung Cancer by Analysis of Exhaled Breath. BMC Cancer 2009, 9, 348. [Google Scholar] [CrossRef]
- Itoh, T.; Miwa, T.; Tsuruta, A.; Akamatsu, T.; Izu, N.; Shin, W.; Park, J.; Hida, T.; Eda, T.; Setoguchi, Y. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns. Sensors 2016, 16, 1891. [Google Scholar] [CrossRef]
- Thriumani, R.; Zakaria, A.; Jeffree, A.I.; Hasyim, Y.Z.H.-Y.; Helmy, K.M.; Omar, M.I.; Shakaff, A.Y.; Kamarudin, L.M. A Study on VOCs Released by Lung Cancer Cell Line Using GCMS-SPME. Procedia Chem. 2016, 20, 1–7. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Serag, A.; Abdel Shakour, Z.T.; Farag, M. Novel trends and applications of multidimensional chromatography in the analysis of food, cosmetics and medicine bearing essential oils. Talanta 2021, 223, 121710. [Google Scholar] [CrossRef]
- Amaral, M.S.S.; Nolvachai, Y.; Marriott, P.J. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal. Chem. 2020, 92, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Pesesse, R.; Stefanuto, P.H.; Schleich, F.; Louis, R.; Focant, J.F. Multimodal chemometric approach for the analysis of human exhaled breath in lung cancer patients by TD-GC × GC-TOFMS. J. Chromatogr. B 2019, 1114–1115, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, X.; Chen, J.; Wang, H.; Cheng, T.; Chen, K.; Xu, S. Analysis of human breath samples of lung cancer patients and healthy controls with solid-phase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC × GC). Anal. Methods 2014, 6, 6841–6849. [Google Scholar] [CrossRef]
- Silva, C.; Passos, M.; Câmara, J.S. Solid Phase Microextraction, Mass Spectrometry and Metabolomic Approaches for Detection of Potential Urinary Cancer Biomarkers—A Powerful Strategy for Breast Cancer Diagnosis. Talanta 2012, 89, 360–368. [Google Scholar] [CrossRef]
- Monedeiro, F.; Monedeiro-Milanowski, M.; Ratiu, I.-A.; Brożek, B.; Ligor, T.; Buszewski, B. Needle Trap Device-GC-MS for Characterization of Lung Diseases Based on Breath VOC Profiles. Molecules 2021, 26, 1789. [Google Scholar] [CrossRef]
- Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME–GC–TOF/MS and chemometrics. J. Chromatogr. B 2011, 879, 3360–3366. [Google Scholar] [CrossRef]
- Peng, G.; Trock, E.; Haick, H. Detecting Simulated Patterns of Lung Cancer Biomarkers by Random Network of Single-Walled Carbon Nanotubes Coated with Nonpolymeric Organic Materials. Nano Lett. 2008, 8, 3631–3635. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Gao, L.; Wen, Z.; Wu, C.; Tan, C.S.; Toh, W.Z.; Ong, C.N. Exploratory investigation of plasma metabolomics in human lung adenocarcinoma. Mol. BioSyst. 2013, 9, 2370–2378. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Taylor, S.L.; Barupal, D.K.; Taguchi, A.; Wohlgemuth, G.; Wikoff, W.R.; Yoneda, K.Y.; Gandara, D.R.; Hanash, S.M.; Kim, K.; et al. Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry. Metabolites 2015, 5, 192–210. [Google Scholar] [CrossRef]
- Yu, L.; Li, K.; Zhang, X. Next-Generation Metabolomics in Lung Cancer Diagnosis, Treatment and Precision Medicine: Mini Review. Oncotarget 2017, 8, 115774–115786. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.2. [Google Scholar] [CrossRef]
- Fahrmann, J.F.; Kim, K.; DeFelice, B.C.; Taylor, S.L.; Gandara, D.R.; Yoneda, K.Y.; Cooke, D.T.; Fiehn, O.; Kelly, K.; Miyamoto, S. Investigation of Metabolomic Blood Biomarkers for Detection of Adenocarcinoma Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1716–1723. [Google Scholar] [CrossRef]
- Hori, S.; Nishiumi, S.; Kobayashi, K.; Shinohara, M.; Hatakeyama, Y.; Kotani, Y.; Hatano, N.; Maniwa, Y.; Nishio, W.; Bamba, T.; et al. A metabolomic approach to lung cancer. Lung Cancer 2011, 74, 284–292. [Google Scholar] [CrossRef]
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef]
- Zhou, J.; Zhong, L. Applications of Liquid Chromatography-Mass Spectrometry Based Metabolomics in Predictive and Personalized Medicine. Front. Mol. Biosci. 2022, 9, 1049016. [Google Scholar] [CrossRef]
- George, R.; Haywood, A.; Khan, S.; Radovanovic, M.; Simmonds, J.; Norris, R. Enhancement and Suppression of Ionization in Drug Analysis Using HPLC-MS/MS in Support of Therapeutic Drug Monitoring: A Review of Current Knowledge of Its Minimization and Assessment. Ther. Drug Monit. 2018, 40, 471. [Google Scholar] [CrossRef]
- Noreldeen, H.A.A.; Liu, X.; Xu, G. Metabolomics of lung cancer: Analytical platforms and their applications. J. Sep. Sci. 2020, 43, 120–133. [Google Scholar] [CrossRef]
- Pezzatti, J.; Boccard, J.; Codesido, S.; Gagnebin, Y.; Joshi, A.; Picard, D.; González-Ruiz, V.; Rudaz, S. Implementation of liquid chromatography–high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal. Chim. Acta 2020, 1105, 28–44. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, X.; Wang, H. Untargeted metabolomics and lipidomics identified four subtypes of small cell lung cancer. Metabolomics 2022, 19, 3. [Google Scholar] [CrossRef]
- Brunelli, L.; Caiola, E.; Marabese, M.; Broggini, M.; Pastorelli, R. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget 2014, 5, 4722–4731. [Google Scholar] [CrossRef]
- Wedge, D.C.; Allwood, J.W.; Dunn, W.; Vaughan, A.A.; Simpson, K.; Brown, M.; Priest, L.; Blackhall, F.H.; Whetton, A.D.; Dive, C.; et al. Is Serum or Plasma More Appropriate for Intersubject Comparisons in Metabolomic Studies? An Assessment in Patients with Small-Cell Lung Cancer. Anal. Chem. 2011, 83, 6689–6697. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, K.; Ji, Z.; Wang, Y.; Yin, T.; Long, T.; Shen, Y.; Cheng, L. Serum untargeted metabolomics reveal metabolic alteration of non-small cell lung cancer and refine disease detection. Cancer Sci. 2023, 114, 680–689. [Google Scholar] [CrossRef]
- Ciborowski, M.; Kisluk, J.; Pietrowska, K.; Samczuk, P.; Parfieniuk, E.; Kowalczyk, T.; Kozlowski, M.; Kretowski, A.; Niklinski, J. Development of LC-QTOF-MS method for human lung tissue fingerprinting. A preliminary application to nonsmall cell lung cancer. Electrophoresis 2017, 38, 2304–2312. [Google Scholar] [CrossRef]
- Li, Y.; Song, X.; Zhao, X.; Zou, L.; Xu, G. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B 2014, 966, 147–153. [Google Scholar] [CrossRef]
- Shingyoji, M.; Iizasa, T.; Higashiyama, M.; Imamura, F.; Saruki, N.; Imaizumi, A.; Yamamoto, H.; Daimon, T.; Tochikubo, O.; Mitsushima, T.; et al. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer. BMC Cancer 2013, 13, 77. [Google Scholar] [CrossRef]
- Liu, K.; Li, J.; Long, T.; Wang, Y.; Yin, T.; Long, J.; Shen, Y.; Cheng, L. Changes in serum amino acid levels in non-small cell lung cancer: A case-control study in Chinese population. PeerJ 2022, 10, e13272. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, S.H.; Ryu, J.-S.; Lee, J.E.; Kim, Y.C.; Lee, M.K.; Jang, T.W.; Lee, S.-Y.; Nakamura, H.; Nishikata, N.; et al. The performance of a novel amino acid multivariate index for detecting lung cancer: A case control study in Korea. Lung Cancer 2015, 90, 522–527. [Google Scholar] [CrossRef]
- Nakayama, A.; Imaizumi, A.; Yoshida, H. Methods for Absolute Quantification of Human Plasma Free Amino Acids by High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry Using Precolumn Derivatization. In Amino Acid Analysis; Humana: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- An, Z.; Hu, T.; Lv, Y.; Li, P.; Liu, L. Targeted amino acid and related amines analysis based on iTRAQ®-LC-MS/MS for discovering potential hepatotoxicity biomarkers. J. Pharm. Biomed. Anal. 2020, 178, 112812. [Google Scholar] [CrossRef]
- Klupczynska, A.; Plewa, S.; Dyszkiewicz, W.; Kasprzyk, M.; Sytek, N.; Kokot, Z.J. Determination of low-molecular-weight organic acids in non-small cell lung cancer with a new liquid chromatography–tandem mass spectrometry method. J. Pharm. Biomed. Anal. 2016, 129, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mazzone, P.J.; Cata, J.P.; Kurz, A.; Bauer, M.; Mascha, E.J.; Sessler, D.I. Serum Free Fatty Acid Biomarkers of Lung Cancer. Chest 2014, 146, 670–679. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, S.; Zhang, J.; Chen, M.; Xia, Y.; Shu, Y.; Guo, R. Cortisol, cortisone, and 4-methoxyphenylacetic acid as potential plasma biomarkers for early detection of non-small cell lung cancer. Int. J. Biol. Markers 2018, 33, 314–320. [Google Scholar] [CrossRef]
- Mathé, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 2014, 74, 3259–3270. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, Y.; Miura, D. MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals. Metabolites 2014, 4, 319–346. [Google Scholar] [CrossRef]
- Goto-Inoue, N.; Hayasaka, T.; Zaima, N.; Setou, M. Imaging mass spectrometry for lipidomics. Biochim. Biophys. Acta 2011, 1811, 961–969. [Google Scholar] [CrossRef]
- Marien, E.; Meister, M.; Muley, T.; Gomez Del Pulgar, T.; Derua, R.; Spraggins, J.M.; Van de Plas, R.; Vanderhoydonc, F.; Machiels, J.; Binda, M.M.; et al. Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget 2016, 7, 12582–12597. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Y.; Zhou, D.; Li, Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci. Rep. 2014, 4, 5959. [Google Scholar] [CrossRef] [PubMed]
- Muranishi, Y.; Sato, T.; Ito, S.; Satoh, J.; Yoshizawa, A.; Tamari, S.; Ueda, Y.; Yutaka, Y.; Menju, T.; Nakamura, T.; et al. The Ratios of monounsaturated to saturated phosphatidylcholines in lung adenocarcinoma microenvironment analyzed by Liquid Chromatography-Mass spectrometry and imaging Mass spectrometry. Sci. Rep. 2019, 9, 8916. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.E.; Dworski, S.; Canals, D.; Casas, J.; Fabrias, G.; Schoenling, D.; Levade, T.; Denlinger, C.; Hannun, Y.A.; Medin, J.A.; et al. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal. Chem. 2014, 86, 8303–8311. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J.M.; Freitag, H.; Hartmann, J.S.; Niehaus, K.; Galanis, M.; Griesshammer, M.; Kellner, U.; Bednarz, H. Subtyping non-small cell lung cancer by histology-guided spatial metabolomics. J. Cancer Res. Clin. Oncol. 2022, 148, 351–360. [Google Scholar] [CrossRef]
- Lee, G.K.; Lee, H.S.; Park, Y.S.; Lee, J.H.; Lee, S.C.; Lee, J.H.; Lee, S.J.; Shanta, S.R.; Park, H.M.; Kim, H.R.; et al. Lipid MALDI profile classifies non-small cell lung cancers according to the histologic type. Lung Cancer 2012, 76, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Sun, N.; Zens, P.; Kunzke, T.; Buck, A.; Prade, V.M.; Wang, J.; Wang, Q.; Hu, R.; Feuchtinger, A.; et al. Spatial metabolomics for evaluating response to neoadjuvant therapy in non-small cell lung cancer patients. Cancer Commun. 2022, 42, 517–535. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, A.H. Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer. Metabolites 2023, 13, 1037. https://doi.org/10.3390/metabo13101037
Almalki AH. Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer. Metabolites. 2023; 13(10):1037. https://doi.org/10.3390/metabo13101037
Chicago/Turabian StyleAlmalki, Atiah H. 2023. "Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer" Metabolites 13, no. 10: 1037. https://doi.org/10.3390/metabo13101037
APA StyleAlmalki, A. H. (2023). Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer. Metabolites, 13(10), 1037. https://doi.org/10.3390/metabo13101037