Exercise-Induced N-Lactoylphenylalanine Predicts Adipose Tissue Loss during Endurance Training in Overweight and Obese Humans
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delahanty, L.M. Weight loss in the prevention and treatment of diabetes. Prev. Med. 2017, 104, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T.P.J. Sources of Inter-individual Variability in the Therapeutic Response of Blood Glucose Control to Exercise in Type 2 Diabetes: Going Beyond Exercise Dose. Front. Physiol. 2018, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, G.; Kennedy, A.; Andersen, G.S.; Carr, B.; Cleary, S.; Durkan, E.; Davis, H.; Færch, K.; Fitzpatrick, P.; Kenny, H.; et al. Phenotypic Responses to a Lifestyle Intervention Do Not Account for Inter-Individual Variability in Glucose Tolerance for Individuals at High Risk of Type 2 Diabetes. Front. Physiol. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, J.P.; Hetherington-Rauth, M.; Júdice, P.B.; Correia, I.R.; Rosa, G.B.; Henriques-Neto, D.; Melo, X.; Silva, A.M.; Sardinha, L.B. Interindividual Variability in Fat Mass Response to a 1-Year Randomized Controlled Trial With Different Exercise Intensities in Type 2 Diabetes: Implications on Glycemic Control and Vascular Function. Front. Physiol. 2021, 12, 698971. [Google Scholar] [CrossRef] [PubMed]
- Maurer, J.; Hoene, M.; Weigert, C. Signals from the Circle: Tricarboxylic Acid Cycle Intermediates as Myometabokines. Metabolites 2021, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.R.; Kwon, K.S. Potential Roles of Exercise-Induced Plasma Metabolites Linking Exercise to Health Benefits. Front. Physiol. 2020, 11, 602748. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Gerszten, R.E.; Tylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.S.; Addie, R.; Merkx, R.; Fish, A.; Mahakena, S.; Bleijerveld, O.B.; Altelaar, M.; Jlst, L.I.; Wanders, R.J.; Borst, P.; et al. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc. Natl. Acad. Sci. USA 2015, 112, 6601–6606. [Google Scholar] [CrossRef]
- Li, V.L.; He, Y.; Contrepois, K.; Liu, H.; Kim, J.T.; Wiggenhorn, A.L.; Tanzo, J.T.; Tung, A.S.-H.; Lyu, X.; Zushin, P.-J.H.; et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature 2022, 606, 785–790. [Google Scholar] [CrossRef]
- Lund, J.; Clemmensen, C.; Schwartz, T.W. Outrunning obesity with Lac-Phe? Cell Metab. 2022, 34, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Schneeweiss, P.; Randrianarisoa, E.; Schnauder, G.; Kappler, L.; Machann, J.; Schick, F.; Fritsche, A.; Heni, M.; Birkenfeld, A.; et al. Response of Mitochondrial Respiration in Adipose Tissue and Muscle to 8 Weeks of Endurance Exercise in Obese Subjects. J. Clin. Endocrinol. Metab. 2020, 105, dgaa571. [Google Scholar] [CrossRef] [PubMed]
- Machann, J.; Thamer, C.; Stefan, N.; Schwenzer, N.F.; Kantartzis, K.; Häring, H.U.; Claussen, C.D.; Fritsche, A.; Schick, F. Follow-up Whole-Body Assessment of Adipose Tissue Compartments during a Lifestyle Intervention in a Large Cohort at Increased Risk for Type 2 Diabetes. Radiology 2010, 257, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Würslin, C.; Machann, J.; Rempp, H.; Claussen, C.; Yang, B.; Schick, F. Topography mapping of whole body adipose tissue using a fully automated and standardized procedure. J. Magn. Reson. Imaging 2010, 31, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zeng, Z.; Chen, A.; Lu, X.; Zhao, C.; Hu, C.; Zhou, L.; Liu, X.; Wang, X.; Hou, X.; et al. Comprehensive Strategy to Construct In-House Database for Accurate and Batch Identification of Small Molecular Metabolites. Anal. Chem. 2018, 90, 7635–7643. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.F.; Islam, H.; Hazell, T.J. The emerging role of lactate as a mediator of exercise-induced appetite suppression. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E814–E819. [Google Scholar] [CrossRef] [PubMed]
- Schultes, B.; Schmid, S.M.; Wilms, B.; Jauch-Chara, K.; Oltmanns, K.M.; Hallschmid, M. Lactate infusion during euglycemia but not hypoglycemia reduces subsequent food intake in healthy men. Appetite 2012, 58, 818–821. [Google Scholar] [CrossRef] [PubMed]
Pre-Training | Post-Training | p-Value | |
---|---|---|---|
Sex | 14 female/8 male | - | |
Age [years] | 30 ± 8.9 (19–59) | - | |
VO2peak/body mass [mL/(kg ∗ min)] | 25.0 ± 4.2 (18.3–32.3) | 26.5 ± 4.7 (16.0–34.9) | 0.042 * |
BMI [kg/m2] | 31.7 ± 4.5 (27.5–45.5) | 31.3 ± 4.7 (26.3–45.2) | 0.006 * |
Subcutaneous abdominal adipose tissue [L] | 15.3 ± 5.9 (8.4–32.2) | 14.7 ± 6.1 (7.2–33.1) | 0.006 * |
Visceral adipose tissue [L] | 3.53 ± 1.65 (0.81–7.26) | 3.38 ± 1.57 (0.94–6.68) | 0.012 * |
Lean tissue legs [L] | 17.9 ± 4.1 (12.3–27.5) | 18.2 ± 3.9 (13.2–27.7) | 0.034 * |
Lean tissue arms [L] | 9.73 ± 1.96 (7.31–14.27) | 9.85 ± 2.26 (7.19–14.42) | 0.551 |
Glucose fasting [mmol/L] | 5.09 ± 0.40 (4.61–6.00) | 5.02 ± 0.40 (4.33–5.61) | 0.336 |
Training Fold Change | Lac-Phe Pre-Training Acute | Lac-Phe Post-Training Acute | Lactate Pre-Training Acute | Lactate Post-Training Acute |
---|---|---|---|---|
Subcutaneous abdominal adipose tissue [L] | Beta = −0.62 p = 0.004 * | Beta = −0.52 p = 0.028 * | Beta = −0.60 p = 0.008 * | Beta = −0.39 p = 0.102 |
Visceral adipose tissue [L] | Beta = −0.42 p = 0.075 | Beta = −0.48 p = 0.037 * | Beta = −−0.23 p = 0.372 | Beta = −0.37 p = 0.123 |
BMI [kg/m2] | Beta = −0.25 p = 0.279 | Beta = −0.15 p = 0.538 | Beta = −0.13 p = 0.600 | Beta = 0.07 p = 0.784 |
Lean tissue legs [L] | Beta = 0.37 p = 0.079 | Beta = 0.22 p = 0.357 | Beta = 0.42 p = 0.047* | Beta = 0.47 p = 0.036 * |
Lean tissue arms [L] | Beta = 0.14 p = 0.584 | Beta = 0.08 p = 0.758 | Beta = 0.27 p = 0.279 | Beta = 0.08 p = 0.759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoene, M.; Zhao, X.; Machann, J.; Birkenfeld, A.L.; Heni, M.; Peter, A.; Niess, A.; Moller, A.; Lehmann, R.; Xu, G.; et al. Exercise-Induced N-Lactoylphenylalanine Predicts Adipose Tissue Loss during Endurance Training in Overweight and Obese Humans. Metabolites 2023, 13, 15. https://doi.org/10.3390/metabo13010015
Hoene M, Zhao X, Machann J, Birkenfeld AL, Heni M, Peter A, Niess A, Moller A, Lehmann R, Xu G, et al. Exercise-Induced N-Lactoylphenylalanine Predicts Adipose Tissue Loss during Endurance Training in Overweight and Obese Humans. Metabolites. 2023; 13(1):15. https://doi.org/10.3390/metabo13010015
Chicago/Turabian StyleHoene, Miriam, Xinjie Zhao, Jürgen Machann, Andreas L. Birkenfeld, Martin Heni, Andreas Peter, Andreas Niess, Anja Moller, Rainer Lehmann, Guowang Xu, and et al. 2023. "Exercise-Induced N-Lactoylphenylalanine Predicts Adipose Tissue Loss during Endurance Training in Overweight and Obese Humans" Metabolites 13, no. 1: 15. https://doi.org/10.3390/metabo13010015
APA StyleHoene, M., Zhao, X., Machann, J., Birkenfeld, A. L., Heni, M., Peter, A., Niess, A., Moller, A., Lehmann, R., Xu, G., & Weigert, C. (2023). Exercise-Induced N-Lactoylphenylalanine Predicts Adipose Tissue Loss during Endurance Training in Overweight and Obese Humans. Metabolites, 13(1), 15. https://doi.org/10.3390/metabo13010015