The Legend of ATP: From Origin of Life to Precision Medicine
Abstract
:1. Introduction
2. Prebiotic Synthesis of ATP
3. ATP as the Cofactor of Primitive Proteins
4. Why ATP? ATP Facilitated the Origin of Protein
5. Why ATP? ATP as a Hydrotrope
6. Implications of ATP in Aging-Related Diseases
7. Implications of ATP in Precision Medicine of Breast Cancer
8. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharov, A.A. Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int. J. Mol. Sci. 2009, 10, 1838–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharov, A.A. Coenzyme world model of the origin of life. Biosystems 2016, 144, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beis, I.; Newsholme, E.A. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 1975, 152, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Langen, P.; Hucho, F. Karl Lohmann and the discovery of ATP. Angew. Chem. Int. Ed. Engl. 2008, 47, 1824–1827. [Google Scholar] [CrossRef] [PubMed]
- Jewell, J.B.; Sowders, J.M.; He, R.; Willis, M.A.; Gang, D.R.; Tanaka, K. Extracellular ATP shapes a defense–related transcriptome both independently and along with other defense signaling pathways. Plant Physiol. 2019, 179, 1144–1158. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Kumar, R.; Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 2020, 120, 4766–4805. [Google Scholar] [CrossRef]
- Pasek, M.A.; Kee, T.P.; Bryant, D.E.; Pavlov, A.A.; Lunine, J.I. Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew. Chem. Int. Ed. Engl. 2008, 47, 7918–7920. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, Y.; Watanabe, H.; Saitoh, M.; Namba, T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 1991, 352, 516–519. [Google Scholar] [CrossRef]
- Lambert, J.F. Adsorption and polymerization of amino acids on mineral surfaces: A review. Orig. Life Evol. Biosph. 2008, 38, 211–242. [Google Scholar] [CrossRef]
- Akouche, M.; Jaber, M.; Maurel, M.C.; Lambert, J.F.; Georgelin, T. Phosphoribosyl pyrophosphate: A molecular vestige of the origin of life on minerals. Angew. Chem. Int. Ed. Engl. 2017, 56, 7920–7923. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, Y. Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Orig. Life Evol. Biosph. 1999, 29, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Fan, C.; Wan, R.; Tong, C.; Miao, Z.; Chen, J.; Zhao, Y. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions. Orig. Life Evol. Biosph. 2002, 32, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Benner, S.A. Abiotic synthesis of nucleoside 5′–triphosphates with nickel borate and cyclic trimetaphosphate (CTMP). Astrobiology 2021, 21, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.; Uchiyama, A.; Brown, H. The distribution of nickel, cobalt, gallium, palladium and gold in iron meteorites. Geochim. Cosmochim. Acta 1951, 2, 1–25. [Google Scholar] [CrossRef]
- Bar–Even, A.; Flamholz, A.; Noor, E.; Milo, R. Rethinking glycolysis: On the biochemical logic of metabolic pathways. Nat. Chem. Biol. 2012, 8, 509–517. [Google Scholar] [CrossRef]
- Deamer, D.; Weber, A.L. Bioenergetics and life’s origins. Cold Spring Harb. Perspect. Biol. 2010, 2, a004929. [Google Scholar] [CrossRef] [Green Version]
- Preiner, M.; Asche, S.; Becker, S.; Betts, H.C.; Boniface, A.; Camprubi, E.; Chandru, K.; Erastova, V.; Garg, S.G.; Khawaja, N.; et al. The future of origin of life research: Bridging decades–old divisions. Life 2020, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, H.S. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol. Direct. 2012, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- White, H.B. Coenzymes as fossils of an earlier metabolic state. J.Mol. Evol. 1976, 7, 101–104. [Google Scholar] [CrossRef]
- Sobolevsky, Y.; Trifonov, E.N. Conserved sequences of prokaryotic proteomes and their compositional age. J. Mol. Evol. 2005, 61, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Caetano–Anollés, G.; Wang, M.; Caetano–Anollés, D.; Mittenthal, J.E. The origin, evolution and structure of the protein world. Biochem. J. 2009, 417, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.F.; Kong, D.X.; Shen, L.; Chen, L.L.; Ma, B.G.; Zhang, H.Y. Distribution patterns of small–molecule ligands in the protein universe and implications for origin of life and drug discovery. Genome Biol. 2007, 8, R176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, X.Y.; Zhang, H.Y. Cofactors as molecular fossils to trace the origin and evolution of proteins. Chembiochem 2020, 21, 3161–3168. [Google Scholar] [CrossRef]
- Andreeva, A.; Kulesha, E.; Gough, J.; Murzin, A.G. The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 2020, 48, D376–D382. [Google Scholar] [CrossRef]
- Trifonov, E.N. Early molecular evolution. Isr. J. Ecol. Evol. 2006, 52, 375–387. [Google Scholar] [CrossRef]
- Caetano–Anollés, G.; Caetano–Anollés, D. An evolutionarily structured universe of protein architecture. Genome Res. 2003, 13, 1563–1571. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yafremava, L.S.; Caetano–Anollés, D.; Mittenthal, J.E.; Caetano–Anollés, G. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res. 2007, 17, 1572–1585. [Google Scholar] [CrossRef] [Green Version]
- Caetano–Anollés, G.; Kim, K.M.; Caetano–Anollés, D. The phylogenomic roots of modern biochemistry: Origins of proteins, cofactors and protein biosynthesis. J. Mol. Evol. 2012, 74, 1–34. [Google Scholar] [CrossRef]
- Alva, V.; Söding, J.; Lupas, A.N. A vocabulary of ancient peptides at the origin of folded proteins. Elife 2015, 4, e09410. [Google Scholar] [CrossRef]
- Wolcott, R.G.; Boyer, P.D. The reversal of the myosin and actomyosin ATPase reactions and the free energy of ATP binding to myosin. Biochem. Biophys. Res. Commun. 1974, 57, 709–716. [Google Scholar] [CrossRef]
- Oster, G.; Wang, H. Reverse engineering a protein: The mechanochemistry of ATP synthase. Biochim. Biophys. Acta 2000, 1458, 482–510. [Google Scholar] [CrossRef] [Green Version]
- Tokuriki, N.; Tawfik, D.S. Protein dynamism and evolvability. Science 2009, 324, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.F.; Park, C. Selective stabilization of a partially unfolded protein by a metabolite. J. Mol. Biol. 2012, 422, 403–413. [Google Scholar] [CrossRef]
- Keefe, A.D.; Szostak, J.W. Functional proteins from a random–sequence library. Nature 2001, 410, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.K.; Chen, B.X.; Tian, T.; Jia, X.S.; Chu, X.Y.; Liu, R.; Dong, P.F.; Yang, Q.Y.; Zhang, H.Y. ATP selection in a random peptide library consisting of prebiotic amino acids. Biochem. Biophys. Res. Commun. 2015, 466, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, E.N.; Gabdank, I.; Barash, D.; Sobolevsky, Y. Primordia vita. Deconvolution from modern sequences. Orig. Life Evol. Biosph. 2006, 36, 559–565. [Google Scholar] [CrossRef]
- Chen, C.; Park, C. Chaperone action of a cofactor in protein folding. Protein Sci. 2020, 29, 1667–1678. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, R.S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid. Redox Signal. 2018, 28, 251–272. [Google Scholar] [CrossRef]
- Matveev, V.V. Cell theory, intrinsically disordered proteins, and the physics of the origin of life. Prog. Biophys. Mol. Biol. 2019, 149, 114–130. [Google Scholar] [CrossRef]
- Linding, R.; Schymkowitz, J.; Rousseau, F.; Diella, F.; Serrano, L. A comparative study of the relationship between protein structure and beta–aggregation in globular and intrinsically disordered proteins. J. Mol. Biol. 2004, 342, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Aida, H.; Shigeta, Y.; Harada, R. The role of ATP in solubilizing RNA–binding protein fused in sarcoma. Proteins 2022. [Google Scholar] [CrossRef] [PubMed]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, S.; Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213. [Google Scholar] [CrossRef]
- Söding, J.; Zwicker, D.; Sohrabi–Jahromi, S.; Boehning, M.; Kirschbaum, J. Mechanisms for active regulation of biomolecular condensates. Trends Cell Biol. 2020, 30, 4–14. [Google Scholar] [CrossRef]
- Brangwynne, C.P.; Mitchison, T.J.; Hyman, A.A. Active liquid–like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 2011, 108, 4334–4339. [Google Scholar] [CrossRef] [Green Version]
- Itoh, Y.; Iida, S.; Tamura, S.; Nagashima, R.; Shiraki, K.; Goto, T.; Hibino, K.; Ide, S.; Maeshima, K. 1,6–hexanediol rapidly immobilizes and condenses chromatin in living human cells. Life Sci. Alliance 2021, 4, e202001005. [Google Scholar] [CrossRef]
- Wright, R.H.G.; Lioutas, A.; Le Dily, F.; Soronellas, D.; Pohl, A.; Bonet, J.; Nacht, A.S.; Samino, S.; Font–Mateu, J.; Vicent, G.P.; et al. ADP–ribose–derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 2016, 352, 1221–1225. [Google Scholar] [CrossRef]
- Wright, R.H.G.; Le Dily, F.; Beato, M. ATP, Mg2+, Nuclear phase separation, and genome accessibility. Trends Biochem. Sci. 2019, 44, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Rockstein, M.; Brandt, K.F. Enzyme changes in flight muscle correlated with aging and flight ability in the male housefly. Science 1963, 139, 1049–1051. [Google Scholar] [CrossRef]
- Roberts, S.B.; Rosenberg, I. Nutrition and aging: Changes in the regulation of energy metabolism with aging. Physiol. Rev. 2006, 86, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen–Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. USA 2005, 102, 5618–5623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Investig. 2018, 128, 3716–3726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swerdlow, R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis. 2018, 62, 1403–1416. [Google Scholar] [CrossRef] [Green Version]
- Vandoorne, T.; De Bock, K.; Van Den Bosch, L. Energy metabolism in ALS: An underappreciated opportunity? Acta Neuropathol. 2018, 135, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Pantiya, P.; Thonusin, C.; Chattipakorn, N.; Chattipakorn, S.C. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease. Mitochondrion 2020, 55, 14–47. [Google Scholar] [CrossRef]
- Kopacz, A.; Kloska, D.; Targosz–Korecka, M.; Zapotoczny, B.; Cysewski, D.; Personnic, N.; Wener, E.; Hajduk, K.; Jozkowicz, A.; Grochot–Przeczek, A. Keap1 governs ageing–induced protein aggregation in endothelial cells. Redox Biol. 2020, 34, 101572. [Google Scholar] [CrossRef]
- Pal, S.; Paul, S. ATP Controls the aggregation of Aβ16–22 peptides. J. Phys. Chem. B 2020, 124, 210–223. [Google Scholar] [CrossRef]
- Dang, M.; Kang, J.; Lim, L.; Li, Y.; Wang, L.; Song, J. ATP is a cryptic binder of TDP–43 RRM domains to enhance stability and inhibit ALS/AD–associated fibrillation. Biochem. Biophys. Res. Commun. 2020, 522, 247–253. [Google Scholar] [CrossRef]
- Coskuner, O.; Murray, I.V. Adenosine triphosphate (ATP) reduces amyloid–β protein misfolding in vitro. J. Alzheimers Dis. 2014, 41, 561–574. [Google Scholar] [CrossRef]
- Roy, R.; Paul, S. Potential of ATP toward Prevention of hIAPP oligomerization and destabilization of hIAPP protofibrils: An in silico perspective. J. Phys. Chem. B 2021, 125, 3510–3526. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; De La Monte, S.; et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Zhang, Y.; Simmering, J.E.; Schultz, J.L.; Li, Y.; Fernandez–Carasa, I.; Consiglio, A.; Raya, A.; Polgreen, P.M.; Narayanan, N.S.; et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Investig. 2019, 129, 4539–4549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, T.A.; Jinnah, H.A.; Kamatani, N. Shortage of cellular ATP as a cause of diseases and strategies to enhance ATP. Front. Pharmacol. 2019, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, C.; Li, X.; Wang, T.; Li, Y.; Cao, C.; Ding, Y.; Dong, M.; Finci, L.; Wang, J.H.; et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat. Chem. Biol. 2015, 11, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, X.Y.; Wang, G.; Zhang, H.Y. ATP as an anti–aging agent: Beyond the energy reservoir. Drug Discov. Today 2021, 26, 2783–2785. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 119–141. [Google Scholar] [CrossRef]
- Zhou, M.; Ottenberg, G.; Sferrazza, G.F.; Hubbs, C.; Fallahi, M.; Rambaugh, G.; Brantley, A.F.; Lasmézas, C.I. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment. Brain 2015, 138, 992–1008. [Google Scholar] [CrossRef] [Green Version]
- Stossi, F.; Dandekar, R.D.; Mancini, M.G.; Gu, G.; Fuqua, S.A.W.; Nardone, A.; De Angelis, C.; Fu, X.; Schiff, R.; Bedford, M.T.; et al. Estrogen–induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Res. 2020, 48, 1800–1810. [Google Scholar] [CrossRef] [Green Version]
- Page, B.D.G.; Valerie, N.C.K.; Wright, R.H.G.; Wallner, O.; Isaksson, R.; Carter, M.; Rudd, S.G.; Loseva, O.; Jemth, A.S.; Almlöf, I.; et al. Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. Nat. Commun. 2018, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.Y.; Liao, X.; Gao, M.; Lv, B.M.; Chen, X.H.; Chu, X.Y.; Zhang, Q.Y.; Zhang, H.Y. Identification of NUDT5 inhibitors from approved drugs. Front. Mol. Biosci. 2020, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehan, J.; Gray, M.; Martínez–Pérez, C.; Kay, C.; Pang, L.Y.; Fraser, J.A.; Poole, A.V.; Kunkler, I.H.; Langdon, S.P.; Argyle, D.; et al. Precision medicine and the role of biomarkers of radiotherapy response in breast cancer. Front. Oncol. 2020, 10, 628. [Google Scholar] [CrossRef] [PubMed]
- Nalejska, E.; Mączyńska, E.; Lewandowska, M.A. Prognostic and predictive biomarkers: Tools in personalized oncology. Mol. Diagn. Ther. 2014, 18, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, X.Y.; Quan, Y.; Zhang, H.Y. NUDT5 as a novel drug target and prognostic biomarker for ER–positive breast cancer. Drug Discov. Today 2021, 26, 620–625. [Google Scholar] [CrossRef]
- Sheng, L.; Ye, L.; Zhang, D.; Cawthorn, W.P.; Xu, B. New insights into the long non-coding RNA SRA: Physiological functions and mechanisms of action. Front. Med. 2018, 5, 244. [Google Scholar] [CrossRef]
- Gaal, T.; Bartlett, M.S.; Ross, W.; Turnbough, C.L.; Gourse, R.L. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 1997, 278, 2092–2097. [Google Scholar] [CrossRef]
- Pontes, M.H.; Sevostyanova, A.; Groisman, E.A. When too much ATP is bad for protein synthesis. J. Mol. Biol. 2015, 427, 2586–2594. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, X.-Y.; Xu, Y.-Y.; Tong, X.-Y.; Wang, G.; Zhang, H.-Y. The Legend of ATP: From Origin of Life to Precision Medicine. Metabolites 2022, 12, 461. https://doi.org/10.3390/metabo12050461
Chu X-Y, Xu Y-Y, Tong X-Y, Wang G, Zhang H-Y. The Legend of ATP: From Origin of Life to Precision Medicine. Metabolites. 2022; 12(5):461. https://doi.org/10.3390/metabo12050461
Chicago/Turabian StyleChu, Xin-Yi, Yuan-Yuan Xu, Xin-Yu Tong, Gang Wang, and Hong-Yu Zhang. 2022. "The Legend of ATP: From Origin of Life to Precision Medicine" Metabolites 12, no. 5: 461. https://doi.org/10.3390/metabo12050461
APA StyleChu, X. -Y., Xu, Y. -Y., Tong, X. -Y., Wang, G., & Zhang, H. -Y. (2022). The Legend of ATP: From Origin of Life to Precision Medicine. Metabolites, 12(5), 461. https://doi.org/10.3390/metabo12050461