Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Overall Lipidomic Profiles
2.3. Serum Cholesterol and Triacylglycerides
2.4. Diacyl Phospholipids
2.5. Ether and Plasmalogen Phospholipids
2.6. Lysophospholipids
2.7. Sphingolipids
3. Discussion
3.1. Cholesterol Metabolism
3.2. Phospholipids Increased in Both Conditions, HT and CS
3.3. Lysophospholipids Distinguish HT from CS
3.4. Ceramides and Sphingosine 1-Phosphates
4. Materials and Methods
4.1. Animals and Sample Collection
4.2. Lipid Extraction and Derivatization
4.3. LC-MS Analyses
4.4. Statistics and Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xenoulis, P.G.; Steiner, J.M. Canine hyperlipidaemia. J. Small Anim. Pract. 2015, 56, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xenoulis, P.G.; Steiner, J.M. Lipid metabolism and hyperlipidemia in dogs. Vet. J. 2010, 183, 12–21. [Google Scholar] [CrossRef]
- Behrend, E.N.; Kooistra, H.S.; Nelson, R.; Reusch, C.E.; Scott-Moncrieff, J.C. Diagnosis of spontaneous canine hyperadrenocorticism: 2012 ACVIM consensus statement (small animal). J. Vet. Intern. Med. 2013, 27, 1292–1304. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.T.; Martin, I.; Rehrauer, H.; Kowalewski, M.P.; Felicitas, S.; Boretti, F.S.; Sieber-Ruckstuhl, N.S. Effects of ACTH-induced long-term hypercortisolemia on the transcriptome of canine visceral adipose tissue. BMC Genom. 2022. accepted. [Google Scholar]
- Hess, R.S.; Kass, P.H.; Van Winkle, T.J. Association between Diabetes Mellitus, Hypothyroidism or Hyperadrenocorticism, and Atherosclerosis in Dogs. J. Vet. Intern. Med. 2003, 17, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Maxie, M.G. (Ed.) Cardiovascular System. In Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals, 6th ed.; Elsevier: St. Louis, MO, USA, 2015; pp. 1–101. [Google Scholar]
- Dennis, E.A. Lipidomics joins the omics evolution. Proc. Natl. Acad. Sci. USA 2009, 106, 2089–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztaş, Y.; Boşgelmez, I. An Introduction to Lipidomics: From Laboratory to Clinic. Acta Med. 2017, 48, 14–23. [Google Scholar]
- Avela, H.F.; Sirén, H. Advances in lipidomics. Clin. Chim. Acta 2020, 510, 123–141. [Google Scholar] [CrossRef]
- Nicholls, M. Plasma ceramides and cardiac risk. Eur. Heart J. 2017, 38, 1359–1360. [Google Scholar] [CrossRef]
- Seah, J.Y.H.; Chew, W.S.; Torta, F.; Khoo, C.M.; Wenk, M.R.; Herr, D.R.; Choi, H.; Tai, E.S.; van Dam, R.M. Plasma sphingolipids and risk of cardiovascular diseases: A large-scale lipidomic analysis. Metabolomics 2020, 16, 89. [Google Scholar] [CrossRef]
- Sieber-Ruckstuhl, N.S.; Burla, B.; Spoerel, S.; Schmid, F.; Venzin, C.; Cazenave-Gassiot, A.; Bendt, A.K.; Torta, F.; Wenk, M.R.; Boretti, F.S. Changes in the Canine Plasma Lipidome after Short- and Long-Term Excess Glucocorticoid Exposure. Sci. Rep. 2019, 9, 6015. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.C. Hyperlididemia Disorders in Dogs. Compendium 2005, 27, 361–370. [Google Scholar]
- Barrie, J.; Watson, T.G.; Stear, M.J.; Nash, A.S. Plasma cholesterol and lipoprotein concentrations in the dog: The effects of age, breed, gender, and endocrine disease. J. Small Anim. Pract. 1993, 34, 507–512. [Google Scholar] [CrossRef]
- Stockham, S.L.; Scott, M.A. Lipids. In Fundamentals of Veterinary Clinical Pathology; Iowa State University Press: Ames, IA, USA, 2002; pp. 521–537. [Google Scholar]
- Mead, J.R.; Irvine, S.A.; Ramji, D.P. Lipoprotein lipase: Structure, function, regulation, and role in disease. J. Mol. Med. 2002, 80, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Valdemarsson, S.; Hansson, P.; Hedner, P.; Nilsson-Ehle, P. Relations between thyroid function, hepatic and lipoprotein lipase activities, and plasma lipoprotein concentrations. Eur. J. Endocrinol. 1983, 104, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Miceli, D.D.; Vidal, V.P.; Blatter, M.F.C.; Pignataro, O.P.; Castillo, V.A. Fenofibrate treatment for severe hypertriglyceridemia in dogs. Domest. Anim. Endocrinol. 2021, 74, 106578. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.A.; Heckert, A.; Ulmer, C.Z.; Jones, C.M.; Koelmel, J.P.; Abdullah, L.; Ahonen, L.; Alnouti, Y.; Armando, A.M.; Asara, J.M.; et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J. Lipid Res. 2017, 58, 2275–2288. [Google Scholar] [CrossRef] [Green Version]
- Burla, B.; Arita, M.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; et al. MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018, 59, 2001–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridgway, N.D.; Dolphin, P.J. Serum activity and hepatic secretion of lecithin: Cholesterol acyltransferase in experimental hypothyroidism and hypercholesterolemia. J. Lipid Res. 1985, 26, 1300–1313. [Google Scholar] [CrossRef]
- Franco, M.; Castro, G.; Romero, L.; Regalado, J.C.; Medina, A.; Huesca-Gómez, C.; Ramírez, S.; Montaño, L.F.; Posadas-Romero, C.; Pérez-Méndez, O. Decreased activity of lecithin: Cholesterol acyltransferase and hepatic lipase in chronic hypothyroid rats: Implications for reverse cholesterol transport. Mol. Cell. Biochem. 2003, 246, 51–56. [Google Scholar] [CrossRef]
- Sigal, G.A.; Tavoni, T.M.; Silva, B.M.O.; Kalil Filho, R.; Brandão, L.; Maranhão, R.C. Effects of Short-Term Hypothyroidism on the Lipid Transfer to High-Density Lipoprotein and Other Parameters Related to Lipoprotein Metabolism in Patients Submitted to Thyroidectomy for Thyroid Cancer. Thyroid 2019, 29, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Furse, S.; de Kroon, A.I.P.M. Phosphatidylcholine’s functions beyond that of a membrane brick. Mol. Membr. Biol. 2015, 32, 117–119. [Google Scholar] [CrossRef]
- Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol. 2016, 321, 29–88. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Witt, S.N. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxidative Med. Cell. Longev. 2017, 2017, 4829180. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Fu, J.; Jia, Y.; Yang, N.; Li, J.; Wang, G. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr. Pract. 2020, 26, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, Y.; Sun, Z.; Cai, Y.; Wang, B.; Zhang, M.; Ban, Y.; Hou, X.; Hao, Y.; Ouyang, Q.; et al. Differential lipids in pregnant women with subclinical hypothyroidism and their correlation to the pregnancy outcomes. Sci. Rep. 2021, 11, 19689. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Quinkler, M.; Deutschbein, T.; Prehn, C.; Rayes, N.; Kroiss, M.; Berr, C.M.; Stalla, G.; Fassnacht, M.; Adamski, J.; et al. Cortisol-related metabolic alterations assessed by mass spectrometry assay in patients with Cushing’s syndrome. Eur. J. Endocrinol. 2017, 177, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevli, P.A.; Freedman, B.I.; Hsu, F.C.; Xu, J.; Rudock, M.E.; Ma, L.; Parks, J.S.; Palmer, N.D.; Shapiro, M.D. Plasma metabolomic profiling in subclinical atherosclerosis: The Diabetes Heart Study. Cardiovasc. Diabetol. 2021, 20, 231. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Rimm, E.B.; Hu, F.B.; Albert, C.M.; Rexrode, K.M.; Manson, J.E.; Qi, L. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men. Am. J. Clin. Nutr. 2016, 104, 173–180. [Google Scholar] [CrossRef]
- Blois, S.L.; Poma, R.; Stalker, M.J.; Allen, D.G. A case of primary hypothyroidism causing central nervous system atherosclerosis in a dog. Can. Vet. J. 2008, 49, 789–792. [Google Scholar] [PubMed]
- Kougias, P.; Chai, H.; Lin, P.H.; Lumsden, A.B.; Yao, Q.; Chen, C. Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: Mediators of endothelial dysfunction and atherosclerosis. Med. Sci. Monit. 2006, 12, RA5-16. [Google Scholar] [PubMed]
- Kim, E.A.; Kim, J.A.; Park, M.H.; Jung, S.C.; Suh, S.H.; Pang, M.G.; Kim, Y.J. Lysophosphatidylcholine induces endothelial cell injury by nitric oxide production through oxidative stress. J. Matern. -Fetal Neonatal Med. 2009, 22, 325–331. [Google Scholar] [CrossRef]
- Gaggini, M.; Pingitore, A.; Vassalle, C. Plasma Ceramides Pathophysiology, Measurements, Challenges, and Opportunities. Metabolites 2021, 11, 719. [Google Scholar] [CrossRef]
- Hilvo, M.; Meikle, P.J.; Pedersen, E.R.; Tell, G.S.; Dhar, I.; Brenner, H.; Schöttker, B.; Lääperi, M.; Kauhanen, D.; Koistinen, K.M.; et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2020, 41, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V.; Laaksonen, R. Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2424–2430. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; März, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef]
- Tarasov, K.; Ekroos, K.; Suoniemi, M.; Kauhanen, D.; Sylvänne, T.; Hurme, R.; Gouni-Berthold, I.; Berthold, H.K.; Kleber, M.E.; Laaksonen, R.; et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E45–E52. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferré, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurano, M.; Yatomi, Y. Sphingosine 1-Phosphate and Atherosclerosis. J. Atheroscler. Thromb. 2018, 25, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Okajima, F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: Is this an atherogenic mediator or an anti-atherogenic mediator? Biochim. Biophys. Acta 2002, 1582, 132–137. [Google Scholar] [CrossRef]
- Sattler, K.; Levkau, B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc. Res. 2009, 82, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Levkau, B. Cardiovascular effects of sphingosine-1-phosphate (S1P). Sphingolipids Dis. 2013, 216, 147–170. [Google Scholar] [CrossRef]
- Boretti, F.; Reusch, C.E. Canine hypothyroidism A diagnostic challenge? Nuklearmediziner 2010, 33, 32–37. [Google Scholar] [CrossRef]
- Sieber-Ruckstuhl, N.S.; Reusch, C.E.; Hofer-Inteeworn, N.; Kuemmerle-Fraune, C.; Müller, C.; Hofmann-Lehmann, R.; Boretti, F.S. Evaluation of a low-dose desoxycorticosterone pivalate treatment protocol for long-term management of dogs with primary hypoadrenocorticism. J. Vet. Intern. Med. 2019, 33, 1266–1271. [Google Scholar] [CrossRef]
- Boretti, F.S.; Burla, B.; Deuel, J.; Gao, L.; Wenk, M.R.; Liesegang, A.; Sieber-Ruckstuhl, N.S. Serum lipidome analysis of healthy beagle dogs receiving different diets. Metabolomics 2019, 16, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshehry, Z.H.; Barlow, C.K.; Weir, J.M.; Zhou, Y.; McConville, M.J.; Meikle, P.J. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites 2015, 5, 389–403. [Google Scholar] [CrossRef]
- Narayanaswamy, P.; Shinde, S.; Sulc, R.; Kraut, R.; Staples, G.; Thiam, C.H.; Grimm, R.; Sellergren, B.; Torta, F.; Wenk, M.R. Lipidomic “deep profiling”: An enhanced workflow to reveal new molecular species of signaling lipids. Anal. Chem. 2014, 86, 3043–3047. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ji, S.; Burla, B.; Wenk, M.R.; Torta, F.; Cazenave-Gassiot, A. LICAR: An Application for Isotopic Correction of Targeted Lipidomic Data Acquired with Class-Based Chromatographic Separations Using Multiple Reaction Monitoring. Anal. Chem. 2021, 93, 3163–3171. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Human Serum Metabolome (HUSERMET) Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Version 4.1.0.; Available online: https://www.R-project.org/ (accessed on 1 February 2022).
- Blighe, K.; Lun, A. PCAtools: Everything Principal Components Analysis; R Package Version 2.5.9; 2021; Available online: https://github.com/kevinblighe/PCAtools (accessed on 1 February 2022).
- Wickham, H. (Ed.) Elegant graphics for data analysis. In Ggplot2, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Ahlmann-Eltze, C.; Patil, I. Ggsignif: R Package for Displaying Significance Brackets for ‘ggplot2’. PsyArxiv 2021. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
Characteristics | Healthy Beagle (HB) | Dogs with HT | Dogs with CS |
---|---|---|---|
Age (years) | 6 (2–7) | 6 (3–14) | 11 (5–16) a,b |
Body weight (kg) | 14.8 (10–18.9) | nk | 14.3 (2.1–42.9) |
Females (n) | 3 | 23 c,d | 18 (15 spayed) |
Males (n) | 7 | 18 c,d | 21 (13 castrated) |
Measured Parameters | Dogs with HT | Dogs with CS |
---|---|---|
Total T4 (µg/dL) | <0.7 | |
TSH (mU/L) | 109 (88–316) | |
Baseline cortisol (µg/dL) | 3.8 (1.3–13.4) | |
Post-ACTH cortisol (µg/dL) | 19.9 (8.3–47.3) | |
0 h cortisol before dexamethasone injection (µg/dL) | 4.3 (1.5–13.6) | |
4 h cortisol after dexamethasone injection (µg/dL) | 1.05 (0.2–8.8) | |
8 h cortisol after dexamethasone injection (µg/dL) | 1.9 (0.5–6.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieber-Ruckstuhl, N.S.; Tham, W.K.; Baumgartner, F.; Selva, J.J.; Wenk, M.R.; Burla, B.; Boretti, F.S. Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia. Metabolites 2022, 12, 306. https://doi.org/10.3390/metabo12040306
Sieber-Ruckstuhl NS, Tham WK, Baumgartner F, Selva JJ, Wenk MR, Burla B, Boretti FS. Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia. Metabolites. 2022; 12(4):306. https://doi.org/10.3390/metabo12040306
Chicago/Turabian StyleSieber-Ruckstuhl, Nadja S., Wai Kin Tham, Franziska Baumgartner, Jeremy John Selva, Markus R. Wenk, Bo Burla, and Felicitas S. Boretti. 2022. "Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia" Metabolites 12, no. 4: 306. https://doi.org/10.3390/metabo12040306
APA StyleSieber-Ruckstuhl, N. S., Tham, W. K., Baumgartner, F., Selva, J. J., Wenk, M. R., Burla, B., & Boretti, F. S. (2022). Serum Lipidome Signatures of Dogs with Different Endocrinopathies Associated with Hyperlipidemia. Metabolites, 12(4), 306. https://doi.org/10.3390/metabo12040306