New Insights into Iron Deficiency Anemia in Children: A Practical Review
Abstract
:1. Definition and Etiopathogenesis
2. Risk Factors and Predisposing Conditions
- Prematurity: preterm infants are at high risk of developing IDA, both because 80% of iron is acquired by the fetus during the last trimester of pregnancy and for the greater speed of growth in the first months of life.
- Neuromotor disorders: IDA is common in these children, mainly due to swallowing impairment that requires the use of nutrition by gavage and liquid/semi-liquid food with possible exclusion from the diet of various categories of nutrients. In addition, the presence of other disorders, such as gastroesophageal reflux, is frequent, which, being complicated by the onset of esophagitis, can be the cause of chronic bleeding.
- Diseases of the gastrointestinal tract: iron malabsorption, as occurs in the presence of celiac disease, Helicobacter pylori (H. pylori) infection, chronic inflammatory bowel disease, pernicious anemia, and prolonged use of drugs as pump inhibitors, and conditions determining chronic blood loss (intolerance to cow’s milk proteins, Meckel’s diverticulum, hiatus hernia, intestinal parasitosis) are causes of IDA refractory to oral treatment. In particular, IDA during H. pylori infection may depend on an impediment to intestinal iron absorption and possible bleeding. Several studies showed improvement of IDA following antibiotic eradication therapy in H. pylori infection [9,10]. Serology for celiac disease and search for H. pylori should therefore be included in the early phase of the diagnostic workup in cases of IDA over two years of age, particularly in case of refractoriness to iron treatment (Figure 1). IDA is also the most frequent extra-intestinal complication of chronic intestinal inflammatory diseases being attributable to an increase in the body’s energy requirements, insufficient dietary intake, reduced enteric absorption, and intestinal blood loss.
- Among the extra-intestinal blood losses, it is worth mentioning the irregularities of the menstrual cycle, frequent in adolescents, and, rarely, secondary to Von Willebrand disease, a constitutional coagulopathy characterized by an absent to slight hemorrhagic diathesis, which may remain undiagnosed up to the menarche [11].
- Refractory IDA is defined by lack of response to oral treatment, after careful exclusion of all possible factors leading to poor adherence to therapy, such as insufficient dosage, the timing of administration, type of iron administered, duration of therapy, presence of inflammation or infection. Usually, these are secondary forms, and the identification of the underlying cause may be challenging (Figure 1).
3. Clinical Features of Iron Deficiency
4. Diagnosis
5. Newly Introduced Markers in the Diagnostic Framework of Iron Deficiency Anemia
6. Oral Iron Therapy
7. Parenteral Iron Therapy
8. Prevention of Iron Deficiency
- At birth, delayed clamping of the umbilical cord is a measure to increase the values of hemoglobin and ferritin and reduce the risk of IDA in the preterm infant [65].
- It is important to promote breastfeeding at birth, or the use of iron-enriched formulas for the first year of life, avoiding cow’s milk that contains iron with low bioavailability.
- In the neonatal period, prophylactic oral iron supplementation is used in preterm and low birth weight births. The American Academy of Pediatrics recommends 2 mg/kg/day of elemental iron, starting from one month up to one year of age [18].
- When exclusive breastfeeding is prolonged after four months, the American Academy of Pediatrics recommends a supplementation of elemental iron, 1 mg/kg/day, until iron-rich foods are introduced [18].
- At the time of weaning, it is advisable to include foods containing iron with high bioavailability and substances that favor its absorption; it is worth mentioning that meat and fish not only contain heme iron, with high bioavailability but also favor the absorption of non-heme iron in the same meal (Figure 3); the consumption of foods for infants, specifically enriched in iron, is recommended; the “universal” strategy of fortifying food for the population with iron poses various problems of palatability and conservation and should be taken into consideration as a measure in developing countries [1]. A warning must be mentioned regarding the excessive use of milk in infants and toddlers: it is a common opinion that milk is healthful and nutritive, ignoring that a great intake of milk inhibits the inclusion of iron-rich foods in the diet [66]. Weaning is a crucial transitional phase, influenced by several factors: cultural, behavioral, social issues play an important role; parents and caregivers need to be guided through the process, and pediatricians should actively monitor that children’s nutrition is adequate, as needed. In industrialized countries, particular attention has to be devoted to newly arrived immigrants [8,56]
- The vegetarian diet is an increasingly popular diet. The American Dietetic Association and Dietitians of Canada state that a well-structured vegetarian diet is suitable for all ages [67]. Some studies show that vegetarian children in industrialized countries have an iron intake similar to omnivores, with a prevalent intake of iron characterized by a lower bioavailability and elements that implement its absorption. They also note that, although parameters such as hemoglobin, MCV, red blood cells are comparable in vegetarian and omnivorous children, in the former, there is a lower level of serum ferritin, which indicates lower reserves of this element [68]. There are no data in the literature that place a univocal indication for iron supplementation in the vegetarian population.
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nutritional Anaemias: Tools for Effective Prevention and Control; WHO: Geneva, Switzerland, 2017. Available online: https://www.who.int/publications/i/item/9789241513067 (accessed on 25 February 2022).
- Cerami, C. Iron Nutriture of the Fetus, Neonate, Infant, and Child. Ann. Nutr. Metab. 2017, 71, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Sangkhae, V.; Nemeth, E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv. Nutr. Int. Rev. J. 2017, 8, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Donovan, A.; Roy, C.N.; Andrews, N. The Ins and Outs of Iron Homeostasis. Physiology 2006, 21, 115–123. [Google Scholar] [CrossRef]
- Gkouvatsos, K.; Papanikolaou, G.; Pantopoulos, K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta (BBA) Gen. Subj. 2012, 1820, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Saito, H. Metabolism of iron stores. Nagoya J. Med. Sci. 2014, 76, 235–254. [Google Scholar]
- Wang, Y.; Wu, Y.; Li, T.; Wang, X.; Zhu, C. Iron Metabolism and Brain Development in Premature Infants. Front. Physiol. 2019, 10, 463. [Google Scholar] [CrossRef] [PubMed]
- Parodi, E.; Aurucci, M.L.; Stella, B.; Russo, G.; Ramenghi, U. Anemia sideropenica nel III millennio. “Nuovi” parametri di monitoraggio della risposta tapeutica. Med. Bambino 2015, 34, 515–519. [Google Scholar]
- Duque, X.; Moran, S.; Mera, R.; Medina, M.; Martinez, H.; Mendoza, M.E.; Torres, J.; Correa, P. Effect of Eradication of Helicobacter pylori and Iron Supplementation on the Iron Status of Children with Iron Deficiency. Arch. Med. Res. 2010, 41, 38–45. [Google Scholar] [CrossRef]
- Russo-Mancuso, G.; Branciforte, F.; Licciardello, M.; La Spina, M. Iron deficiency anemia as the only sign of infection with Helicobacter pylori: A report of 9 pediatric cases. Int. J. Hematol. 2003, 78, 429–431. [Google Scholar] [CrossRef]
- Srivaths, L.; Minard, C.G.; O’Brien, S.H.; Wheeler, A.P.; Mullins, E.; Sharma, M.; Sidonio, R.; Jain, S.; Zia, A.; Ragni, M.V.; et al. The spectrum and severity of bleeding in adolescents with low von Willebrand factor-associated heavy menstrual bleeding. Blood Adv. 2020, 4, 3209–3216. [Google Scholar] [CrossRef]
- Gichohi-Wainaina, W.N.; Towers, G.W.; Swinkels, R.W.; Zimmermann, M.B.; Feskens, E.J.; Melse-Boonstra, A. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: A systematic review with meta-analyses. Genes Nutr. 2015, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casu, C.; Aghajan, M.; Oikonomidou, P.R.; Guo, S.; Monia, B.P.; Rivella, S. Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica 2016, 101, e8–e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, N.; Nizzi, C.P.; Anderson, S.A.; Wang, J.; Ueno, A.; Tsukamoto, H.; Eisenstein, R.S.; Enns, C.A.; Zhang, A.-S. Low Intracellular Iron Increases the Stability of Matriptase-2. J. Biol. Chem. 2015, 290, 4432–4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frýdlová, J.; Přikryl, P.; Truksa, J.; Falke, L.L.; Du, X.; Gurieva, I.; Vokurka, M.; Krijt, J. Effect of Erythropoietin, Iron Deficiency and Iron Overload on Liver Matriptase-2 (TMPRSS6) Protein Content in Mice and Rats. PLoS ONE 2016, 11, e0148540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-S.; Anderson, S.A.; Wang, J.; Yang, F.; DeMaster, K.; Ahmed, R.; Nizzi, C.P.; Eisenstein, R.S.; Tsukamoto, H.; Enns, C.A. Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. Blood 2011, 117, 1687–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, E.Y.; Kim, K.Y.; Kim, D.H.; Lee, J.E.; Kim, S.K. Iron deficiency anemia in infants and toddlers. Blood Res. 2016, 51, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, R.D.; Greer, F.R.; Committee on Nutrition. Diagnosis and Prevention of Iron Deficiency and Iron-Deficiency Anemia in Infants and Young Children (0–3 Years of Age). Pediatrics 2010, 126, 1040–1050. [Google Scholar] [CrossRef] [Green Version]
- Lozoff, B.; Georgieff, M.K. Iron Deficiency and Brain Development. Semin. Pediatr. Neurol. 2006, 13, 158–165. [Google Scholar] [CrossRef]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- Bregman, D.B.; Morris, D.; Koch, T.A.; He, A.; Goodnough, L.T. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am. J. Hematol. 2013, 88, 97–101. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021, 22, 6493. [Google Scholar] [CrossRef] [PubMed]
- Donovan, A.; Brownlie, A.; Zhou, Y.; Shepard, J.; Pratt, S.J.; Moynihan, J.; Paw, B.H.; Drejer, A.; Barut, B.; Zapata, A.; et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 2000, 403, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Abboud, S.; Haile, D.J. A Novel Mammalian Iron-regulated Protein Involved in Intracellular Iron Metabolism. J. Biol. Chem. 2000, 275, 19906–19912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKie, A.T.; Marciani, P.; Rolfs, A.; Brennan, K.; Wehr, K.; Barrow, D.; Miret, S.; Bomford, A.; Peters, T.J.; Farzaneh, F.; et al. A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. Mol. Cell 2000, 5, 299–309. [Google Scholar] [CrossRef]
- Vela, D.; Vela-Gaxha, Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp. Mol. Med. 2018, 50, e436. [Google Scholar] [CrossRef] [Green Version]
- Qiao, B.; Sugianto, P.; Fung, E.; Del Castillo-Rueda, A.; Moran, M.J.; Ganz, T.; Nemeth, E. Hepcidin-Induced Endocytosis of Ferroportin Is Dependent on Ferroportin Ubiquitination. Cell Metab. 2012, 15, 918–920. [Google Scholar] [CrossRef] [Green Version]
- Donovan, A.; Lima, C.A.; Pinkus, J.L.; Pinkus, G.S.; Zon, L.I.; Robine, S.; Andrews, N.C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005, 1, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, F.; Guo, X.; An, P.; Tao, Y.; Wang, F. Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice. Hepatology 2012, 56, 961–971. [Google Scholar] [CrossRef]
- Burke, R.M.; Leon, J.S.; Suchdev, P.S. Identification, Prevention and Treatment of Iron Deficiency during the First 1000 Days. Nutrients 2014, 6, 4093. [Google Scholar] [CrossRef] [Green Version]
- Dallman, P.R.; Siimes, M.A. Percentile curves for hemoglobin and red cellvolume in infnacy and childhood. J. Pediatr. 1979, 94, 26–31. [Google Scholar] [CrossRef]
- Pereira, A.D.S.; de Castro, I.R.R.; Bezerra, F.F.; Neto, J.F.N.; da Silva, A.C.F. Reproducibility and validity of portable haemoglobinometer for the diagnosis of anaemia in children under the age of 5 years. J. Nutr. Sci. 2020, 9, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017, 31, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Cancelo-Hidalgo, M.J.; Castelo-Branco, C.; Palacios, S.; Haya- Palazuelos, J.; Ciria-Recasens, M.; Manasanch, J.; Pérez-Edo, L. Tolerability of different oral iron supplements: A systematic review. Curr. Med. Res. Opin. 2013, 29, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, G.R. Paucity of clinical trials in iron deficiency: Lessons learned from study of VLBW infants. Pediatrics 2013, 131, e582–e584. [Google Scholar] [CrossRef] [Green Version]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.A.; Powell, J.J. Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef] [Green Version]
- Moretti, D.; Goede, J.S.; Zeder, C.; Jiskra, M.; Chatzinakou, V.; Tjalsma, H.; Melse-Boonstra, A.; Brittenham, G.; Swinkels, D.W.; Zimmermann, M.B. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015, 126, 1981–1989. [Google Scholar] [CrossRef]
- Stoffel, N.U.; Cercamondi, C.I.; Brittenham, G.; Zeder, C.; Geurts-Moespot, A.J.; Swinkels, D.W.; Moretti, D.; Zimmermann, M.B. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: Two open-label, randomised controlled trials. Lancet Haematol. 2017, 4, e524–e533. [Google Scholar] [CrossRef]
- Muñoz, M.; Gómez-Ramírez, S.; Bhandari, S. The safety of available treatment options for iron-deficiency anemia. Expert Opin. Drug Saf. 2018, 17, 149–159. [Google Scholar] [CrossRef]
- Powers, J.M.; Buchanan, G.R.; Adix, L.; Zhang, S.; Gao, A.; McCavit, T.L. Effect of Low-Dose Ferrous Sulfate vs Iron Polysaccharide Complex on Hemoglobin Concentration in Young Children With Nutritional Iron-Deficiency Anemia. JAMA 2017, 317, 2297–2304. [Google Scholar] [CrossRef]
- Parodi, E.; Giraudo, M.T.; Davitto, M.; Ansaldi, G.; Mondino, A.; Garbarini, L.; Franzil, A.; Mazzone, R.; Russo, G.; Ramenghi, U. Reticulocyte parameters: Markers of early response to oral treatment in children with severe iron-deficiency anemia. J. Pediatr. Hematol. Oncol. 2012, 34, e249–e252. [Google Scholar] [CrossRef] [Green Version]
- Parodi, E.; Giraudo, M.T.; Ricceri, F.; Aurucci, M.L.; Mazzone, R.; Ramenghi, U. Absolute Reticulocyte Count and Reticulocyte Hemoglobin Content as Predictors of Early Response to Exclusive Oral Iron in Children with Iron Deficiency Anemia. Anemia 2016, 2016, 7345835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortman, G.A.M.; Boleij, A.; Swinkels, D.W.; Tjalsma, H. Iron Availability Increases the Pathogenic Potential of Salmonella Typhimurium and Other Enteric Pathogens at the Intestinal Epithelial Interface. PLoS ONE 2012, 7, e29968. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, S.; Dastgiri, S.; Dolatkhah, R.; Behrooz, Z.A.; de Bock, G.H. Staple Food Fortification with Folic Acid and Iron and Gastrointestinal Cancers: Critical Appraisal of Long-Term National Fortification. Nutr. Cancer 2021, 73, 1534–1538. [Google Scholar] [CrossRef] [PubMed]
- Wurzelmann, J.I.; Silver, A.; Schreinemachers, D.M.; Sandler, R.S.; Everson, R.B. Iron intake and the risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 1996, 5, 503–507. [Google Scholar]
- Luo, H.; Zhang, N.-Q.; Huang, J.; Zhang, X.; Feng, X.-L.; Pan, Z.-Z.; Chen, Y.-M.; Fang, Y.-J.; Zhang, C.-X. Different forms and sources of iron in relation to colorectal cancer risk: A case–control study in China. Br. J. Nutr. 2019, 121, 735–747. [Google Scholar] [CrossRef]
- Jung, M.; Mertens, C.; Tomat, E.; Brüne, B. Iron as a Central Player and Promising Target in Cancer Progression. Int. J. Mol. Sci. 2019, 20, 273. [Google Scholar] [CrossRef] [Green Version]
- Catania, R.; Scuderi, M.G.; Russo, G.; Miraglia, V.; Scalora, L.; Moscheo, C.; Musumeci, A.; Villari, L.; La Spina, M.; D’Amico, S.; et al. An Unusual Case of Severe Microcytic Anemia. J. Pediatr. Hematol. 2012, 34, 322. [Google Scholar] [CrossRef]
- Radulescu, S.; Brookes, M.J.; Salgueiro, P.; Ridgway, R.A.; McGhee, E.; Anderson, K.; Ford, S.J.; Stones, D.H.; Iqbal, T.H.; Tselepis, C.; et al. Luminal Iron Levels Govern Intestinal Tumorigenesis after Apc Loss In Vivo. Cell Rep. 2012, 2, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Giorgini, E.; Fisberg, M.; De Paula, R.A.; Ferreira, A.M.; Valle, J.; Braga, J.A. The use of sweet rolls fortified with iron bis-glycinate chelate in the prevention of iron deficiency anemia in preschool children. Arch. Latinoam. Nutr. 2001, 51, 48–53. [Google Scholar]
- Szarfarc, S.C.; Núñez De Cassana, L.M.; Fujimori, E.; Guerra-Shinohara, E.M.; Vianna De Oliveira, I.M. Relative effectiveness of iron bis-glycinate chelate (Ferrochel) and ferrous sulfate in the control of iron deficiency in pregnant women. Arch. Latinoam. Nutr. 2001, 51, 42–47. [Google Scholar]
- Pineda, O.; Ashmead, H.D.W. Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 2001, 17, 381–384. [Google Scholar] [CrossRef]
- Ferrari, P.; Nicolini, A.; Manca, M.L.; Rossi, G.; Anselmi, L.; Conte, M.; Carpi, A.; Bonino, F. Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: Comparison between oral ferrous bisglycinate chelate and ferrous sulfate. Biomed. Pharm. 2012, 66, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Jeppsen, R.; Borzelleca, J. Safety Evaluation of Ferrous Bisglycinate Chelate. Food Chem. Toxicol. 1999, 37, 723–731. [Google Scholar] [CrossRef]
- Pisani, A.; Riccio, E.; Sabbatini, M.; Andreucci, M.; Del Rio, A.; Visciano, B. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: A randomized trial. Nephrol. Dial. Transplant. 2015, 30, 645–652. [Google Scholar] [CrossRef]
- Russo, G.; Guardabasso, V.; Romano, F.; Corti, P.; Samperi, P.; Condorelli, A.; Sainati, L.; Maruzzi, M.; Facchini, E.; Fasoli, S.; et al. Monitoring oral iron therapy in children with iron deficiency anemia: An observational, prospective, multicenter study of AIEOP patients (Associazione Italiana Emato-Oncologia Pediatrica). Ann. Hematol. 2020, 99, 413–420. [Google Scholar] [CrossRef]
- Auerbach, M.; Ballard, H. Clinical Use of Intravenous Iron: Administration, Efficacy, and Safety. Hematology 2010, 2010, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Huybrechts, I.; Lin, Y.; De Keyzer, W.; Matthys, C.; Harvey, L.; Meirhaeghe, A.; Dallongeville, J.; Sarria, B.; De Backer, G.; De Henauw, S. Intake and dietary sources of haem and non-haem iron in Flemish preschoolers. Eur. J. Clin. Nutr. 2012, 66, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Holst, B.; Williamson, G. Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants. Curr. Opin. Biotechnol. 2008, 19, 73–82. [Google Scholar] [CrossRef]
- Bryszewska, M.A. Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations. Nutrients 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.D.P.; Pereira, A.D.S.; Simões, B.F.T.; Omena, J.; Cople-Rodrigues, C.D.S.; de Castro, I.R.R.; Citelli, M. Association of vitamin A with anemia and serum hepcidin levels in children aged 6 to 59 mo. Nutrition 2021, 91-92, 111463. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.; Lakshmi, A.J. Maximising the bioaccessibility of iron and zinc of a complementary food mix through multiple strategies. Food Chem. 2021, 372, 131286. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Bains, K.; Kaur, H. Effect of inclusion of key foods on in vitro iron bioaccessibility in composite meals. J. Food Sci. Technol. 2016, 53, 2033–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaparro, C.M. Timing of umbilical cord clamping: Effect on iron endowment of the newborn and later iron status. Nutr. Rev. 2011, 69, S30–S36. [Google Scholar] [CrossRef]
- Ziegler, E.E. Consumption of cow's milk as a cause of iron deficiency in infants and toddlers. Nutr. Rev. 2011, 69, S37–S42. [Google Scholar] [CrossRef]
- Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. J. Am. Diet. Assoc. 2003, 103, 748–765. [CrossRef]
- Yen, C.-E.; Yen, C.-H.; Huang, M.-C.; Cheng, C.-H.; Huang, Y.-C. Dietary intake and nutritional status of vegetarian and omnivorous preschool children and their parents in Taiwan. Nutr. Res. 2008, 28, 430–436. [Google Scholar] [CrossRef]
Mechanisms Leading to Iron Deficiency | Conditions |
---|---|
Decreased dietary iron supply | Prematurity |
Late weaning | |
Vegetarian diet | |
Swallowing disorders | |
Increased iron demands | Infancy |
Low birth weight | |
Pubertal spurt growth | |
Reduced intestinal iron absorption | Celiac disease |
Helicobacter pylori infection | |
Chronic autoimmune gastritis | |
Use of protein-pump inhibitors | |
Inflammatory bowel diseases | |
IRIDA | |
Blood loss | Heavy and/or frequent menses |
Cow milk protein intolerance | |
Meckel diverticulum | |
Hiatal hernia | |
Intestinal parassitosis | |
Inflammatory bowel disease | |
Bleeding diathesis |
Age | Hb g/dL | MCV fL | Serum Iron μg/dL | SF ng/mL | Tfs % | TIBC μg/dL | Hep nmol/L |
---|---|---|---|---|---|---|---|
Newborn | <13.2 | <100 | <63 | <6 | <30 | >285 | |
6–24 months | <11.3 | <68–72 | <35 | <6 | <10 | >434 | 1.1–7.3 (M) 0.9–7.5 (F) |
2–6 years | <11.5 | <75 | <22 | <6 | <7 | >441 | 1.0–3.3 (M) 1.1–3.8 (F) |
6–12 years | <12 | <77 | <39 | <10 | <17 | >508 | 0.9–3.4 (M) 0.9–3.9 (F) |
12–18 years | <13 (M) <12 (F) | <78 | <23 (M) <6 (F) | <6 | >470 (M) >564 (F) | 0.3–1.8 (M) 0.5–2.2 (F) |
Iron Formulation | Recommended Dosage * | Benefit | Criticality | Note |
---|---|---|---|---|
Iron sulfate Iron gluconate | 2–6 mg/kg/day |
|
| A low dosage, i.e., 2 mg/Kg/day, has been proposed as a still efficacious and better-tolerated schedule |
Iron glycinate | 0.45 mg/kg/day |
| ||
Liposomal iron | 1.4 mg/kg/day |
|
| |
I.v. iron gluconate | Total dose to be calculated based on initial Hb and weight |
|
| |
I.v. carboxymaltose iron | Dose to be calculated based on initial Hb and weight |
|
| Indication for adolescents ≥ 14 years |
Food Category | Food | Iron Content (mg/100 g of Food) |
---|---|---|
Heme iron | ||
Meat | Turkey, calf, bovine, horse | 2–4 |
Beef liver | 8.8 | |
Beef spleen | 42 | |
Fish | Cod Sea bass | 0.9 4.0 |
Shrimp | 2.6 | |
Non-heme iron | ||
Egg | Whole egg | 1.5 |
Egg yolk | 4.9 | |
Cereals | Bread | 2.5 |
Pasta Rice | 2.5 2.9 | |
Legumes | Fresh legumes | 2.3 |
Dry legumes | 6–8 | |
Fruit | Fresh fruit Olive | 0.4–0.5 1.6 |
Dry fruit-nuts | 2.1–2.6 | |
Vegetables | Spinach, tomato, potato, artichokes, lettuce | 0.4–1.3 |
Dairy products | Milk Yogurt Parmesan cheese | 0.1–0.3 0.1 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscheo, C.; Licciardello, M.; Samperi, P.; La Spina, M.; Di Cataldo, A.; Russo, G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites 2022, 12, 289. https://doi.org/10.3390/metabo12040289
Moscheo C, Licciardello M, Samperi P, La Spina M, Di Cataldo A, Russo G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites. 2022; 12(4):289. https://doi.org/10.3390/metabo12040289
Chicago/Turabian StyleMoscheo, Carla, Maria Licciardello, Piera Samperi, Milena La Spina, Andrea Di Cataldo, and Giovanna Russo. 2022. "New Insights into Iron Deficiency Anemia in Children: A Practical Review" Metabolites 12, no. 4: 289. https://doi.org/10.3390/metabo12040289
APA StyleMoscheo, C., Licciardello, M., Samperi, P., La Spina, M., Di Cataldo, A., & Russo, G. (2022). New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites, 12(4), 289. https://doi.org/10.3390/metabo12040289