Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Analytical Method Validation
2.3. Sample Collection
2.4. Sample Preparation
2.5. GC–IMS Analysis
2.6. Data Analysis
- I, the Kovats retention index of the peak;
- n, the carbon number of the shorter alkane;
- N, the carbon number of the longer alkane;
- Rt, the retention time registered.
3. Results
3.1. Analytical Method Validation
3.2. VOCs Analysis in Urine Samples
3.3. VOCs Identification in a Sub-Population of Urine Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Costa, B.R.B.; De Martinis, B.S. Analysis of Urinary VOCs Using Mass Spectrometric Methods to Diagnose Cancer: A Review. Clin. Mass Spectrom. 2020, 18, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.; Joshi, R.; Vishnu, G.A.; Bhalerao, S.; Pandya, H.J. Electronic Nose: A Non-Invasive Technology for Breath Analysis of Diabetes and Lung Cancer Patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, D.; Smolinska, A.; Jöbsis, Q.; Rosias, P.; Muris, J.; Dallinga, J.; Dompeling, E.; Van Schooten, F.J. Can Exhaled Volatile Organic Compounds Predict Asthma Exacerbations in Children? J. Breath Res. 2017, 11, 016016. [Google Scholar] [CrossRef] [PubMed]
- Shigeyama, H.; Wang, T.; Ichinose, M.; Ansai, T.; Lee, S.W. Identification of Volatile Metabolites in Human Saliva from Patients with Oral Squamous Cell Carcinoma via Zeolite-Based Thin-Film Microextraction Coupled with GC-MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2019, 1104, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Greco, V.; Piras, C.; Pieroni, L.; Ronci, M.; Putignani, L.; Roncada, P.; Urbani, A. Applications of MALDI-TOF Mass Spectrometry in Clinical Proteomics. Expert Rev. Proteom. 2018, 15, 683–696. [Google Scholar] [CrossRef]
- Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 981458. [Google Scholar] [CrossRef]
- Tyagi, H.; Daulton, E.; Bannaga, A.S.; Arasaradnam, R.P.; Covington, J.A. Urinary Volatiles and Chemical Characterisation for the Non-Invasive Detection of Prostate and Bladder Cancers. Biosensors 2021, 11, 437. [Google Scholar] [CrossRef]
- Tiele, A.; Wicaksono, A.; Kansara, J.; Arasaradnam, R.P.; Covington, J.A. Breath Analysis Using Enose and Ion Mobility Technology to Diagnose Inflammatory Bowel Disease—A Pilot Study. Biosensors 2019, 9, 55. [Google Scholar] [CrossRef]
- Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.I. Ion Mobility Spectrometry for the Detection of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer: Results of a Pilot Study. Thorax 2009, 64, 744–748. [Google Scholar] [CrossRef]
- Gasparri, R.; Capuano, R.; Guaglio, A.; Caminiti, V.; Canini, F.; Catini, A.; Sedda, G.; Paolesse, R.; Di Natale, C.; Spaggiari, L. Volatolomic Urinary Profile Analysis for Diagnosis of the Early Stage of Lung Cancer. J. Breath Res. 2022, 16, 046008. [Google Scholar] [CrossRef]
- Porto-Figueira, P.; Pereira, J.A.M.; Câmara, J.S. Exploring the Potential of Needle Trap Microextraction Combined with Chromatographic and Statistical Data to Discriminate Different Types of Cancer Based on Urinary Volatomic Biosignature. Anal. Chim. Acta 2018, 1023, 53–63. [Google Scholar] [CrossRef]
- Aggarwal, P.; Baker, J.; Boyd, M.T.; Coyle, S.; Probert, C.; Chapman, E.A. Optimisation of Urine Sample Preparation for Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry: Altering Sample PH, Sulphuric Acid Concentration and Phase Ratio. Metabolites 2020, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Aggio, R.B.M.; Mayor, A.; Coyle, S.; Reade, S.; Khalid, T.; Ratcliffe, N.M.; Probert, C.S.J. Freeze-Drying: An Alternative Method for the Analysis of Volatile Organic Compounds in the Headspace of Urine Samples Using Solid Phase Micro-Extraction Coupled to Gas Chromatography-Mass Spectrometry. Chem. Cent. J. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Sun, Z.; Chen, D.; Su, X.; Jiang, J.; Li, G.; Lin, B.; Yan, J. Developing Urinary Metabolomic Signatures as Early Bladder Cancer Diagnostic Markers. Omics 2015, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.W.; Moore, D.R.; Marzouk, E.B.; Glenn, F.R.; Hallock, R.M. Canine Olfaction and Electronic Nose Detection of Volatile Organic Compounds in the Detection of Cancer: A Review. Cancer Invest. 2015, 33, 411–419. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Cmara, J.S. Investigation of Urinary Volatile Organic Metabolites as Potential Cancer Biomarkers by Solid-Phase Microextraction in Combination with Gas Chromatography-Mass Spectrometry. Br. J. Cancer 2011, 105, 1894–1904. [Google Scholar] [CrossRef]
- Matin, A.A.; Maleki, R.; Farajzadeh, M.A.; Farhadi, K.; Hosseinzadeh, R.; Jouyban, A. Headspace SPME-GC Method for Acetone Analysis and its Biomedical Application. Chromatographia 2007, 66, 383–387. [Google Scholar] [CrossRef]
- Mochalski, P.; Unterkofler, K. Quantification of Selected Volatile Organic Compounds in Human Urine by Gas Chromatography Selective Reagent Ionization Time of Flight Mass Spectrometry (GC-SRI-TOF-MS) Coupled with Head-Space Solid-Phase Microextraction (HS-SPME). Analyst 2016, 141, 4796–4803. [Google Scholar] [CrossRef]
- Yamada, K.; Ohishi, K.; Gilbert, A.; Akasaka, M.; Yoshida, N.; Yoshimura, R. Measurement of Natural Carbon Isotopic Composition of Acetone in Human Urine. Anal. Bioanal. Chem. 2015, 408, 1597–1607. [Google Scholar] [CrossRef]
- Hanai, Y.; Shimono, K.; Matsumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, G.K.; Oka, H. Urinary Volatile Compounds as Biomarkers for Lung Cancer. Biosci. Biotechnol. Biochem. 2012, 76, 679–684. [Google Scholar] [CrossRef]
- Cauchi, M.; Weber, C.M.; Bolt, B.J.; Spratt, P.B.; Bessant, C.; Turner, D.C.; Willis, C.M.; Britton, L.E.; Turner, C.; Morgan, G. Evaluation of Gas Chromatography Mass Spectrometry and Pattern Recognition for the Identification of Bladder Cancer from Urine Headspace. Anal. Methods 2016, 8, 4037–4046. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Pi, X.; Guo, L.; Wang, Y.; Li, M.; Feng, Y.; Lin, Z.; Hou, W.; Li, E. Urinary Volatile Organic Compounds as Potential Biomarkers for Renal Cell Carcinoma. Biomed. Rep. 2016, 5, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.; Mills, G.A. Urine 4-Heptanone: A β-Oxidation Product of 2-Ethylhexanoic Acid from Plasticisers. Clin. Chim. Acta 2001, 306, 51–61. [Google Scholar] [CrossRef]
- Silva, C.L.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Implementing a Central Composite Design for the Optimization of Solid Phase Microextraction to Establish the Urinary Volatomic Expression: A First Approach for Breast Cancer. Metabolomics 2019, 15, 64. [Google Scholar] [CrossRef]
- Porto-Figueira, P.; Pereira, J.; Miekisch, W.; Câmara, J.S. Exploring the Potential of NTME/GC-MS, in the Establishment of Urinary Volatomic Profiles. Lung Cancer Patients as Case Study. Sci. Rep. 2018, 8, 13113. [Google Scholar] [CrossRef]
- Santos, P.M.; del Nogal Sánchez, M.; Pozas, Á.P.C.; Pavón, J.L.P.; Moreno-Cordero, B. Determination of Ketones and Ethyl Acetate—A Preliminary Study for the Discrimination of Patients with Lung Cancer. Anal. Bioanal. Chem. 2017, 409, 5689–5696. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid Volatolomics and Disease Detection. Angew. Chem. Int. Ed. 2015, 54, 11036–11048. [Google Scholar] [CrossRef]
- Lima, A.R.; Pinto, J.; Azevedo, A.I.; Barros-Silva, D.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. Identification of a Biomarker Panel for Improvement of Prostate Cancer Diagnosis by Volatile Metabolic Profiling of Urine. Br. J. Cancer 2019, 121, 857–868. [Google Scholar] [CrossRef]
- Guadagni, R.; Miraglia, N.; Simonelli, A.; Silvestre, A.; Lamberti, M.; Feola, D.; Acampora, A.; Sannolo, N. Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry Method Validation for the Determination of Endogenous Substances: Urinary Hexanal and Heptanal as Lung Tumor Biomarkers. Anal. Chim. Acta 2011, 701, 29–36. [Google Scholar] [CrossRef]
- Opitz, P.; Herbarth, O. The Volatilome-Investigation of Volatile Organic Metabolites (VOM) as Potential Tumor Markers in Patients with Head and Neck Squamous Cell Carcinoma (HNSCC). J. Otolaryngol. Head Neck Surg. 2018, 47, 42. [Google Scholar] [CrossRef]
- Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Alkateb, H.; Jones, P.; Probert, C.S.; Ratcliffe, N. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer. PLoS ONE 2015, 10, e0143283. [Google Scholar] [CrossRef] [PubMed]
- Garner, C.E.; Smith, S.; de Lacy Costello, B.; White, P.; Spencer, R.; Probert, C.S.J.; Ratcliffem, N.M. Volatile Organic Compounds from Feces and Their Potential for Diagnosis of Gastrointestinal Disease. FASEB J. 2007, 21, 1675–1688. [Google Scholar] [CrossRef] [PubMed]
- Liebich, H.; Buelow, H.; Kallmayer, R. Quantification of Endogenous Aliphatic Alcohols in Serum and Urine. J. Chromatogr. A 1982, 239, 343–349. [Google Scholar] [CrossRef]
- Taunk, K.; Porto-Figueira, P.; Pereira, J.A.M.; Taware, R.; da Costa, N.L.; Barbosa, R.; Rapole, S.; Câmara, J.S. Urinary Volatomic Expression Pattern: Paving the Way for Identification of Potential Candidate Biosignatures for Lung Cancer. Metabolites 2022, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Amaro, F.; Lima, A.R.; Carvalho-Maia, C.; Jerónimo, C.; Henrique, R.; Bastos, M.D.L.; Carvalho, M.; de Pinho, P.G. Urinary Volatilomics Unveils a Candidate Biomarker Panel for Noninvasive Detection of Clear Cell Renal Cell Carcinoma. J. Proteome Res. 2021, 20, 3068–3077. [Google Scholar] [CrossRef] [PubMed]
- Guy, R.I.H.T. Guideline, Validation of Analytical Procedures: Text and Methodology Q2 (R1); International Conference on Harmonisation: Geneva, Switzerland, 2005; pp. 11–12. [Google Scholar]
- Bannaga, A.S.; Tyagi, H.; Daulton, E.; Covington, J.A.; Arasaradnam, R.P. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules 2021, 26, 2447. [Google Scholar] [CrossRef] [PubMed]
- Greco, V.; Piras, C.; Pieroni, L.; Urbani, A. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. Serum/Plasma Proteom. 2017, 1619, 3–21. [Google Scholar] [CrossRef]
- Greco, V.; Pieragostino, D.; Piras, C.; Aebersold, R.; Wiltfang, J.; Caltagirone, C.; Bernardini, S.; Urbani, A. Direct Analytical Sample Quality Assessment for Biomarker Investigation: Qualifying Cerebrospinal Fluid Samples. Proteomics 2014, 14, 1954–1962. [Google Scholar] [CrossRef]
- Stevens, V.L.; Hoover, E.; Wang, Y.; Zanetti, K.A. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites 2019, 9, 156. [Google Scholar] [CrossRef]
Compound | S0 ppm (g/mL) | M1 ppb (µg/L) | M2 ppb (µg/L) | M3 ppb (µg/L) | M4 ppb (µg/L) | M5 ppb (µg/L) | M6 ppb (µg/L) | M7 ppb (µg/L) |
---|---|---|---|---|---|---|---|---|
2-Butanone | 0.135 | 216 | 162 | 108 | 70.2 | 54 | 27 | 10.8 |
2-Pentanone | 0.135 | 216 | 162 | 108 | 70.2 | 54 | 27 | 10.8 |
2-Hexanone | 0.135 | 216 | 162 | 108 | 70.2 | 54 | 27 | 10.8 |
2-Heptanone | 0.137 | 218.4 | 163.8 | 109.2 | 71 | 54 | 27.3 | 10.9 |
2-Octanone | 0.137 | 218.4 | 163.8 | 109.2 | 71 | 54 | 27.3 | 10.9 |
2-Nonanone | 0.137 | 218.4 | 163.8 | 109.2 | 71 | 54 | 27.3 | 10.9 |
GC-IMS Technical Parameters | |
---|---|
Gas Chromatograph | |
Column | Capillary, DB wax |
Carrier Gas | Air, CGFU Circular Gas Flow Unit |
Flow Control | Electronic pressure controller |
Injection Volume | 3 mL |
Sampling | Heated 6-port-valve incl. sample pump |
Ion Mobility Spectrometer | |
Ionisation | API, 3H-Tritium Source (<380 MBq) |
Model | Time-of-flight/10 cm tube, ±5000 V |
Drift Gas | Air, CGFU Circular Gas Flow Unit |
Detection | Faraday Plate |
Class (a) | VOCs (b) | Rt [s] (c) | Ri (d) | % (e) |
---|---|---|---|---|
Ketones | Acetone | 119 | 812 | 100 |
2-butanone | 141 | 897 | 100 | |
2-pentanone | 177 | 979 | 97 | |
4-heptanone | 334 | 1125 | 16 | |
2-hexanone | 256 | 1070 | 0.87 | |
Aldehydes | Propanal | 112 | 763 | 87 |
Pentanal | 176 | 977 | 44 | |
Hexanal | 255 | 1070 | 28 | |
3-methylbutanal | 159 | 945 | 13 | |
Heptanal | 385 | 1152 | 11 | |
Sulphur compounds | Dimethyl sulphide | 107 | 718 | 21 |
Diallyl sulphide | 405 | 1161 | 0.87 | |
Alcohols | Ethanol | 154 | 934 | 100 |
Propanol | 217 | 1033 | 16 | |
Pentanol | 574 | 1226 | 13 | |
2-methyl-1-propanol | 271 | 1083 | 13 | |
2-methyl-1-butanol | 527 | 1209 | 1.74 | |
2-hexanol | 528 | 1210 | 0.87 | |
Esters | Butyl acetate | 281 | 1091 | 72 |
Pentyl acetate | 338 | 1153 | 51 | |
Ethyl acetate | 141 | 901 | 16 | |
Aromatic Hydrocarbons | Toluene | 228 | 1045 | 13 |
Terpen | α-pinene | 175 | 974 | 16 |
Class (a) | VOCs (b) | Number of Samples (c) | Origin (d) [11] |
---|---|---|---|
Ketones | Acetone | 15 | Endo, M |
2-pentanone | 14 | Exo (Food) | |
2-butanone | 12 | Endo | |
4-Heptanone | 7 | Endo | |
2-hexanone | 1 | Endo | |
Aldehydes | 3-methylbutanal | 15 | Unknown |
Sulphur compounds | Dimethyl sulphide | 15 | Endo/Exo (D, M) |
Alcohols | Ethanol | 15 | Unknown |
Propanol | 15 | Unknown | |
Pentanol | 15 | Unknown | |
2-methyl-1-propanol | 15 | Unknown | |
2-hexanol | 1 | Unknown | |
Esters | Butyl acetate | 2 | Unknown |
Terpenes | α-pinene | 3 | Endo/Exo (Food) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccio, G.; Baroni, S.; Urbani, A.; Greco, V. Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites 2022, 12, 1072. https://doi.org/10.3390/metabo12111072
Riccio G, Baroni S, Urbani A, Greco V. Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites. 2022; 12(11):1072. https://doi.org/10.3390/metabo12111072
Chicago/Turabian StyleRiccio, Giulia, Silvia Baroni, Andrea Urbani, and Viviana Greco. 2022. "Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS)" Metabolites 12, no. 11: 1072. https://doi.org/10.3390/metabo12111072
APA StyleRiccio, G., Baroni, S., Urbani, A., & Greco, V. (2022). Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites, 12(11), 1072. https://doi.org/10.3390/metabo12111072