Stroke-like Episodes in Inherited Neurometabolic Disorders
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Neurometabolic Mitochondrial Disorders Associated with SLEs
3.1.1. MELAS Syndrome
3.1.2. MERRF Syndrome
3.1.3. Kearns–Sayre Syndrome
3.1.4. Leigh Syndrome
3.2. Other Inborn Errors of Metabolism
3.2.1. Dihydropteridine Reductase (DHPR) Deficiency
3.2.2. Succinic Semialdehyde Dehydrogenase (SSADH) Deficiency
3.3. Urea Cycle Disorders (UCDs)
3.3.1. Carbamoyl Phosphate Synthetase 1 (CPS1) deficiezncy
3.3.2. Ornithine Transcarbamylase Deficiency (OTC)
3.3.3. Citrullinemia
3.4. Organic Acidurias
3.5. Lysosomal Storage Disorders
3.5.1. Fabry’s Disease
3.5.2. Cystinosis
3.6. Thiamine-Responsive Megaloblastic Anemia
3.7. Congenital Disorders of Glycosylation—Phosphomannomutase 2 Deficiency
3.8. The Role of Neuroimaging in Diagnosis of SLE
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Finsterer, J.; Aliyev, R. Metabolic stroke or stroke-like lesion: Peculiarities of a phenomenon. J. Neurol. Sci. 2020, 412, 116726. [Google Scholar] [CrossRef] [PubMed]
- Testai, F.D.; Gorelick, P.B. Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Arch. Neurol. 2010, 67, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Testai, F.D.; Gorelick, P.B. Inherited metabolic disorders and stroke part 2: Homocystinuria, organic acidurias, and urea cycle disorders. Arch. Neurol. 2010, 67, 148–153. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Ricciardi, G.; Giordo, L.; Michele, M.; Toni, D.; Leuzzi, V. Stroke and stroke-like episodes in inborn errors of metabolism: Pathophysiological and clinical implications. Mol. Genet. Metab. 2022, 135, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Tetsuka, S.; Ogawa, T.; Hashimoto, R.; Kato, H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metab. Brain Dis. 2021, 36, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Lax, N.Z.; Blain, A.P.; Erskine, D.; Baker, M.R.; Polvikoski, T.; Thomas, R.H.; Morris, C.M.; Lai, M.; Whittaker, R.G.; et al. Forecasting stroke-like episodes and outcomes in mitochondrial disease. Brain 2022, 145, 542–554. [Google Scholar] [CrossRef]
- Ito, H.; Mori, K.; Kagami, S. Neuroimaging of stroke-like episodes in MELAS. Brain Dev. 2011, 33, 283–288. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Y.; He, L. MRI Features of Stroke-Like Episodes in Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-Like Episodes. Front. Neurol. 2022, 13, 843386. [Google Scholar] [CrossRef]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef]
- Pizzamiglio, C.; Bugiardini, E.; Macken, W.L.; Woodward, C.E.; Hanna, M.G.; Pitceathly, R.D.S. Mitochondrial Strokes: Diagnostic Challenges and Chameleons. Genes 2021, 12, 1643. [Google Scholar] [CrossRef]
- Žigman, T.; Petković Ramadža, D.; Šimić, G.; Barić, I. Inborn Errors of Metabolism Associated With Autism Spectrum Disorders: Approaches to Intervention. Front. Neurosci. 2021, 15, 673600. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 2008, 31, 91–123. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Mitochondrial metabolic stroke: Phenotype and genetics of stroke-like episodes. J. Neurol. Sci. 2019, 400, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.R.; Yogasundaram, H.; Parajuli, N.; Valtuille, L.; Sergi, C.; Oudit, G.Y. MELAS syndrome and cardiomyopathy: Linking mitochondrial function to heart failure pathogenesis. Heart Fail. Rev. 2016, 21, 103–116. [Google Scholar] [CrossRef]
- Quadir, A.; Pontifex, C.S.; Lee Robertson, H.; Labos, C.; Pfeffer, G. Systematic review and meta-analysis of cardiac involvement in mitochondrial myopathy. Neurol. Genet. 2019, 5, e339. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Sakai, F. Pathogenesis of stroke-like episodes in MELAS: Analysis of neurovascular cellular mechanisms. Curr. Neurovasc. Res. 2005, 2, 29–45. [Google Scholar] [CrossRef]
- Ohama, E.; Ohara, S.; Ikuta, F.; Tanaka, K.; Nishizawa, M.; Miyatake, T. Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol. 1987, 74, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Arnold, M.; Bersano, A.; Burlina, A.; Chabriat, H.; Debette, S.; Enzinger, C.; Federico, A.; Filla, A.; Finsterer, J.; et al. Monogenic cerebral small-vessel diseases: Diagnosis and therapy. Consensus recommendations of the European Academy of Neurology. Eur. J. Neurol. 2020, 27, 909–927. [Google Scholar] [CrossRef]
- Gramegna, L.L.; Cortesi, I.; Mitolo, M.; Evangelisti, S.; Talozzi, L.; Cirillo, L.; Tonon, C.; Lodi, R. Major cerebral vessels involvement in patients with MELAS syndrome: Worth a scan? A systematic review. J. Neuroradiol. 2021, 48, 359–366. [Google Scholar] [CrossRef]
- Finsterer, J.; Zarrouk-Mahjoub, S. Mitochondrial vasculopathy. World J. Cardiol. 2016, 8, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Zarrouk Mahjoub, S. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin. Drug Metab. Toxicol. 2012, 8, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Osaki, M.; Hidaka, M.; Kimura, S.; Ohya, Y.; Ago, T.; Kitazono, T.; Arakawa, S. Association between stroke-like episodes and neuronal hyperexcitability in MELAS with m.3243A>G: A case report. eNeurologicalSci 2018, 12, 39–41. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, M.K.; Jeon, T.Y.; Rha, J.H.; Eo, H.; Yoo, S.Y.; Shu, C.H. Diffusion and perfusion characteristics of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode) in thirteen patients. Korean J. Radiol. 2011, 12, 15–24, Erratum in: Korean J. Radiol. 2011, 12, 268. [Google Scholar] [CrossRef]
- Ng, Y.S.; Bindoff, L.A.; Gorman, G.S.; Horvath, R.; Klopstock, T.; Mancuso, M.; Martikainen, M.H.; Mcfarland, R.; Nesbitt, V.; Pitceathly, R.D.S.; et al. Consensus-based statements for the management of mitochondrial stroke-like episodes. Wellcome Open Res. 2019, 4, 201. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, J.A.; Von Allmen, G.K.; Koenig, M.K. Seizure semiology and EEG findings in mitochondrial diseases. Epilepsia 2014, 55, 707–712. [Google Scholar] [CrossRef]
- Finsterer, J.; Wakil, S.M. Stroke-like episodes, peri-episodic seizures, and MELAS mutations. Eur. J. Paediatr. Neurol. 2016, 20, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Dubey, S.; Bhuin, S.; Lahiri, D.; Ray, B.K.; Finsterer, J. MELAS with multiple stroke-like episodes due to the variant m.13513G>A in MT-ND5. Clin. Case Rep. 2022, 10, e05361. [Google Scholar] [CrossRef]
- Finsterer, J. Management of mitochondrial stroke-like-episodes. Eur. J. Neurol. 2009, 16, 1178–1184. [Google Scholar] [CrossRef]
- Finsterer, J. Antiepileptics and NO-precursors may be beneficial for stroke-like episodes. eNeurologicalSci 2018, 14, 38–39. [Google Scholar] [CrossRef]
- Finsterer, J. Optimising therapeutic strategies for acute stroke-like lesions in MELAS. eNeurologicalSci 2020, 21, 100278. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Therapeutic management of stroke-like episodes varies from that of encephalitis. Medicine 2020, 99, e19141. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, S.; Mizuno, K.; Shibata, H.; Kanayama, M.; Kobayashi, M.; Sugiyama, N.; Ban, K.; Ishikawa, T.; Itoh, T.; Togari, H.; et al. Serial electroencephalographic findings in patients with MELAS. Pediatr. Neurol. 1999, 20, 43–48. [Google Scholar] [CrossRef]
- Altmann, J.; Büchner, B.; Nadaj-Pakleza, A.; Schäfer, J.; Jackson, S.; Lehmann, D.; Deschauer, M.; Kopajtich, R.; Lautenschläger, R.; Kuhn, K.A.; et al. Expanded phenotypic spectrum of the m.8344A>G “MERRF” mutation: Data from the German mitoNET registry. J. Neurol. 2016, 263, 961–972. [Google Scholar] [CrossRef]
- Serra, G.; Piccinnu, R.; Tondi, M.; Muntoni, F.; Zeviani, M.; Mastropaolo, C. Clinical and EEG findings in eleven patients affected by mitochondrial encephalomyopathy with MERRF-MELAS overlap. Brain Dev. 1996, 18, 185–191. [Google Scholar] [CrossRef]
- Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child Neurol. 2012, 54, 397–406. [Google Scholar] [CrossRef]
- Tabarki, B.; Hakami, W.; Alkhuraish, N.; Graies-Tlili, K.; Nashabat, M.; Alfadhel, M. Inherited Metabolic Causes of Stroke in Children: Mechanisms, Types, and Management. Front. Neurol. 2021, 12, 633119. [Google Scholar] [CrossRef]
- Huang, C.-C.; Wai, Y.-Y.; Chu, N.-S.; Liou, C.-W.; Pang, C.-Y.; Shih, K.-D.; Wei, Y.-H. Mitochondrial encephalomyopathies: CT and MRI findings and correlations with clinical features. Eur. Neurol. 1995, 35, 199–205. [Google Scholar] [CrossRef]
- Yu, N.; Zhang, Y.F.; Zhang, K.; Xie, Y.; Lin, X.J.; Di, Q. MELAS and Kearns-Sayre overlap syndrome due to the mtDNA m. A3243G mutation and large-scale mtDNA deletions. eNeurologicalSci 2016, 4, 15–18. [Google Scholar] [CrossRef]
- Yu, M.; Yu, L.; Wang, Z.X. Diagnosis and Management of Kearns-Sayre Syndrome Rely on Comprehensive Clinical Evaluation. Chin. Med. J. 2016, 129, 2519–2520. [Google Scholar] [CrossRef]
- Furuya, H.; Sugimura, T.; Yamada, T.; Hayashi, K.; Kobayashi, T. A case of incomplete Kearns-Sayre syndrome with a stroke like episode. Rinsho Shinkeigaku 1997, 37, 680–684. [Google Scholar]
- Yu, M.; Zhang, Z.; Wang, Q.-Q.; Liu, J.; Zuo, Y.-H.; Yu, L.; Xiao, J.-X.; Zhang, W.; Yuan, Y.; Wang, Z.-X. Clinical and Brain Magnetic Resonance Imaging Features in a Cohort of Chinese Patients with Kearns-Sayre Syndrome. Chin. Med. J. 2016, 129, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Na, J.H.; Lee, Y.M. Epilepsy in Leigh Syndrome with Mitochondrial DNA Mutations. Front. Neurol. 2019, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wu, Y.; Zhou, J.; Meng, H.; Zhang, W.; Guo, J. A meta-analysis and systematic review of Leigh syndrome: Clinical manifestations, respiratory chain enzyme complex deficiency, and gene mutations. Medicine 2020, 99, e18634. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Features on cerebral imaging suggesting mitochondrial disorder. Neurodegener. Dis. Manag. 2018, 8, 215–216. [Google Scholar] [CrossRef]
- Coughlin, C.R., 2nd; Hyland, K.; Randall, R.; Ficicioglu, C. Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: A case report. JIMD Rep. 2013, 10, 53–56. [Google Scholar] [CrossRef]
- Attri, S.V.; Singhi, P.; Wiwattanadittakul, N.; Goswami, J.N.; Sankhyan, N.; Salomons, G.S.; Roullett, J.-B.; Hodgeman, R.; Parviz, M.; Gibson, K.M.; et al. Incidence and Geographic Distribution of Succinic Semialdehyde Dehydrogenase (SSADH) Deficiency. JIMD Rep. 2017, 34, 111–115. [Google Scholar] [CrossRef]
- Poretti, A.; Blaser, S.I.; Lequin, M.H.; Fatemi, A.; Meoded, A.; Northington, F.J.; Boltshauser, E.; Huisman, T.A. Neonatal neuroimaging findings in inborn errors of metabolism. J. Magn. Reason. Imaging 2013, 37, 294–312. [Google Scholar] [CrossRef]
- Braissant, O.; McLin, V.A.; Cudalbu, C. Ammonia toxicity to the brain. J. Inherit. Metab. Dis. 2013, 36, 595–612. [Google Scholar] [CrossRef]
- Ali, R.; Nagalli, S. Hyperammonemia. [Updated 25 November 2021]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557504/ (accessed on 25 November 2021.).
- Lee, W.J.; Lim, J.S.; Lee, Y.S. Acute hyperammonemic encephalopathy presenting as a stroke-like episode: Clinical and radiological findings. Int. J. Stroke 2015, 10, E50–E51. [Google Scholar] [CrossRef]
- Wiwattanadittakul, N.; Prust, M.; Gaillard, W.D.; Massaro, A.; Vezina, G.; Tsuchida, T.N.; Gropman, A.L. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol. Genet. Metab. 2018, 125, 235–240. [Google Scholar] [CrossRef]
- Tulinius, M.H.; Hagne, I. EEG findings in children and adolescents with mitochondrial encephalomyopathies: A study of 25 cases. Brain Dev. 1991, 13, 167–173. [Google Scholar] [CrossRef]
- Sperl, W.; Felber, S.; Skladal, D.; Wermuth, B. Metabolic stroke in carbamyl phosphate synthetase deficiency. Neuropediatrics 1997, 28, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shi, J.; Lei, H.; Xia, B.; Mu, D. Neonatal-onset carbamoyl phosphate synthetase I deficiency: A case report. Medicine 2017, 96, e7365. [Google Scholar] [CrossRef] [PubMed]
- Nunley, S.; Ghosh, D. Teaching NeuroImages: MRI findings in carbamoyl phosphate synthetase 1 deficiency. Neurology 2015, 84, e138–e139. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Jiang, L.; Xie, L.; Ma, J.; Li, X.; Cheng, M. Molecular, biochemical, and clinical analyses of five patients with carbamoyl phosphate synthetase 1 deficiency. J. Clin. Lab. Anal. 2020, 34, e23124. [Google Scholar] [CrossRef]
- Gowda, V.K.; Gupta, P.; Shivappa, S.K.; Benakappa, N. Recurrent Stroke Like Episodes Secondary to Ornithine Transcarbamylase Deficiency. Indian J. Pediatr. 2020, 87, 852–853. [Google Scholar] [CrossRef]
- Yu, D.; Lu, G.; Mowshica, R.; Cheng, Y.; Zhao, F. Clinical and cranial MRI features of female patients with ornithine transcarbamylase deficiency: Two case reports. Medicine 2019, 98, e16827. [Google Scholar] [CrossRef]
- Brunquell, P.; Tezcan, K.; DiMario, F.J., Jr. Electroencephalographic findings in ornithine transcarbamylase deficiency. J. Child Neurol. 1999, 14, 533–536. [Google Scholar] [CrossRef]
- Ah Mew, N.; Simpson, K.L.; Gropman, A.L.; Lanpher, B.C.; Chapman, K.A.; Summar, M.L. Urea Cycle Disorders Overview. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1217/ (accessed on 22 June 2017).
- Majoie, C.B.; Mourmans, J.M.; Akkerman, E.M.; Duran, M.; Poll-The, B.T. Neonatal citrullinemia: Comparison of conventional MR, diffusion-weighted, and diffusion tensor findings. AJNR Am. J. Neuroradiol. 2004, 25, 32–35. [Google Scholar]
- Ruder, J.; Legacy, J.; Russo, G.; Davis, R. Neonatal citrullinemia: Novel, reversible neuroimaging findings correlated with ammonia level changes. Pediatr. Neurol. 2014, 51, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Kara, B.; Albayram, S.; Tutar, O.; Altun, G.; Koçer, N.; Işlak, C. Diffusion-weighted magnetic resonance imaging findings of a patient with neonatal citrullinemia during acute episode. Eur. J. Paediatr. Neurol. 2009, 13, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Engel, R.C.; Buist, N.R. The EEGs of infants with citrullinemia. Dev. Med. Child Neurol. 1985, 27, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Al-Hassnan, Z.N.; Rashed, M.S.; Al-Dirbashi, O.Y.; Patay, Z.; Rahbeeni, Z.; Abu-Amero, K.K. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: Clinical, biochemical and molecular analysis. J. Neurol. Sci. 2008, 264, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Villani, G.R.; Gallo, G.; Scolamiero, E.; Salvatore, F.; Ruoppolo, M. “Classical organic acidurias”: Diagnosis and pathogenesis. Clin. Exp. Med. 2017, 17, 305–323. [Google Scholar] [CrossRef]
- Baumgartner, M.R.; Hörster, F.; Dionisi-Vici, C.; Haliloglu, G.; Karall, D.; Chapman, A.K.; Huemer, M.; Hochuli, M.; Assoun, M.; Ballhausen, D.; et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J. Rare Dis. 2014, 9, 130. [Google Scholar] [CrossRef]
- Schreiber, J.; Chapman, K.A.; Summar, M.L.; Mew, N.A.; Sutton, V.R.; MacLeod, E.; Stagni, K.; Ueda, K.; Franks, J.; Island, E.; et al. Neurologic considerations in propionic acidemia. Mol. Genet. Metab. 2012, 105, 10–15. [Google Scholar] [CrossRef]
- Almuqbil, M.; Chinsky, J.M.; Srivastava, S. Metabolic Strokes in Propionic Acidemia: Transient Hemiplegic Events without Encephalopathy. Child Neurol. Open. 2019, 6, 2329048X19873242. [Google Scholar] [CrossRef]
- Reddy, N.; Calloni, S.F.; Vernon, H.J.; Boltshauser, E.; Huisman, T.A.G.M.; Soares, B.P. Neuroimaging Findings of Organic Acidemias and Aminoacidopathies. Radiographics 2018, 38, 912–931. [Google Scholar] [CrossRef]
- Mises, J.; Moussalli-Salefranque, F.; Plouin, P.; Saudubray, J.M. l’E.E.G. dans les acidémies méthylmaloniques [The E.E.G. in methylmalonic acidaemia (author’s transl)]. Rev. Electroencephalogr. Neurophysiol. Clin. 1978, 8, 71–77. [Google Scholar] [CrossRef]
- Hussain, E.; Nordli, D. EEG patterns in acute pediatric encephalopathies. J. Clin. Neurophysiol. 2013, 30, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Banerjee, A.; Gandhi, A.B.; Kaleem, I.; Alexander, J.; Hisbulla, M.; Kannichamy, V.; Subas, S.V.; Hamid, P. Stroke and Fabry Disease: A Review of Literature. Cureus 2020, 12, e12083. [Google Scholar] [CrossRef]
- Ginsberg, L. Nervous system manifestations of Fabry disease: Data from FOS—the Fabry Outcome Survey. In Fabry Disease: Perspectives from 5 Years of FOS; Mehta, A., Beck, M., Sunder-Plassmann, G., Eds.; Chapter 23; Oxford PharmaGenesis: Oxford, UK, 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK11613/ (accessed on 24 October 2006).
- Rost, N.S.; Cloonan, L.; Kanakis, A.S.; Fitzpatrick, K.M.; Azzariti, D.R.; Clarke, V.; Lourenco, C.M.; Germain, D.; Politei, J.M.; Homola, G.A.; et al. Determinants of white matter hyperintensity burden in patients with Fabry disease. Neurology 2016, 86, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Tátá, C.; Massas, M.; Pinto, F.; Caçador, N.; Silva, A.L. Fabry Disease: A Atypical Presentation. Cureus 2021, 13, e18708. [Google Scholar] [CrossRef] [PubMed]
- Servais, A.; Saitovitch, A.; Hummel, A.; Boisgontier, J.; Scemla, A.; Sberro-Soussan, R.; Snanoudj, R.; Lemaitre, H.; Legendre, C.; Pontoizeau, C.; et al. Central nervous system complications in adult cystinosis patients. J. Inherit. Metab. Dis. 2020, 43, 348–356. [Google Scholar] [CrossRef]
- Servais, A.; Boisgontier, J.; Saitovitch, A.; Hummel, A.; Boddaert, N. Central Nervous System Complications in Cystinosis: The Role of Neuroimaging. Cells 2022, 11, 682. [Google Scholar] [CrossRef]
- Francisco, A.A.; Foxe, J.J.; Horsthuis, D.J.; Molholm, S. Impaired auditory sensory memory in Cystinosis despite typical sensory processing: A high-density electrical mapping study of the mismatch negativity (MMN). Neuroimage Clin. 2020, 25, 102170. [Google Scholar] [CrossRef]
- Sako, S.; Tsunogai, T.; Oishi, K. Thiamine-Responsive Megaloblastic Anemia Syndrome. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1282/ (accessed on 28 July 2022).
- Karimzadeh, P.; Moosavian, T.; Moosavian, H. Recurrent Stroke in a Child with TRMA Syndrome and SLC19A2 Gene Mutation. Iran J. Child Neurol. 2018, 12, 84–88. [Google Scholar]
- Setoodeh, A.; Haghighi, A.; Saleh-Gohari, N.; Ellard, S.; Haghighi, A. Identification of a SLC19A2 nonsense mutation in Persian families with thiamine-responsive megaloblastic anemia. Gene 2013, 519, 295–297. [Google Scholar] [CrossRef]
- Ganie, M.A.; Ali, I.; Ahangar, A.; Wani, M.M.; Ahmed, S.; Bhat, M.; Seth, S.; Mudasir, S. Thiamine responsive megaloblastic anemia syndrome associated with patent ductus arteriosus: First case report from Kashmir Valley of the Indian subcontinent. Indian J. Endocrinol. Metab. 2012, 16, 646–650. [Google Scholar] [CrossRef]
- Ghaemi, N.; Ghahraman, M.; Abbaszadegan, M.R.; Baradaran-Heravi, A.; Vakili, R. Novel mutation in the SLC19A2 gene in an Iranian family with thiamine-responsive megaloblastic anemia: A series of three cases. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Wernicke Encephalopathy Mimicking MELAS. Medicina 2022, 58, 660. [Google Scholar] [CrossRef] [PubMed]
- Madaan, P.; Jauhari, P.; Michael, S.N.; Sinha, A.; Chakrabarty, B.; Gulati, S. Stroke as an Initial Manifestation of Thiamine-Responsive Megaloblastic Anemia. Ann. Indian Acad. Neurol. 2020, 23, 136–138. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Q.; Ding, Y.; Li, Q.; Yao, R.; Wang, J.; Wang, X. TRMA syndrome with a severe phenotype, cerebral infarction, and novel compound heterozygous SLC19A2 mutation: A case report. BMC Pediatr. 2019, 19, 233. [Google Scholar] [CrossRef] [PubMed]
- Spehar Uroic, A.; Milenkovic, D.; De Franco, E.; Bilic, E.; Rojnic Putarek, N.; Krnic, N. Importance of Immediate Thiamine Therapy in Children with Suspected Thiamine-Responsive Megaloblastic Anemia-Report on Two Patients Carrying a Novel SLC19A2 Gene Mutation. J. Pediatr. Genet. 2020, 11, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Ott, M.; Werneke, U. Wernicke’s encephalopathy—From basic science to clinical practice. Part 1: Understanding the role of thiamine. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320978106. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, S.; Matthijs, G.; Jaeken, J. Congenital disorders of glycosylation: A review. Pediatr. Res. 2002, 52, 618–624. [Google Scholar] [CrossRef]
- Paprocka, J.; Jezela-Stanek, A.; Tylki-Szymańska, A.; Grunewald, S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci. 2021, 11, 88. [Google Scholar] [CrossRef]
- Serrano, M. Stroke-Like Episodes in PMM2-CDG: When the Lack of Other Evidence Is the Only Evidence. Front. Pediatr. 2021, 9, 717864. [Google Scholar] [CrossRef]
- Izquierdo-Serra, M.; Martínez-Monseny, A.F.; López, L.; Carrillo-García, J.; Edo, A.; Ortigoza-Escobar, J.D.; García, O.; Cancho-Candela, R.; Carrasco-Marina, M.L.; Gutiérrez-Solana, L.G.; et al. Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy. Int. J. Mol. Sci. 2018, 19, 619. [Google Scholar] [CrossRef]
- Jen, J.C. Familial Hemiplegic Migraine. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1388/ (accessed on 29 April 2021).
- Di Stefano, V.; Rispoli, M.G.; Pellegrino, N.; Graziosi, A.; Rotondo, E.; Napoli, C.; Pietrobon, D.; Brighina, F.; Parisi, P. Diagnostic and therapeutic aspects of hemiplegic migraine. J. Neurol. Neurosurg. Psychiatry 2020, 91, 764–771. [Google Scholar] [CrossRef]
- Barone, R.; Carrozzi, M.; Parini, R.; Battini, R.; Martinelli, D.; Elia, M.; Spada, M.; Lilliu, F.; Ciana, G.; Burlina, A.; et al. A nationwide survey of PMM2-CDG in Italy: High frequency of a mild neurological variant associated with the L32R mutation. J. Neurol. 2015, 262, 154–164. [Google Scholar] [CrossRef]
- Orsucci, D.; Caldarazzo Ienco, E.; Montano, V.; Siciliano, G.; Mancuso, M. Mitochondrial stroke-like episodes: The search for new therapies. Pharmacol. Res. 2022, 180, 106228. [Google Scholar] [CrossRef]
- Vilela, P. Acute stroke differential diagnosis: Stroke mimics. Eur. J. Radiol. 2017, 96, 133–144. [Google Scholar] [CrossRef]
- Yager, J.Y.; Hartfield, D.S. Neurologic manifestations of iron deficiency in childhood. Pediatr. Neurol. 2002, 27, 85–92. [Google Scholar] [CrossRef]
- Kavitapu, V.V.; Madhava, S.B.; Sharma, S. Epidemiology, pathophysiology, and hindrance of urea cycle error of metabolism. Innovare J. Med. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Huff, J.S. Stroke mimics and chameleons. Emerg. Med. Clin. North Am. 2002, 20, 583–595. [Google Scholar] [CrossRef]
- Pohl, M.; Hesszenberger, D.; Kapus, K.; Meszaros, J.; Feher, A.; Varadi, I.; Pusch, G.; Fejes, E.; Tibold, A.; Feher, G. Ischemic stroke mimics: A comprehensive review. J. Clin. Neurosci. 2021, 93, 174–182. [Google Scholar] [CrossRef]
- Ikawa, M.; Okazawa, H.; Yoneda, M. Molecular imaging for mitochondrial metabolism and oxidative stress in mitochondrial diseases and neurodegenerative disorders. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129832. [Google Scholar] [CrossRef]
- Pia, S.; Lui, F. Melas Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532959/ (accessed on 4 July 2022).
- Felczak, P.; Lewandowska, E.; Stępniak, I.; Ołdak, M.; Pollak, A.; Lechowicz, U.; Pasennik, E.; Stępień, T.; Wierzba-Bobrowicz, T. Pathology of mitochondria in MELAS syndrome: An ultrastructural study. Pol. J. Pathol. 2017, 68, 173–181. [Google Scholar] [CrossRef]
- Oldfors, A.; Fyhr, I.M.; Holme, E.; Larsson, N.G.; Tulinius, M. Neuropathology in Kearns-Sayre syndrome. Acta Neuropathol. 1990, 80, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Felczak, P.; Stępniak, I.; Kowalski, P.; Stępień, T.; Wierzba-Bobrowicz, T. Pathology of skeletal muscle fibers and small blood vessels in MERRF syndrome: An ultrastructural study. Pol. J. Pathol. 2018, 69, 422–431. [Google Scholar] [CrossRef]
- Lake, N.J.; Bird, M.J.; Isohanni, P.; Paetau, A. Leigh syndrome: Neuropathology and pathogenesis. J. Neuropathol. Exp. Neurol. 2015, 74, 482–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, A.; Bachmann, C.; Colombo, J.P. Ultrastructural pathology in congenital defects of the urea cycle: Ornithine transcarbamylase and carbamylphosphate synthetase deficiency. Virchows Arch. A Path. Anat. Histol. 1981, 393, 321–331. [Google Scholar] [CrossRef]
- Kanaumi, T.; Takashima, S.; Hirose, S.; Kodama, T.; Iwasaki, H. Neuropathology of methylmalonic acidemia in a child. Pediatr. Neurol. 2006, 34, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, E.; Wibrand, F.; Ørngreen, M.C.; Vissing, J.; Horn, N. Impaired energy metabolism and abnormal muscle histology in mut- methylmalonic aciduria. Neurology 2005, 65, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Luciani, A.; Denley, M.C.S.; Govers, L.P.; Sorrentino, V.; Froese, D.S. Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia. Cell Mol. Life Sci. 2021, 78, 6851–6867. [Google Scholar] [CrossRef]
- Haijes, H.A.; Jans, J.J.M.; Tas, S.Y.; Verhoeven-Duif, N.M.; van Hasselt, P.M. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. J. Inherit. Metab. Dis. 2019, 42, 730–744. [Google Scholar] [CrossRef]
- Chapman, K.A.; Gropman, A.; MacLeod, E.; Stagni, K.; Summar, M.L.; Ueda, K.; Mew, N.A.; Franks, J.; Island, E.; Matern, D.; et al. Acute management of propionic acidemia. Mol. Genet Metab. 2012, 105, 16–25. [Google Scholar] [CrossRef]
- Mahnke, P.F.; Weidenbach, H. Zur Pathologie und Pathogenese der Propionazidämie [Pathology and pathogenesis of propionic acidemia]. Zentralbl. Pathol. 1992, 138, 235–239. [Google Scholar]
- Lipiński, P.; Cielecka-Kuszyk, J.; Czarnowska, E.; Bogdańska, A.; Socha, P.; Tylki-Szymańska, A. Congenital disorders of glycosylation in children—Histopathological and ultrastructural changes in the liver. Pediatr. Neonatol. 2021, 62, 278–283. [Google Scholar] [CrossRef] [PubMed]
Neurometabolic Disorder | Genetic and Molecular Basis Pathomechanism | Clinical Manifestations Laboratory Tests Abnormalities | MRI | EEG | Histopathological Changes | Onset and Prevalence | Treatment |
---|---|---|---|---|---|---|---|
MELAS | # 540000 MELAS was first associated with a heteroplasmic point mutation, an A-to-G transition at position 3243 in the MT-tRNA-L (UUR) Decreased activity of Complex I nicotinamide adenine dinucleotide–coenzyme Q reductase and Complex IV cytochrome c oxidase | SLE, epileptic seizures, height deficiency, dementia, episodes of headaches, metabolic acidemia due to increased lactate level, diabetes mellitus, hearing loss and muscle weakness | Acute stage of sSLEs includes gyral swelling, gyriform cortical diffusion restriction, subcortical white matter T2 FLAIR hyperintensity with elevated ADC values and elevated parenchyma lactate in both acutely affected and non-affected brain regions on MRI spectroscopy Chronic stage shows as gyral infarction evolve into areas of encephalomalacia, volume loss and progressive multifocal cerebral atrophy. Symmetric basal ganglia calcifications could also occur Focal brain lesions are often localized in the occipital and parietal lobes, especially in the subcortical and cortical areas | Abnormalities do not occur in all cases of MELAS syndrome, but the most frequent is epileptiform activity Interictal epileptiform activity includes spikes, sharp waves and paroxysmal fast activity and their combinations with slow waves, such as spike-and-waves complexes (spike followed by a slow wave) and polyspike-and-wave complexes (multiple spikes followed by a slow wave) | Mitochondrial proliferation succinate dehydrogenase (SDH)-reactive blood vessels in endothelium and perivascular muscle | Affecting children and young adults; typically present between 2 and 40 years of age Prevalence: 1–9 / 1,000,000 Frequency of SLEs in patients with MELAS 60–80% | Treatment of SLEs with or without epilepsy and with or without paroxysmal Activity on EEG during SLE includes application of L-arginine, carnitine, Coenzyme-q10 Succinate or citrulline and ketogenic diet Results suggest that L-arginine supplementation may reduce risk of SLEs occurrence or the severity of present episodes |
KSS | # 530000 Deletion/duplication analysis of mtDNA in all cases of KSS Heteroplasmic large deletions of the mtDNA Neuropathological changes due to respiratory chain dysfunction | Pigmentary retinopathy (progressive vision impairment due to rod-cone dystrophy). Progressive external ophthalmoplegia (PEO), including ptosis. Cardiac conduction abnormality, including heart block Development —KSS could induce premature death due to cardiac conduction defects; systemic involvement also includes chronic progressive external ophthalmoplegia with ptosis SLEs generally occur spontaneously or due to neuronal hyperexcitability epileptogenic discharges SLEs can be triggered by drugs such as phenytoin or zonisamide | Neuropathology reveals gliosis of the basal ganglia and neuronal degeneration Iron-containing pigment deposition in the caudate nucleus ad pallidum Spongy lesions in the cerebral white matter, brainstem and cerebellum | ||||
Brain MRI may show leukoencephalopathy, often associated with cerebral or cerebellar atrophy and/or basal ganglia and brainstem lesions KSS is characterized by distinctive neuroradiological abnormalities that occur in the cerebellum and brainstem but also in the diencephalon (thalamus), the striatum and the supratentorial white matter, especially subcortical T2-weighted vasogenic edema | Slow background rhythm | The onset is usually before 20 years of age Onset of SLEs: can occur in early childhood; average age is adolescence or adulthood, about 40 years of age Prevalence: 1–3 / 1,000,000 | |||||
MERRF syndrome | OMIM #545000 mitochondrial inheritance Most cases have the common point mutation m.8344A > G in the MTTK gene Dysfunction of endothelium, angiopathy | Spasticity, myoclonic epilepsy, ataxia, generalized epilepsy, dementia loss of hearing, muscle weakness, exercise intolerance Ptosis, optic nerve atrophy, pigmentary retinopathy, optic neuropathy, cardiomyopathy, WPW syndrome, peripheral neuropathy Elevation of pyruvate or/and lactate serum level | Cerebral atrophy, cerebellar atrophy, high T2 white matter signal, globus pallidal atrophy and dentate nucleus calcification | Slowing of the background activity Generalized epileptiform discharges could be detected | Damage of mitochondria in skeletal muscle fibers and small blood vessels Deposits of calcium in vascular walls | Onset at childhood or adulthood Prevalence less than 1:100,000 Frequency of SLEs in patients with m8344A > G mutations 3–4% of patients | Symptomatic management, unavailability of specific treatment methods |
LS | autosomal recessive inheritance mitochondrial mutations OMIM #256000 Depletion of ATP energy, gliosis, excitotoxicity, reactive oxygen species (ROS) production. Increased lactate level leads to hypoxic encephalopathy and pathological change observed in patients with LS | Neurological manifestations such as hypotonia, ataxia, dystonia, nystagmus, strabismus, ophthalmoplegia, retinopathy, ptosis, epileptic seizures, retardation of development, dysfunction of the cardiorespiratory system dysfunction, gastrointestinal and hepatic impairments an increase in lactate blood and/or CSF levels | Bilateral focal necrotic lesions, mainly localized in the area of the thalamus, the brainstem and posterior parts of the spinal cord | EEG abnormalities - Focal seizures slower background activity with epileptic discharges | Vacuolization gliosis Vascular proliferation in brainstem and basal ganglia | Children at the age of 2 years or younger Prevalence: 1:36,000–40,000 | No specific treatment Supplementation of thiamine or riboflavin |
SSADH-D | 4-hydroxybutyric aciduria, OMIM #271980 Monogenic autosomal recessive disorder of the γ-amino butyric acid (GABA) | Epileptic seizures development: develop epileptic seizures, ranging from absence seizures to generalized forms of epilepsy Elevated levels of GHB(gamma-hydroxybutyric acid) in urine, plasma and cerebrospinal fluid. | MRI— increased T2-weighted MRI signal affecting the globus pallidus, cerebellar dentate nucleus and subthalamic nucleus with variable cerebral/cerebellar atrophy | EEG abnormalities are generalized and focal epileptiform discharges, photosensitivity | Histology of the cortex and hippocampus revealed mild to moderate reactive astrogliosis. | Late childhood Very rare about 180 cases around the world | No curative therapy |
DHPR | Autosomal recessive disorder of tetrahydrobiopterin (BH4) synthesis. OMIM#261630 mutations in the QDPR gene, leading to the deficiency of q-dihydropteridine reductase activity It causes an absolute reduction in tetrahydrobiopterin (BH4) levels and an impairment of phenylalanine to tyrosine conversion | Developed movement disorders and epilepsy Labolatory test shows hyperphenylalaninemia | Hyperintense areas in white matter on T2-weighted MRI Images in the regions of cystic lesions or diffused | Hypsarrhythmia paroxysmal activity | No DHPR activity detectable in peripheral blood cells, erythrocytes and leukocytes | Prevalence extremely rare | Treatment—low Phe diet, lifelong biogenic amine replacement therapy is given as L-Dopa and 5-hydroxytryptophan (5-HT) |
CPS1 deficiency | OMIM #237300 Autosomal recessive inheritance 2q34 MIM 608307 | The lack of the CPSI enzyme results in hyperammonemia poor feeding, vomiting, somnolence, irritability ataxia, cerebral edema, seizures, mental retardation | Features of metabolic leukoencephalopathy abnormalities in subcortical white matter, caudate nuclei, dorsal part of the thalamus, hemisphere of the cerebellum Cortical injuries, including acute ischemia, ventricular dilatation and myelination defects | Increased background activity Abnormal spikes Diffused discharges | Measurement of CPSID1 enzyme activity on cells obtained from a liver biopsy can confirm the diagnosis | Mainly neonatal-onset | Low-protein diet hemodialysis L-arginine, L-carnitine, benzoate sodium supplementation |
OTC deficiency | OMIM #311250 X-linked inheritance Xp11.4 OTC MIM 300461 | Hyperammonemic encephalopathy, seizures, vomiting Classic presentation in homozygous males in first weeks after birth | Extensive abnormality in signals of bilateral cerebral cortex, basal ganglia and thalamus Cerebral swelling | Multifocal ictal and interictal discharges | Biopsy shows decreased OTC enzyme activity in the liver | Typically occurs in the few first days of life May occur later in childhood or adulthood | Protein restriction hemodialysis to remove accumulated metabolites |
Citrullinemia | OMIM #215700 Autosomal recessive inheritance 9q34.11 ASS1 MIM 603470 | Cirrhosis, hepatomegaly cerebral edema, ataxia, seizures, mental disability, developmental retardation, hyperammonemia, respiratory alkalosis | T2-weighted images—hyperintensity in the cerebral white matter, cingulate gyri, temporal areas, insula, pons Focal cerebral edema | EEG abnormalities include multifocal spikes, repeated paroxysmal activity | Liver histology reveals fatty change and fibrosis. | Childhood or adult onset Prevalence: 1:57 000 | Dietary protein restriction sodium benzoate, sodium phenylacetate, arginine implementation |
Organic Acidurias | Genetic and Molecular Basis Pathomechanism | Clinical Manifestations Laboratory Tests Abnormalities | MRI | EEG | Histopathological Changes | Onset and Prevalence | Treatment |
---|---|---|---|---|---|---|---|
Methylmalonic acidurias | Mutation: MMUT, MMAA, MMAB, MCEE, MMADHC Autosomal recessive, deficiency of the enzyme methylmalonyl-CoA mutase MIM #251000 vascular dysfunction due to metabolic abnormalities mitochondrial impairments suggested inhibition of mitochondrial mechanisms by methylmalonate/metabolites | hypotonia seizures tremor developmental retardation vomiting hepatomegaly respiratory system dysfunction secondary increased level of ammonia ketonemia increased level of glycine acidemia aciduria | Bilateral pallidal lesions | slowed background activity | mitochondrial subsarcolemmal accumulation normal activities of respiratory chain enzymes brain atrophy decreased myelination hemorrhagic and necrotic lesions spongy alterations in the white matter, cortex of the cerebrum and cerebellum, brainstem, astrogliosis in the brainstem, hippocampus | 1:50,000– 1:100,000 | Hydroxycobalamin trial after stroke-like episode, infusion of glucose, carnitine supplementation, protein-restricted diet, amino-acid aid vitamins supplementation |
Propionic aciduria | PCCA, PCCB OMIM #606054 deficiency of propionyl CoA carboxylase activity affecting vascular endothelial function multiorgan pathology mitochondrial impairments | Encephalopathy, failure to thrive, chronic vomiting, focal neurologic signs, hemiparesis, hemiplegia, cardiomyopathy, hepatomegaly, renal dysfunction, vision problems metabolic acidosis hyperammonemia lactate, alanine and glutamine increased fluid/plasma ratios anemia, neutropenia, thrombocytopenia | initially normal and bilateral basal ganglia T2 hyperintensity with increased 18-Fluoro-2-deoxyglucose uptake in the basal ganglia and thalami and, finally, basal ganglia atrophy with decreased uptake | Comb-like rhythm in propionic aciduria encephalopathy, EEG during acute metabolic decompensation in PA may simply show severe, generalized diffuse slowing but returns to normal when metabolically stable | deposits of proteins in the liver, kidney, fatty tissue, skin degeneration observed in brain tissue | prevalence: 1:105,000–1:130,000 | hydroxocobalamin trial, infusion of glucose, carnitine supplementation protein-restricted diet, amino acid and vitamins supplementation |
Isovaleric aciduria | isovaleryl-CoA dehydrogenase deficiency OMIM 243500 depletion of energy due to inactivation of isovaleryl-CoA dehydrogenase | vomiting dehydration lethargy acidemia aciduria increased level of ammonia pancytopenia | T1-weighted MRI imaging shows hypointensity of bilateral globus pallidus T2-weighted and FLAIR MRI imaging shows hyperintensity of bilateral globus pallidus T1 hypointensity and T2 hyperintensity in the area of supratentorial white matter- neonatal acute stages of disease | neonatal or infantile/ later-onset prevalence: 1:250,000 |
Disorder | Genetic Basis and Molecular Basis Pathomechanism | Clinical Manifestations Laboratory Tests Abnormalities | MRI | EEG | Onset and Prevalence | Histopathological Abnormalities | Treatment |
---|---|---|---|---|---|---|---|
Fabry’s disease | X-linked lysosomal storage disorder subnormal activity of the alpha-galactosidase A, accumulation of glycolipids—globotriaosylceramide (Gb3) mainly in lysosomes MIM# 301500 endothelial dysfunction, prothrombotic state higher production of ROS | growth retardation corneal and lenticular complications cardiovascular impairments renal failure obstructive respiratory disease nausea, vomiting, gastrointestinal complications anemia neuromuscular features TIA, seizures, SLE, stroke, autonomic failure anemia proteins in urine deficiency of alpha-galactosidase in plasma increased level of GB3 and lyso-GB3 | dolichoectasia of the basilar artery bilateral T1-WI hyperintensity of the pulvinar white matter lesions are rare in patients under 50 years of age WML occurs in about 42.81% of patients with FD | typical occurrence before 10 years of age atypical late-onset adulthood prevalence: 1:20,000– 1:60,000 | deposition of glycosphingolipids in the endothelium | intravenous enzyme replacement therapy chaperone therapy | |
Cystinosis | bi-allelic mutations in the CTNS gene 17p13.2-located autosomal recessive MIM # 219800 accumulation and crystallization of cystine | hepatosplenomegaly renal failure myopathy cerebral atrophy acidosis aminoaciduria electrolytes level changes (hypokalemia, hyponatremia, hypophosphatemia) hematuria glucose and proteins in urine | cortical or central atrophy decreased gray matter volume in the left middle frontal gyrus white matter hyperintensity | occurs in the first year of life 1:100,000– 1:200,000 | lysosomal accumulation of cystine |
cysteamine bitartrate implementation |
Disorder | Genetic and Molecular Basis Pathomechanism | Clinical Manifestations Laboratory Tests | MRI | EEG | Histopathological Abnormalities | Onset and Prevalence | Treatment |
---|---|---|---|---|---|---|---|
TRMA |
# 249270 autosomal recessive mutation in the SLC19A2 gene respiratory chain dysfunction energy depletion reduction in oxidative phosphorylation, induction of oxidative stress secondary dysfunction of molecular activities in various tissues | non-autoimmune, early onset diabetes mellitus anemia sensorial deafness stroke and stroke-like episodes megaloblastic anemia dysfunction of glucose metabolism | reversible metabolic lesions | focal discharges | degeneration of peripheral nerves | prevalence: 30 families around the world about 100 cases have been reported | high doses of thiamine |
Congenital Disorder of Glycosylation | Genetic Basis Pathomechanism | Clinical Manifestations Laboratory Tests Abnormalities | MRI | EEG | Histopathological Changes | Onset and Prevalence | Treatment |
---|---|---|---|---|---|---|---|
PMM2 CDG phosphomannomutase deficiency |
CACNA1A
mutations MIM# 212065 (*601785OMIM) gain-of-function mutation in voltage-gated CaV2.1 channel glycosylation disorder leads to dysfunction in molecular cell activities such as protection against proteolysis or pathogens, enzymes, receptors activity | mono-/hemiparesis confusion seizures hyperpyrexia ataxia, developmental retardation, peripheral neuropathy, cerebellar abnormalities triggers of SLE: infectious diseases and head injury | |||||
cerebellar atrophy following extension of the 4th ventricle SLLs localized in occipital, parietal and temporal regions subcortical white matter white matter increased T2 signal in supra- and infratentorial | asymmetric slow activity of the background delta waves activity low voltage beta rhythms TIRDA temporal intermittent rhythmic delta waves activity theta rhythms hemispheric slowing of the background | macro- and microvascular changes liver steatosis inflammatory infiltration fibrosis | Onset: infancy, neonatal age SLEs in about 20–55% of patients with PMM2 CDG prevalence: 1:20 000 | symptomatic management include antiepileptic medications hydration acetazolamide in treatment of cerebellar syndrome |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Będkowska, N.; Zontek, A.; Paprocka, J. Stroke-like Episodes in Inherited Neurometabolic Disorders. Metabolites 2022, 12, 929. https://doi.org/10.3390/metabo12100929
Będkowska N, Zontek A, Paprocka J. Stroke-like Episodes in Inherited Neurometabolic Disorders. Metabolites. 2022; 12(10):929. https://doi.org/10.3390/metabo12100929
Chicago/Turabian StyleBędkowska, Natalia, Aneta Zontek, and Justyna Paprocka. 2022. "Stroke-like Episodes in Inherited Neurometabolic Disorders" Metabolites 12, no. 10: 929. https://doi.org/10.3390/metabo12100929
APA StyleBędkowska, N., Zontek, A., & Paprocka, J. (2022). Stroke-like Episodes in Inherited Neurometabolic Disorders. Metabolites, 12(10), 929. https://doi.org/10.3390/metabo12100929