Personal Metabolomics: A Global Challenge
Abstract
:1. Introduction
2. Main Challenges of Personal Metabolomics
2.1. First Challenge
2.2. Second Challenge
2.3. Third Challenge
- The accumulated scientific data show that metabolomic profiles contain comprehensive information about the organism state, which is supported by a wide variety of metabolic case–control studies. Metabolic profiles show high specificity and selectivity in classifying samples from healthy and sick patients (often exceeding 95%).
- Today, there is no methodology (workflow) capable of personalized metabolomics. In fact, personalized metabolomics does not exist today. Measuring a limited number of metabolites is not relevant here, since it does not realize the essence of metabolomics—measuring an enormous number of metabolites for a panoramic study of biological samples.
- The lack of personalized metabolomics is an algorithmic problem. Since metabolic profiles contain all of the necessary information for diagnosis (see point 1), there is only a need to extract it; however, there is no algorithm capable of doing this yet.
- The creation of such an algorithm would revolutionize laboratory diagnostics. Hundreds of metabolic disease signatures would become measurable from a single drop of blood.
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bossuyt, P.M. Where are all the new omics-based tests? Clin. Chem. 2014, 60, 1256–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McShane, L.M.; Cavenagh, M.M.; Lively, T.G.; Eberhard, D.A.; Bigbee, W.L.; Williams, P.M.; Mesirov, J.P.; Polley, M.Y.C.; Kim, K.Y.; Tricoli, J.V.; et al. Criteria for the use of omics-based predictors in clinical trials. Nature 2013, 502, 317–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics Enables Precision Medicine: “A White Paper, Community Perspective. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Rochat, B. Is there a future for metabotyping in clinical laboratories? Bioanalysis 2015, 7, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Tolstikov, V.; Akmaev, V.R.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A. Clinical metabolomics: A pivotal tool for companion diagnostic development and precision medicine. Expert Rev. Mol. Diagn. 2017, 17, 411–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinu, F.R.; Goldansaz, S.A.; Jaine, J. Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites 2019, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashrafian, H.; Sounderajah, V.; Glen, R.; Ebbels, T.; Blaise, B.J.; Kalra, D.; Kultima, K.; Spjuth, O.; Tenori, L.; Salek, R.M.; et al. Metabolomics: The Stethoscope for the Twenty-First Century. Med. Princ. Pract. 2021, 30, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Mussap, M.; Noto, A.; Piras, C.; Atzori, L.; Fanos, V. Slotting metabolomics into routine precision medicine. Expert Rev. Precis. Med. Drug Dev. 2021, 6, 173–187. [Google Scholar] [CrossRef]
- Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Lokhov, P.G. Evaluation of dried blood spot sampling for clinical metabolomics: Effects of different papers and sample storage stability. Metabolites 2019, 9, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Frolkis, A.; Knox, C.; Lim, E.; Jewison, T.; Law, V.; Hau, D.D.; Liu, P.; Gautam, B.; Ly, S.; Guo, A.C.; et al. SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res. 2010, 38, D480–D487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jewison, T.; Su, Y.; Disfany, F.M.; Liang, Y.; Knox, C.; Maciejewski, A.; Poelzer, J.; Huynh, J.; Zhou, Y.; Arndt, D.; et al. SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database. Nucleic Acids Res. 2014, 42, D478–D484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theranos. Available online: https://en.wikipedia.org/wiki/Theranos (accessed on 5 August 2021).
- Lichtenberg, S.; Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Lokhov, P.G. Metabolomic Laboratory-Developed Tests: Current Statusand Perspectives. Metabolites 2021, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- Metabolon. Metabolon Launches Meta UDxTM Test to Speed Diagnosis of Rare and Undiagnosed Diseases in Children and Adults. Available online: https://www.metabolon.com/metabolon-launches-meta-udx-test-to-speed-diagnosis-of-rare-and-undiagnosed-diseases-in-children-and-adults/ (accessed on 5 August 2021).
- Castelli, F.A.; Rosati, G.; Moguet, C.; Fuentes, C.; Marrugo-Ramírez, J.; Lefebvre, T.; Volland, H.; Merkoçi, A.; Simon, S.; Fenaille, F.; et al. Metabolomics for personalized medicine: The input of analytical chemistry from biomarker discovery to point-of-care tests. Anal. Bioanal. Chem. 2021. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S.; Valencia, A. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Metabolite Database 1 | Metabolic Data |
---|---|
Human Metabolome Database [11] | 631 disease signatures |
808 human metabolic pathways | |
abnormal concentrations of metabolites for 352 conditions | |
110 sets based on organ, tissue, and subcellular localization | |
MetaboAnalyst [12] | Disease signatures: |
344 metabolite sets for human blood | |
384 metabolite sets for human urine | |
166 metabolite sets for human cerebral spinal fluid | |
44 metabolite sets for human feces | |
Pathways: | |
99 metabolite sets based on normal human metabolic pathways | |
84 human metabolic pathways | |
461 metabolite sets based on drug pathways | |
Other types: | |
4598 metabolite sets based on their associations with single nucleotide polymorphism loci | |
912 metabolic sets predicted to change in the case of dysfunctional enzymes | |
73 metabolite sets based on organ, tissue, and subcellular localization | |
Small Molecule Pathway Database [13,14] | 351 pathways (total number) |
113 disease pathways | |
70 normal metabolic pathways | |
168 drug action pathways |
Feature | Metabolomics Study | Personal Metabolomics Analysis |
---|---|---|
Design of study | Case-control type (group vs. group) | Sample vs. control set |
Typical statistics | T-test (for normal distribution); Wilcoxon rank-sum test 2 | Z-score; p-value 1 |
Detection of group-specific features | Yes | No |
Biological insights are revealed | Yes (a vast amount of information related to disease, pathways, etc. is retrieved; these data fill the metabolic databases) | Impossible (the main challenge for personal metabolomics analysis) |
Methods to reveal biological insights | Yes (e.g., metabolite set enrichment analysis) | None |
Detection of biomarkers | Yes, but too rare | Impossible for detection new biomarkers, and easy for already discovered biomarkers |
Detection of individual features | Yes, but considered as a noise useless for study purposes | Only prominent features or biomarkers |
Medical application | Extremely difficult | Yes, but only to detect statistically significant features (e.g., metabolite biomarkers) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lokhov, P.G.; Trifonova, O.P.; Maslov, D.L.; Lichtenberg, S.; Balashova, E.E. Personal Metabolomics: A Global Challenge. Metabolites 2021, 11, 715. https://doi.org/10.3390/metabo11110715
Lokhov PG, Trifonova OP, Maslov DL, Lichtenberg S, Balashova EE. Personal Metabolomics: A Global Challenge. Metabolites. 2021; 11(11):715. https://doi.org/10.3390/metabo11110715
Chicago/Turabian StyleLokhov, Petr G., Oxana P. Trifonova, Dmitry L. Maslov, Steven Lichtenberg, and Elena E. Balashova. 2021. "Personal Metabolomics: A Global Challenge" Metabolites 11, no. 11: 715. https://doi.org/10.3390/metabo11110715
APA StyleLokhov, P. G., Trifonova, O. P., Maslov, D. L., Lichtenberg, S., & Balashova, E. E. (2021). Personal Metabolomics: A Global Challenge. Metabolites, 11(11), 715. https://doi.org/10.3390/metabo11110715