Analytical Methods for Quantification and Identification of Intact Glucosinolates in Arabidopsis Roots Using LC-QqQ(LIT)-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS/MS Method Development for Separation of Intact Glucosinolates
2.2. Method Validation of the Final LC-MS/MS Quantitation Method
2.3. Quantification of Intact Glucosinolates in Arabidopsis Root Extracts by LC-MS/MS
2.4. Use of QqQ(LIT) for Simultaneous Tentative Identification of a Range of Intact Glucosinolates in Arabidopsis Roots
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plants, Growing Conditions and Harvesting
3.3. Sample Preparation and Extraction Process
3.4. Tested Chromatographic Systems
3.5. Final Recommended Method Used for Quantification of Intact Glucosinolates
3.6. Validation of Quantitation Method
3.7. Prec97-IDA-EPI Method
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Sønderby, I.E.; Geu-Flores, F.; Halkier, B.A. Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci. 2010, 15, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003, 64, 3–19. [Google Scholar] [CrossRef]
- Burow, M.; Halkier, B.A.; Kliebenstein, D.J. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Curr. Opin. Plant Biol. 2010, 13, 347–352. [Google Scholar] [CrossRef]
- Clarke, D.B. Glucosinolates, structures and analysis in food. Anal. Methods 2010, 2, 310–325. [Google Scholar] [CrossRef]
- Crocoll, C.; Halkier, B.A.; Burow, M. Analysis and quantification of glucosinolates. Curr. Protoc. Plant Biol. 2016, 1, 385–409. [Google Scholar] [CrossRef]
- West, L.; Tsui, I.; Haas, G. Single column approach for the liquid chromatographic separation of polar and non-polar glucosinolates from broccoli sprouts and seeds. J. Chromatogr. A 2002, 966, 227–232. [Google Scholar] [CrossRef]
- Ares, A.M.; Nozal, M.J.; Bernal, J.L.; Bernal, J. Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves. Food Chem. 2014, 152, 66–74. [Google Scholar] [CrossRef]
- Clarke, N.J.; Rindgen, D.; Korfmacher, W.A.; Cox, K.A. Peer Reviewed: Systematic LC/MS Metabolite Identification in Drug Discovery. Anal. Chem. 2001, 73, 430 A–439 A. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Wang, Q.; Qiao, X.; Guo, H.-C.; Yang, Y.-F.; Bo, T.; Xiang, C.; Guo, D.-A.; Ye, M. New triterpene saponins from the roots of Glycyrrhiza yunnanensis and their rapid screening by LC/MS/MS. J. Pharm. Biomed. 2014, 90, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Lin, X.-H.; Ji, S.; Zhang, Z.-X.; Bo, T.; Guo, D.-A.; Ye, M. Global profiling and novel structure discovery using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis (MNPSS): Characterization of terpene-conjugated curcuminoids in Curcuma longa as a case study. Anal. Chem. 2016, 88, 703–710. [Google Scholar] [CrossRef]
- Rochfort, S.J.; Trenerry, V.C.; Imsic, M.; Panozzo, J.; Jones, R. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Phytochemistry 2008, 69, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom. 2003, 38, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gao, W.; Phelps, M.A.; Wu, D.; Miller, D.D.; Dalton, J.T. Favorable effects of weak acids on negative-ion electrospray ionization mass spectrometry. Anal. Chem. 2004, 76, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Snyder, L.R.; Dolan, J.W. High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Magnusson, B. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics (2014); Eurachem: Teddington, UK, 2014. [Google Scholar]
- Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 22 November 2017).
- Oerlemans, K.; Barrett, D.M.; Suades, C.B.; Verkerk, R.; Dekker, M. Thermal degradation of glucosinolates in red cabbage. Food Chem. 2006, 95, 19–29. [Google Scholar] [CrossRef]
- Jensen, S.K.; Liu, Y.-G.; Eggum, B. The effect of heat treatment on glucosinolates and nutritional value of rapeseed meal in rats. Anim. Feed Sci. Technol. 1995, 53, 17–28. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Rohn, S.; Mewis, I.; Schreiner, M.; Kroh, L.W. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem. 2012, 130, 1–8. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Nozal, M.J.; Bernal, J.L.; Bernal, J. Development and validation of a specific method to quantify intact glucosinolates in honey by LC–MS/MS. J. Food Compos. Anal. 2016, 46, 114–122. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Botting, N.P.; Robertson, A.A.; Morrison, J.J. The synthesis of isotopically labelled glucosinolates for analysis and metabolic studies. J. Label. Compd. Radiopharm. 2007, 50, 260–263. [Google Scholar] [CrossRef]
- Jeschke, V.; Kearney, E.E.; Schramm, K.; Kunert, G.; Shekhov, A.; Gershenzon, J.; Vassão, D.G. How glucosinolates affect generalist lepidopteran larvae: Growth, development and glucosinolate metabolism. Front. Plant Sci. 2017, 8, 1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schramm, K.; Vassão, D.G.; Reichelt, M.; Gershenzon, J.; Wittstock, U. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem. Mol. Biol. 2012, 42, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Kliebenstein, D.J.; Kroymann, J.; Brown, P.; Figuth, A.; Pedersen, D.; Gershenzon, J.; Mitchell-Olds, T. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 2001, 126, 811–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witzel, K.; Hanschen, F.S.; Schreiner, M.; Krumbein, A.; Ruppel, S.; Grosch, R. Verticillium suppression is associated with the glucosinolate composition of Arabidopsis thaliana leaves. PLoS ONE 2013, 8, e71877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stotz, H.U.; Sawada, Y.; Shimada, Y.; Hirai, M.Y.; Sasaki, E.; Krischke, M.; Brown, P.D.; Saito, K.; Kamiya, Y. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J. 2011, 67, 81–93. [Google Scholar] [CrossRef]
- Iven, T.; König, S.; Singh, S.; Braus-Stromeyer, S.A.; Bischoff, M.; Tietze, L.F.; Braus, G.H.; Lipka, V.; Feussner, I.; Dröge-Laser, W. Transcriptional activation and production of tryptophan-derived secondary metabolites in Arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Mol. Plant 2012, 5, 1389–1402. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, M.; Kirkegaard, J.; Wong, P.; Desmarchelier, J. Biofumigation potential of brassicas. Plant Soil 1998, 201, 103–112. [Google Scholar] [CrossRef]
- Tierens, K.F.-J.; Thomma, B.P.; Brouwer, M.; Schmidt, J.; Kistner, K.; Porzel, A.; Mauch-Mani, B.; Cammue, B.P.; Broekaert, W.F. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol. 2001, 125, 1688–1699. [Google Scholar] [CrossRef] [Green Version]
- Witzel, K.; Hanschen, F.S.; Klopsch, R.; Ruppel, S.; Schreiner, M.; Grosch, R. Verticillium longisporum infection induces organ-specific glucosinolate degradation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 508. [Google Scholar] [CrossRef] [Green Version]
- Bressan, M.; Roncato, M.-A.; Bellvert, F.; Comte, G.; el Zahar Haichar, F.; Achouak, W.; Berge, O. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009, 3, 1243–1257. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.S.; Mallik, A.U.; Setliff, E. Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: Role of degraded compounds of indole glucosinolates. J. Chem. Ecol. 2003, 29, 1337–1355. [Google Scholar] [CrossRef] [PubMed]
- Burow, M.; Halkier, B.A. How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study. Curr. Opin. Plant Biol. 2017, 38, 142–147. [Google Scholar] [CrossRef]
- Brown, P.D.; Tokuhisa, J.G.; Reichelt, M.; Gershenzon, J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 2003, 62, 471–481. [Google Scholar] [CrossRef]
- Blazenovic, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabre, N.; Poinsot, V.; Debrauwer, L.; Vigor, C.; Tulliez, J.; Fourasté, I.; Moulis, C. Characterisation of glucosinolates using electrospray ion trap and electrospray quadrupole time-of-flight mass spectrometry. Phytochem. Anal. 2007, 18, 306–319. [Google Scholar] [CrossRef]
- López-Berenguer, C.; Martínez-Ballesta, M.C.; García-Viguera, C.; Carvajal, M. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci. 2008, 174, 321–328. [Google Scholar] [CrossRef]
- Eurachem, G. Harmonized, guidelines for the use of recovery information in analytical measurement. Pure Appl. Chem. 1998, 71, 337–348. [Google Scholar]
- DeFelice, B.C.; Fiehn, O. Rapid LC-MS/MS quantification of cancer related acetylated polyamines in human biofluids. Talanta 2019, 196, 415–419. [Google Scholar] [CrossRef]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry; Nelson Education: Toronto, ON, Canada, 2013. [Google Scholar]
- Matuszewski, B.; Constanzer, M.; Chavez-Eng, C. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Hooshmand, K.; Kudjordjie, E.N.; Nicolaisen, M.; Fiehn, O.; Fomsgaard, I.S. Mass Spectrometry-Based Metabolomics Reveals a Concurrent Action of Several Chemical Mechanisms in Arabidopsis-Fusarium oxysporum Compatible and Incompatible Interactions. J. Agric. Food Chem. 2020, 68, 15335–15344. [Google Scholar] [CrossRef] [PubMed]
Analyte | Mean Extraction Efficiency (%) ± RSD (%) | Mean Matrix Effect (%) ± RSD (%) | ||||
---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |
3msp | 87 ± 5 | 91 ± 4 | 96 ± 4 | 116 ± 6 | 105 ± 5 | 106 ± 3 |
4msb | 145 ± 7 | 137 ± 3 | 126 ± 4 | 123 ± 6 | 111 ± 7 | 107 ± 2 |
4mtb | 36 ± 18 | 48 ± 8 | 65 ± 7 | 131 ± 4 | 113 ± 4 | 113 ± 3 |
3but | 87 ± 7 | 91 ± 4 | 92 ± 4 | 128 ± 7 | 115 ± 7 | 113 ± 4 |
I3M | 78 ± 10 | 85 ± 3 | 89 ± 4 | 136 ± 3 | 115 ± 4 | 113 ± 4 |
4MOI3M | 78 ± 8 | 83 ± 4 | 86 ± 7 | 132 ± 2 | 116 ± 4 | 117 ± 2 |
NMOI3M | 81 ± 7 | 84 ± 5 | 90 ± 4 | 127 ± 2 | 107 ± 1 | 115 ± 3 |
4OHI3M | 46 ± 13 | 45 ± 12 | 41 ± 20 | 125 ± 13 | 123 ± 12 | 111 ± 7 |
Validation Parameter | Spiked Conc. (ng/mL) | 3msp | 4msb | 4mtb | 3but | I3M | 4MOI3M | NMOI3M | 4OHI3M |
---|---|---|---|---|---|---|---|---|---|
Intra-day precision (%RSD) | 3 | 9 | 5 | 4 | 4 | 4 | 15 | 6 | 17 |
30 | 2 | 1 | 10 | 2 | 5 | 8 | 5 | 16 | |
90 | 6 | 3 | 11 | 2 | 3 | 12 | 3 | 21 | |
Inter-day precision (%RSD) | 3 | 10 | 10 | 9 | 2 | 7 | 6 | 8 | 22 |
30 | 4 | 4 | 10 | 3 | 3 | 4 | 5 | 32 | |
90 | 7 | 9 | 9 | 2 | 6 | 6 | 8 | 27 | |
Intra-day accuracy (%RE) | 3 | −10 | 53 | −75 | −20 | −14 | −28 | −16 | −60 |
30 | −3 | 48 | −55 | −10 | −14 | −20 | −6 | −70 | |
90 | −2 | 21 | −30 | −8 | −9 | −28 | −4 | −72 | |
Inter-day accuracy (%RE) | 3 | −8 | 56 | −62 | −5 | −7 | −12 | −11 | −47 |
30 | −7 | 34 | −48 | −4 | −19 | −20 | −16 | −65 | |
90 | −5 | 29 | −39 | −5 | −11 | −17 | −11 | −67 |
Validation Parameter | 3msp | 4msb | 4mtb | 3but | I3M | 4MOI3M | NMOI3M | 4OHI3M |
---|---|---|---|---|---|---|---|---|
LOD (µg/g) | 0.05 | 0.19 | 0.05 | 0.06 | 0.06 | 0.04 | 0.04 | 0.14 |
LOQ (µg/g) | 0.15 | 0.62 | 0.16 | 0.21 | 0.19 | 0.13 | 0.14 | 0.46 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Name | Abbrev. | Class | Ret. Time (min) | [M − H]− (m/z) | MS/MS Product Ions m/z (Base Ion in Bold) |
---|---|---|---|---|---|
3-Hydroxypropyl | 3ohp | hydroxyalkyl | 4.2 | 376 | 75, 80, 97, 134, 180, 259, 275, 297 |
Glucoiberin | 3msp | sulfinylalkyl | 4.8 | 422 | 75, 80, 97, 162, 180, 196, 259, 275, 342, 358, 407 |
Progoitrin | 2OH-3but | hydroxyalkenyl | 5.4 | 388 | 75, 80, 97, 136, 146, 259, 275, 301, 308, 332 |
Glucoraphanin | 4msb | sulfinylalkyl | 5.6 | 436 | 75, 80, 97, 178, 186, 225, 244, 259, 275, 372, 421 |
2-Hydroxy-4-pentenyl | 2OH-4pent | hydroxyalkenyl | 85 | 402 | 97, 136, 160, 259, 275, 305, 322, 366, 384 |
5-Methylsulfinylpentyl | 5msp | sulfinylalkyl | 8.3 | 450 | 97, 192,259, 275, 386, 395, 432, 435 |
Gluconapin | 3but | alkenyl | 10 | 372 | 75, 80, 97, 130, 139, 179, 259, 275, 294, 335, 354 |
4-Hydroxyglucobrassicin | 4OHI3M | Indole glucosinolate | 12.9 | 463 | 75, 97, 132, 160, 169, 221, 259, 267, 275,285, 383 |
6-Methylsulfinylhexyl | 6msh | sulfinylalkyl | 13.2 | 464 | 80, 97, 158, 190, 206, 222, 259, 275, 400, 449 |
Glucoerucin | 4mtb | thioalkyl | 16.7 | 420 | 97, 178, 224, 259, 275, 305, 340, 360, 384 |
7-Methylsulfinylheptyl | 7msh | sulfinylalkyl | 17.5 | 478 | 75, 80, 97, 172, 192, 220, 259, 275, 414, 464 |
Glucobrassicin | I3M | Indole glucosinolate | 18.1 | 447 | 75, 80, 97, 172, 205, 259, 275, 291, 367 |
8-Methylsulfonyloctyl | 8msio | sulfonylalkyl | 19.6 | 508 | 97, 250, 259, 275, 316, 363, 378, 444, 493 |
8-Methylsulfinyloctyl | 8mso | sulfinylalkyl | 20.9 | 492 | 75, 80, 97, 186, 235, 259, 275, 413, 428, 477 |
4-Methoxyglucobrassicin | 4MOI3M | Indole glucosinolate | 22 | 477 | 75, 80, 97, 137, 154, 202, 235, 259, 275, 292, 300 |
Neoglucobrassicin | NMOI3M | Indole glucosinolate | 24.3 | 477 | 75, 80, 97,154, 259, 275, 283, 365, 383, 446, 462 |
Glucomalcomiin | 3bzo | benzoyloxy alkyl | 24.6 | 480 | 75, 80, 97,121, 180, 196, 241, 259, 275, 284, 358 |
6-Methylthiohexyl | 6mth | thioalkyl | 24.7 | 448 | 75, 97, 206, 259, 270, 275, 368 |
7-Methylthioheptyl | 7mth | thioalkyl | 28.3 | 462 | 75, 97, 139, 220, 259, 275, 340 |
8-Methylthiooctyl | 8mto | thioalkyl | 31.7 | 476 | 75, 80, 97, 139, 163, 219, 227, 259, 275 |
Analyte | Abbrev. | Ret. Time (min) | Q1 (m/z) | Q3 (m/z) | DP (v) | EP (v) | CE (v) | CXP (v) |
---|---|---|---|---|---|---|---|---|
Glucoraphanin | 4msb | 5.8 | 436.1 | 95.8 | −95 | −7 | −92 | −13 |
436.1 | 372.1 | −95 | −7 | −28 | −23 | |||
Glucoerucin | 4mtb | 16.7 | 420 | 95.8 | −115 | −12 | −86 | −9 |
420 | 178 | −115 | −12 | −36 | 0 | |||
Glucoiberin | 3msp | 4.8 | 422 | 95.8 | −120 | −5.5 | −78 | −11 |
422 | 357.9 | −120 | −5.5 | −28 | −15 | |||
Gluconapin | 3but | 10 | 372.1 | 95.8 | −60 | −5.5 | −54 | −13 |
372.1 | 74.8 | −60 | −5.5 | −68 | −5 | |||
Glucobrassicin | I3M | 18.2 | 446.9 | 97 | −85 | −7 | −54 | −9 |
446.9 | 259 | −85 | −7 | −34 | −17 | |||
Neoglucobrassicin | NMOI3M | 24.3 | 477 | 96.8 | −100 | −6 | −54 | −15 |
477 | 446 | −100 | −6 | −22 | −17 | |||
4-Methoxyglucobrassicin | 4MOI3M | 22 | 477 | 96.8 | −100 | −8.5 | −84 | −13 |
477 | 74.9 | −100 | −8.5 | −60 | −9 | |||
4-hydoroxyglucobrassicin | 4OHI3M | 13 | 463 | 96.8 | −105 | −6 | −50 | −11 |
463 | 74.9 | −105 | −6 | −76 | −15 | |||
Sinalbin | pOHB | 9.1 | 423.9 | 95.8 | −50 | −7.5 | −74 | −15 |
423.9 | 181.7 | −50 | −7.5 | −32 | −15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshmand, K.; Fomsgaard, I.S. Analytical Methods for Quantification and Identification of Intact Glucosinolates in Arabidopsis Roots Using LC-QqQ(LIT)-MS/MS. Metabolites 2021, 11, 47. https://doi.org/10.3390/metabo11010047
Hooshmand K, Fomsgaard IS. Analytical Methods for Quantification and Identification of Intact Glucosinolates in Arabidopsis Roots Using LC-QqQ(LIT)-MS/MS. Metabolites. 2021; 11(1):47. https://doi.org/10.3390/metabo11010047
Chicago/Turabian StyleHooshmand, Kourosh, and Inge S. Fomsgaard. 2021. "Analytical Methods for Quantification and Identification of Intact Glucosinolates in Arabidopsis Roots Using LC-QqQ(LIT)-MS/MS" Metabolites 11, no. 1: 47. https://doi.org/10.3390/metabo11010047
APA StyleHooshmand, K., & Fomsgaard, I. S. (2021). Analytical Methods for Quantification and Identification of Intact Glucosinolates in Arabidopsis Roots Using LC-QqQ(LIT)-MS/MS. Metabolites, 11(1), 47. https://doi.org/10.3390/metabo11010047