Corticosteroids and the Pharmacological Management of Autism—An Integrative Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism spectrum disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Biosca-Brull, J.; Pérez-Fernández, C.; Mora, S.; Carrillo, B.; Pinos, H.; Conejo, N.M.; Collado, P.; Arias, J.L.; Martín-Sánchez, F.; Sánchez-Santed, F.; et al. Relationship between autism spectrum disorder and pesticides: A systematic review of human and preclinical models. Int. J. Environ. Res. Public Health 2021, 18, 5190. [Google Scholar] [CrossRef] [PubMed]
- Adler, B.A.; Wink, L.K.; Early, M.; Shaffer, R.; Minshawi, N.; McDougle, C.J.; Erickson, C.A. Drug-refractory aggression, self-injurious behavior, and severe tantrums in autism spectrum disorders: A chart review study. Autism 2015, 19, 102–106. [Google Scholar] [CrossRef]
- Zablotsky, B.; Black, L.I.; Blumberg, S.J. Estimated prevalence of children with diagnosed developmental disabilities in the United States, 2014–2016. NCHS Data Brief 2017, 291, 1–8. [Google Scholar]
- Christensen, D.L.; Baio, J.; Van Naarden Braun, K.; Bilder, D.; Charles, J.; Constantino, J.N.; Daniels, J.; Durkin, M.S.; Fitzgerald, R.T.; Kurzius-Spencer, M.; et al. Prevalence and characteristics of Autism Spectrum Disorder among children aged 8 Years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill. Summ. 2018, 65, 1–23. [Google Scholar] [CrossRef]
- Canitano, R.; Scandurra, V. Risperidone in the treatment of behavioral disorders associated with autism in children and adolescents. Neuropsychiatr. Dis. Treat. 2008, 4, 723–730. [Google Scholar] [CrossRef]
- Stachnik, J.; Gabay, M. Emerging role of aripiprazole for treatment of irritability associated with autistic disorder in children and adolescents. Adolesc. Health Med. Ther. 2010, 15, 105–114. [Google Scholar] [CrossRef]
- Wink, L.K.; Plawecki, M.H.; Erickson, C.A.; Stigler, K.A.; McDougle, C.J. Emerging drugs for the treatment of symptoms associated with autism spectrum disorders. Expert Opin. Emerg. Drugs 2010, 15, 481–494. [Google Scholar] [CrossRef]
- Hurwitz, R.; Blackmore, R.; Hazell, P.; Williams, K.; Woolfenden, S. Tricyclic antidepressants for autism spectrum disorders (ASD) in children and adolescents. Cochrane Database Syst. Rev. 2012, 3, 1–16. [Google Scholar] [CrossRef]
- Priya, M.D.L.; Geetha, A.; Suganya, V.; Sujatha, S. Abnormal circadian rhythm and cortisol excretion in autistic children: A clinical study. Croat. Med. J. 2010, 54, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Corbett, B.A. A review of rhythm and responsiveness of cortisol in individuals with autism spectrum disorders. Psychoneuroendocrinology 2014, 49, 207–228. [Google Scholar] [CrossRef]
- Duffy, F.H.; Shankardass, A.; McAnulty, G.B.; Eksioglu, Y.Z.; Coulter, D.; Rotenberg, A.; Als, H. Corticosteroid therapy in regressive autism: A retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior. BMC Neurol. 2014, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.S.; Qiu, W.; Baccarelli, A.; Carey, V.J.; Bacherman, H.; Rennard, S.I.; Agustí, A.; Anderson, W.H.; Lomas, D.A.; DeMeo, D.L. Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012, 186, 1248–1255. [Google Scholar] [CrossRef]
- Golla, S.; Sweeney, J.A. Corticosteroid therapy in regressive autism: Preliminary findings from a retrospective study. BMC Med. 2014, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Ashraf-Ganjouei, A.; Moradi, K.; Bagheri, S.; Mohammadi, M.R.; Akhondzadeh, S. Prednisolone as adjunctive treatment to risperidone in children with regressive type of Autism Spectrum Disorder: A randomized, placebo-controlled trial. Clin. Neuropharmacol. 2020, 43, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.R.; Vairo, G.P.T.; Dias, A.P.B.H.; Olej, B.; Nascimento, O.J.M.; Vasconcelos, M.M. Effect of prednisolone on language function in children with autistic spectrum disorder: A randomized clinical trial. J. Pediatr. 2021, 97, 22–29. [Google Scholar] [CrossRef]
- Souza, M.T.; da Silva, M.D.; de Carvalho, R. Integrative review: What is it? How to do it? Einstein 2010, 8, 102–106. [Google Scholar] [CrossRef]
- Majewska, M.D.; Hill, M.; Urbanowicz, E.; Rok-Bujko, P.; Bieńkowski, P.; Namysłowska, I.; Mierzejewski, P. Marked elevation of adrenal steroids, especially androgens, in saliva of prepubertal autistic children. Eur. Child Adolesc. Psychiatry 2014, 23, 485–498. [Google Scholar] [CrossRef]
- Fung, L.K.; Libove, R.A.; Phillips, J.; Haddad, F.; Hardan, A.Y. Brief report: An open-label study of the neurosteroid pregnenolone in adults with autism spectrum disorder. J. Autism Dev. Disord. 2014, 44, 2971–2977. [Google Scholar] [CrossRef]
- Corbett, B.A.; Bales, K.L.; Swain, D.; Sanders, K.; Weinstein, T.A.; Muglia, L.J. Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. J. Neurodev. Disord. 2016, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Ayatollahi, A.; Bagheri, S.; Ashraf-Ganjouei, A.; Moradi, K.; Mohammadi, M.R.; Akhondzadeh, S. Does pregnenolone adjunct to risperidone ameliorate irritable behavior in adolescents with Autism Spectrum Disorder: A randomized, double-blind, placebo-controlled clinical trial? Clin. Neuropharmacol. 2020, 43, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, E.; Jellema, R.K.; Ophelders, D.R.; Dudink, J.; Nikiforou, M.; Wolfs, T.G.; Nitsos, I.; Pillow, J.J.; Polglase, G.R.; Kemp, M.W.; et al. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep. PLoS ONE 2013, 8, e81644. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M. Clinical pharmacology of corticosteroids. Respir. Care 2018, 63, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Goyal, A.; Sonthalia, S. Corticosteroid adverse effects. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK531462/ (accessed on 10 November 2024).
- Sugama, S.; Takenouchi, T.; Fujita, M.; Kitani, H.; Conti, B.; Hashimoto, M. Corticosteroids limit microglial activation occurring during acute stress. Neuroscience 2013, 232, 13–20. [Google Scholar] [CrossRef]
- Eddy, J.L.; Krukowski, K.; Janusek, L.; Mathews, H.L. Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol. 2014, 290, 120–130. [Google Scholar] [CrossRef]
- Frantz, M.; Pellissier, L.P.; Pflimlin, E.; Loison, S.; Gandía, J.; Marsol, C.; Durroux, T.; Mouillac, B.; Becker, J.A.; Le Merrer, J.; et al. LIT-001, the first nonpeptide oxytocin receptor agonist that improves social interaction in a mouse model of autism. J. Med. Chem. 2018, 61, 8670–8692. [Google Scholar] [CrossRef]
- Murugan, S.; Jakka, P.; Namani, S.; Mujumdar, V.; Radhakrishnan, G. The neurosteroid pregnenolone promotes degradation of key proteins in the innate immune signaling to suppress inflammation. J. Biol. Chem. 2019, 294, 4596–4607. [Google Scholar] [CrossRef]
- Aggelakopoulou, M.; Kourepini, E.; Paschalidis, N.; Simoes, D.C.; Kalavrizioti, D.; Dimisianos, N.; Papathanasopoulos, P.; Mouzaki, A.; Panoutsakopoulou, V. ERβ-dependent direct suppression of human and murine Th17 cells and treatment of established central nervous system autoimmunity by a neurosteroid. J. Immunol. 2016, 197, 2598–2609. [Google Scholar] [CrossRef]
- Hosie, A.M.; Wilkins, M.E.; da Silva, H.M.; Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 2006, 444, 486–490. [Google Scholar] [CrossRef]
- Kostakis, E.; Smith, C.; Jang, M.K.; Martin, S.C.; Richards, K.G.; Russek, S.J.; Gibbs, T.T.; Farb, D.H. The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl D-aspartate receptors to the cell surface via a noncanonical, G protein, and Ca2+-dependent mechanism. Mol. Pharmacol. 2013, 84, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Mills, Z.; Cheung, P.; Cheyne, J.E.; Montgomery, J.M. The role of zinc and NMDA receptors in Autism Spectrum Disorders. Pharmaceuticals 2023, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Nyrenius, J.; Waern, M.; Eberhard, J.; Ghaziuddin, M.; Gillberg, C.; Billstedt, E. Autism in adult psychiatric out-patients: Self-reported suicidal ideation, suicide attempts and non-suicidal self-injury. BJPsych Open 2023, 9, e167. [Google Scholar] [CrossRef] [PubMed]
- Marx, C.E.; Keefe, R.S.; Buchanan, R.W.; Hamer, R.M.; Kilts, J.D.; Bradford, D.W.; Strauss, J.L.; Naylor, J.C.; Payne, V.M.; Lieberman, J.A.; et al. Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology 2009, 34, 1885–1903. [Google Scholar] [CrossRef]
- Osuji, I.J.; Vera-Bolaños, E.; Carmody, T.J.; Brown, E.S. Pregnenolone for cognition and mood in dual diagnosis patients. Psychiatry Res. 2010, 178, 309–312. [Google Scholar] [CrossRef]
- Ritsner, M.S.; Gibel, A.; Shleifer, T.; Boguslavsky, I.; Zayed, A.; Maayan, R.; Weizman, A.; Lerner, V. Pregnenolone and dehydroepiandrosterone as an adjunctive treatment in schizophrenia and schizoaffective disorder: An 8-week, double-blind, randomized, controlled, 2-center, parallel-group trial. J. Clin. Psychiatry 2010, 71, 1351–1362. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Z.; Yang, T.; Lin, F.; Ye, S.; Yan, J.; Li, T.; Chen, J. Sodium butyrate facilitates CRHR2 expression to alleviate HPA axis hyperactivity in autism-like rats induced by prenatal lipopolysaccharides through histone deacetylase inhibition. mSystems 2023, 8, e0041523. [Google Scholar] [CrossRef]
- Kirsten, T.B.; Lippi, L.L.; Bevilacqua, E.; Bernardi, M.M. LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Β levels in adult rat offspring: Relevance to autism. PLoS ONE 2013, 8, e82244. [Google Scholar] [CrossRef]
- Palmowski, A.; Nielsen, S.M.; Boyadzhieva, Z.; Schneider, A.; Pankow, A.; Hartman, L.; Da Silva, J.A.; Kirwan, J.; Wassenberg, S.; Dejaco, C.; et al. Safety and Efficacy Associated with long-term low-dose glucocorticoids in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatology 2023, 62, 2652–2660. [Google Scholar] [CrossRef]
- Warrington, T.P.; Bostwick, J.M. Psychiatric adverse effects of corticosteroids. Mayo Clin. Proc. 2006, 81, 1361–1367. [Google Scholar] [CrossRef]
References | Design/Number of Patients | Mean Age | Sex | Objective | Investigated Drug |
---|---|---|---|---|---|
Majewska et al. [19] | Cohort n = 148 | 5.9 ± 3.5 years | Men: 79 Women: 69 | To evaluate the potential of steroid hormones in autism. | Pregnenolone |
Fung et al. [20] | Prospective n = 12 | 22.5 ± 5.8 years | Men: 10 Women: 2 | To evaluate the tolerability and efficacy of pregnenolone in reducing irritability in autistic adults. | Pregnenolone |
Duffy et al. [13] | Retrospective n = 44 | 4.5 ± 2.2 years | Men: 36 Women: 8 | To evaluate the effects of corticosteroids in autistic children on the 4 Hz frequency-modulated auditory-evoked response (FMAER) originating from the language cortex of the superior temporal gyrus, EEG language, and behavior. | Prednisolone |
Corbett et al. [21] | Experimental n = 25 | 9.7 ± 1.9 years | Men: 22 Women: 3 | To evaluate the relationship between cortisol and oxytocin in autistic children under baseline and physiological stress conditions (hydrocortisone challenge). | Hydrocortisone |
Ayatollahi et al. [22] | Experimental n = 59 | 13.31 ± 2.12 years | Men: 36 Women: 23 | To evaluate the efficacy and safety of the combination of pregnenolone and risperidone in autistic adolescents. | Pregnenolone |
Brito et al. [17] | Experimental n = 38 | 4.8 ± 1.3 | Men: 38 | To describe the effect of prednisolone on language in autistic children. | Prednisolone |
Malek et al. [16] | Experimental n = 26 | 6.34 ± 2.07 | Men: 25 Women: 1 | To evaluate the efficacy and safety of prednisolone as an adjuvant treatment to risperidone in children with regressive autism. | Prednisolone |
References | Design/Number of Animals | Objective | Investigated Drug |
---|---|---|---|
Kuypers et al. [23] | Experimental n = 37 | To evaluate the effect of prenatal glucocorticoids in modulating brain inflammation in an animal model. | Betamethasone |
Study | Interventions | Outcome | Conclusion | Level of Evidence |
---|---|---|---|---|
Majewska et al. [19] | Pregnenolone (plus derivatives) vs. dehydroepiandrosterone—DHEA vs. androstenediol vs. androstenedione (plus derivatives) | The association between autism and high levels of several steroid hormones in the saliva of prepubertal children was found in both sexes. | Steroid levels could potentially serve as biomarkers of autism for all prepubertal children; it favors treatment with this class of drugs. | II |
Fung et al. [20] | Pregnenolone vs. placebo | Pregnenolone improved the parameters assessed on the ABC-I scale after 12 weeks of treatment, as well as the variables of lethargy and social withdrawal. | Pregnenolone is effective, safe, and well tolerated. It reduces irritability, improves social functioning, and alleviates sensory dysfunctions. Adverse effects are milder compared to other medications. | II |
Duffy et al. [13] | Prednisolone vs. placebo | Steroid therapy improved electrophysiological indicators of language-specific brain function. Furthermore, there was an improvement in language and behavioral performance. | Prednisone treatment is effective in treating the symptoms of autism, specifically language-related symptoms. | I |
Corbett et al. [21] | Hydrocortisone vs. placebo | There was a significant increase in oxytocin during the experimental condition. The results demonstrated that oxytocin reduced stress levels during hydrocortisone administration. Therefore, it interacted with the social capacity of autistic children. The diminished moderating effect of oxytocin on cortisol also played a contributory role in the increased stress often observed in autistic children. | Hydrocortisone treatment modulates the effects of oxytocin on social behavior, as well as on functional interaction and stress modulation. | II |
Ayatollahi et al. [22] | Pregnenolone vs. placebo | Pregnenolone treatment significantly improved irritability, stereotypy, and hyperactivity scales. There were no serious adverse effects between the groups. | The administration of pregnenolone has proved effective in the pharmacological management of autistic adolescents. | II |
Brito et al. [17] | Prednisolone vs. placebo | The treatment increased the global Assessment of Language Development score. The total number of communicative acts was also positive. Adverse effects were mild. | Prednisolone generates positive effects even at low doses. | II |
Malek et al. [16] | Risperidone + prednisolone vs. risperidone + placebo | The treatment was able to improve irritability, lethargy, stereotypy, and hyperactivity subscale scores. Likewise, a significant decline for all inflammatory markers assessed was induced. | Pharmacological management with prednisolone is effective for both behavior and molecular parameters. | II |
Kuypers et al. [23] (obs: animal model) | Control vs. lipopolysaccharide (LPS) vs. betamethasone vs. pre-betamethasone + LPS | Treatment with antenatal glucocorticoids administered before LPS reduced the effects of intrauterine inflammation in the fetal brain. The results demonstrate that betamethasone before LPS can prevent inflammatory effects. | Antenatal betamethasone administered before intra-amniotic inflammation reduced the cerebral inflammatory response after intra-amniotic LPS and prevented hippocampal and white matter lesions in the fetal brain. | II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus, L.A.G.; Piuvezam, G.; Pimenta, I.D.S.F.; de Melo, E.B. Corticosteroids and the Pharmacological Management of Autism—An Integrative Review. Sci. Pharm. 2024, 92, 61. https://doi.org/10.3390/scipharm92040061
de Jesus LAG, Piuvezam G, Pimenta IDSF, de Melo EB. Corticosteroids and the Pharmacological Management of Autism—An Integrative Review. Scientia Pharmaceutica. 2024; 92(4):61. https://doi.org/10.3390/scipharm92040061
Chicago/Turabian Stylede Jesus, Lillian Amanda Gabarrão, Grasiela Piuvezam, Isac Davidson Santiago Fernandes Pimenta, and Eduardo Borges de Melo. 2024. "Corticosteroids and the Pharmacological Management of Autism—An Integrative Review" Scientia Pharmaceutica 92, no. 4: 61. https://doi.org/10.3390/scipharm92040061
APA Stylede Jesus, L. A. G., Piuvezam, G., Pimenta, I. D. S. F., & de Melo, E. B. (2024). Corticosteroids and the Pharmacological Management of Autism—An Integrative Review. Scientia Pharmaceutica, 92(4), 61. https://doi.org/10.3390/scipharm92040061