Phytochemical Profiling and Biological Activities of Two Helianthemum Species Growing in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of Extracts
2.4. GC–MS Analysis
2.5. UHPLC–HRMS Analysis
2.6. Fractionation and Purification Procedures of Methanolic Extracts
2.6.1. H. nummularium (HN-M)
2.6.2. H. oelanticum subsp. incanum (HO-M)
2.7. Nuclear Magnetic Resonance (NMR)
2.8. Total Phenolic Content (TPC)
2.9. DPPH (2,2-DiPhenyl-1-PicrylHydrazyl) Assay
2.10. In Vitro Tyrosinase Assay
2.11. Antimicrobial Activity
2.12. Statistical Analysis
3. Results
3.1. Identification of Metabolites from the Non-Polar Extracts (HN-C, HO-C, HN-D, and HO-D)
3.2. Identification of Metabolites from Methanolic Extracts
3.3. Determination of Total Phenolic Content (TPC), DPPH Free Radical, and Tyrosinase-Inhibitory Activity
3.4. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AcOH | Acetic acid |
C-hex | Cyclohexane |
CFU | Colony-forming unit |
DCM | Dichloromethane |
DMSO | Dimethyl sulfoxide |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EtOAc | Ethyl acetate |
FA | Formic acid |
GA | Gallic acid |
GAE | Gallic acid equivalent |
GC–MS | Gas chromatography–mass spectrometry |
HN | H. nummularium |
HN-C | H. nummularium cyclohexane extract |
HN-D | H. nummularium dichloromethane extract |
HN-M | H. nummularium methanolic extract |
HO | H. oelanticum subsp. incanum |
HO-C | H. oelanticum subsp. incanum cyclohexane extract |
HO-D | H. oelanticum subsp. incanum dichloromethane extract |
HO-M | H. oelanticum subsp. incanum methanolic extract |
MeOH | Methanol |
MIC | Minimum inhibitory concentration |
UHPLC–MS/MS | Ultra-high-performance liquid chromatography–MS/MS |
References
- Martín-Hernanz, S.; Martínez-Sánchez, S.; Albaladejo, R.G.; Lorite, J.; Arroyo, J.; Aparicio, A. Genetic diversity and differentiation in narrow versus widespread taxa of Helianthemum (Cistaceae) in a hotspot: The role of geographic range, habitat, and reproductive traits. Ecol. Evol. 2019, 9, 3016–3029. [Google Scholar] [CrossRef] [PubMed]
- Arrington, J.M.; Kubitzki, K. Cistaceae. En: The Families and Genera of Vascular Plants. In IV Flowering Plants Dicotyledons Malvales, Capparales and Non-Betalain Caryophyllales; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 62–70. [Google Scholar]
- Rubio-Moraga, Á.; Argandoña, J.; Mota, B.; Pérez, J.; Verde, A.; Fajardo, J.; Gómez-Navarro, J.; Castillo-López, R.; Ahrazem, O.; Gómez-Gómez, L. Screening for polyphenols, antioxidant and antimicrobial activities of extracts from eleven Helianthemum taxa (Cistaceae) used in folk medicine in south-eastern Spain. J. Ethnopharmacol. 2013, 148, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Baldemir, A.; Gökşen, N.; Ildız, N.; Karatoprak, G.Ş.; Koşar, M. Phytochemical Profile and Biological Activities of Helianthemum canum l. Baumg. from Turkey. Chem. Biodivers. 2017, 14, e1700052. [Google Scholar] [CrossRef] [PubMed]
- Thaler, K.; Kaminski, A.; Chapman, A.; Langley, T.; Gartlehner, G. Bach flower remedies for psychological problems and pain: A systematic review. BMC Complement. Altern. Med. 2009, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Wafa, N.; Sofiane, G. In-vitro Antioxidant and anti-inflammatory activities valorisation of tannin crude extract of Helianthemum helianthemoïdes (Desf.) Grosser. J. Drug Deliv. Ther. 2020, 10, 135–139. [Google Scholar] [CrossRef]
- Alshammari, S.O.; Mahmoud, S.Y. Bioactive compounds of methanolic extract of Helianthemum lippii grows in Hafr Al-Batin region, northeastern Saudi Arabia. Acta Fytotech. Zootech. 2022, 25, 60–66. [Google Scholar]
- Djemam, N.; Lassed, S.; Gül, F.; Altun, M.; Monteiro, M.; Menezes-Pinto, D.; Benayache, S.; Benayache, F.; Zama, D.; Demirtas, I.; et al. Characterization of ethyl acetate and n-butanol extracts of Cymbopogon schoenanthus and Helianthemum lippii and their effect on the smooth muscle of the rat distal colon. J. Ethnopharmacol. 2020, 252, 112613. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M.; Hininger-Favier, I.; Marcourt, L.; Boucherle, B.; Gao, B.; Hybertson, B.M.; Bose, S.K.; McCord, J.M.; Millery, A.; Rome, M.; et al. Phytochemical and Biological Investigation of Helianthemum nummularium, a High-Altitude Growing Alpine Plant Overrepresented in Ungulates Diets. Planta Med. 2020, 86, 1185–1190. [Google Scholar]
- Javidnia, K.; Nasiri, A.; Miri, R.; Jamalian, A. Composition of the Essential Oil of Helianthemum kahiricum Del. from Iran. J. Essent. Oil Res. 2007, 19, 52–53. [Google Scholar] [CrossRef]
- Gökşen, N.; Demirci, B.; Baldemir, A.; Koşar, M. Essential oil composition of Helianthemum canum (L.) Baumg. (Cistaceae) growing in Turkey. Asian Soc. Pharmacogn. 2017, 1, 5–10. [Google Scholar]
- Plescia, F.; Venturella, F.; D’Anneo, A.; Catania, V.; Gargano, M.L.; Polito, G.; Schillaci, D.; Palumbo Piccionello, A.; Lauricella, M.; Venturella, G.; et al. Phytochemical-rich extracts of Helianthemum lippii possess antimicrobial, anticancer, and anti-biofilm activities. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2022, 156, 1314–1324. [Google Scholar] [CrossRef]
- Benabdelaziz, I.; Haba, H.; Lavaud, C.; Harakat, D.; Benkhaled, M. Lignans and Other Constituents from Helianthemum sessiliflorum Pers. Rec. Nat. Prod. 2015, 9, 342–348. [Google Scholar]
- Laib, I.; Djahra, A.B. Phytochemical investigation of Helianthemum lippii l. aerial Dum.Cours part and evaluation for its antioxidant activities. Int. J. Sec. Metabol. 2022, 9, 229–237. [Google Scholar] [CrossRef]
- Chemam, Y.; Benayache, S.; Marchioni, E.; Zhao, M.; Mosset, P.; Benayache, F.; McPhee, D.J. On-line screening, isolation and identification of antioxidant compounds of Helianthemum ruficomum. Molecules 2017, 22, 239. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, R.; Wu, J.; Dai, N.; Han, N. A New Alkaloid from Helianthemum Ordosicum: A New Alkaloid from Helianthemum Ordosicum. Magn. Reson. Chem. 2015, 53, 314–316. [Google Scholar] [CrossRef]
- Pirvu, L.; Nicu, I. Polyphenols Content, Antioxidant and Antimicrobial Activity of Ethanol Extracts from the Aerial Part of Rock Rose (Helianthemum nummularium) Species. J. Agric. Sci. Technol. A 2017, 7, 61–67. [Google Scholar]
- Küpeli Akkol, E.; Kosar, M.; Baldemir, A.; Şeker Karatoprak, G.; Demirpolat, E.; Betul Yerer Aycan, M.; Süntar, I.; Ilgün, S. The Wound-Healing Potential of the Endemic Plant Helianthemum canum (L.) Baumg: Preclinical Studies Supported with Phytochemical Profiling. Chem. Biodivers. 2023, 20, e202301529. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist; Botanic Garden and Botanical Museum Berlin-Dahlem: Berlin, Germany, 2013; Volume 31, pp. 1–371. [Google Scholar]
- Strid, A.; Bergmeier, E.; Fotiadis, G. Flora and Vegetation of the Prespa National Park, Greece; Bilingual Edition: Greek—English; Aage, V., Ed.; Jensen Charity Foundation, by the Prespa Preservation Society and Vlassi Bros Publications: Athens, Greece, 2020. [Google Scholar]
- Klontza, V.; Graikou, K.; Cheilari, A.; Kasapis, V.; Ganos, C.; Aligiannis, N.; Chinou, I. Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties. Int. J. Mol. Sci. 2023, 24, 4935. [Google Scholar] [CrossRef] [PubMed]
- Pyrgioti, E.; Graikou, K.; Aligiannis, N.; Karabournioti, S.; Chinou, I. Qualitative analysis related to palynological characterization and biological evaluation of propolis from Prespa National Park (Greece). Molecules 2022, 27, 7018. [Google Scholar] [CrossRef]
- Yang, W.; Min, Y.; Man, L.; Dezhi, K.; Rui, S.; Xiaowei, S.; Kerong, Z.; Qiao, W.; Zhang, L. A Practical Strategy for the Characterization of Coumarins in Radix Glehniae by Liquid Chromatography Coupled with Triple Quadrupole-Linear Ion Trap Mass Spectrometry. J. Chromatogr. 2010, 1217, 4587–4600. [Google Scholar] [CrossRef]
- Gouveia, S.; Castilho, P.C. Helichrysum monizii Lowe: Phenolic Composition and Antioxidant Potential: H. monizii Phenolic Composition and Antioxidant Potential. Phytochem. Anal. 2012, 23, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Hooi Poay, T.; Sui Kiong, L.; Cheng Hock, C. Characterization of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS. Phytochem. Anal. 2011, 22, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Bujor, O.C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal Variations of the Phenolic Constituents in Bilberry (Vaccinium myrtillus L.) Leaves, Stems and Fruits, and Their Antioxidant Activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Lucarini, D.; Papa, F.; Peron, G.; Dall'Acqua, S. Phytochemical Analysis of the Labdanum-Poor Cistus Creticus subsp. eriocephalus (Viv.) Greuter et Burdet Growing in Central Italy. Biochem. Syst. Ecol. 2016, 66, 50–57. [Google Scholar] [CrossRef]
- Gruz, J.; Novák, O.; Strnad, M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008, 111, 789–794. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Commun. 2016, 11, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Gan, R.Y.; Shah, N.P.; Corke, H. Enhancing Antioxidant Capacity of Lactobacillus acidophilus—Fermented Milk Fortified with Pomegranate Peel Extracts. Food Biosci. 2018, 26, 185–192. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Meudec, E.; Mazauric, J.P.; Madani, K.; Cheynier, V. Qualitative and Semi-Quantitative Analysis of Phenolics in Eucalyptus globulus Leaves by High-Performance Liquid Chromatography Coupled with Diode Array Detection and Electrospray Ionisation Mass Spectrometry: HPLC-DAD-ESI/MS Analysis of Phenolics of Eucalyptus globulus Leaves. Phytochem. Anal. 2013, 24, 162–170. [Google Scholar] [PubMed]
- Yeo, J.; Shahidi, F. Identification and quantification of soluble and insoluble-bound phenolics in Lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chem. 2020, 315, 126202. [Google Scholar] [CrossRef]
- Jaiswal, R.; Sovdat, T.; Vivan, F.; Kuhnert, N. Profiling and characterization by LC-MS n of the chlorogenic acids and hydroxycinnamoyl shikimate esters in mate (Ilex paraguariensis). J. Agric. Food Chem. 2010, 58, 5471–5484. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Pereira, C.; Dias, M.I.; Caleja, C.; Calhelha, R.C.; Sokovic, M.; Stojković, D.; Carvalho, A.M.; Rosa, E.; Barros, L.; et al. Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules 2020, 25, 2151. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xiao, S.Y.; Li, Z.G.; Wang, W.; Du, L.J. Characterization of Active Phenolic Components in the Ethanolic Extract of Ananas Comosus, L. Leaves Using High-Performance Liquid Chromatography with Diode Array Detection and Tandem Mass Spectrometry. J. Chromatogr. 2007, 1165, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Steingass, C.B.; Glock, M.P.; Schweiggert, R.M.; Carle, R. Studies into the Phenolic Patterns of Different Tissues of Pineapple (Ananas comosus [L.] Merr.) Infructescence by HPLC-DAD-ESI-MS n and GC-MS Analysis. Anal. Bioanal. Chem. 2015, 407, 6463–6479. [Google Scholar] [CrossRef]
- Mastino, P.M.; Marchetti, M.; Costa, J.; Juliano, C.; Usai, M. Analytical Profiling of Phenolic Compounds in Extracts of Three Cistus Species from Sardinia and Their Potential Antimicrobial and Antioxidant Activity. Chem. Biodivers. 2021, 18, e2100053. [Google Scholar] [CrossRef]
- Tittikpina, N.K.; Katragunta, K.; Avula, B.; Ali, Z.; Khan, I.A. Strategy for the Quality Control of Herbal Preparations Made of Sarcocephalus latifolius: Development and Validation of a UHPLC-PDA Method for Quantification of Angustoline and Strictosamide and Chemical Profiling Using LC-QTOF. Phytochem. Anal. 2023, 34, 105–126. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, M.; Apea-Bah, F.B.; Beta, T. Hydroxycinnamic Acid Amide (HCAA) Derivatives, Flavonoid C-Glycosides, Phenolic Acids and Antioxidant Properties of Foxtail Millet. Food Chem. 2019, 295, 214–223. [Google Scholar] [CrossRef]
- Wang, R.D.; Su, G.H.; Wang, L.; Xia, Q.; Liu, R.; Lu, Q.; Zhang, J.L. Identification and Mechanism of Effective Components from Rape (Brassica napus L.) Bee Pollen on Serum Uric Acid Level and Xanthine Oxidase Activity. J. Funct. Foods 2018, 47, 241–251. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Lu, Q. Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. Molecules 2020, 25, 1264. [Google Scholar] [CrossRef]
- Vukics, V.; Guttman, A. Structural Characterization of Flavonoid Glycosides by Multi-Stage Mass Spectrometry: MS Characterization of Flavonoid Glycosides. Mass Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Queiroz, M.J.R.; Santos-Buelga, C.; Ferreira, I.C. Characterization of phenolic compounds in wild fruits from Northeastern Portugal. Food Chem. 2013, 141, 3721–3730. [Google Scholar] [CrossRef]
- Fougère, L.; Da Silva, D.; Destandau, E.; Elfakir, C. TLC-MALDI-TOF-MS-Based Identification of Flavonoid Compounds Using an Inorganic Matrix. Phytochem. Anal. 2019, 30, 218–225. [Google Scholar] [CrossRef]
- Sobral, F.; Calhelha, R.C.; Barros, L.; Dueñas, M.; Tomás, A.; Santos-Buelga, C.; Vilas-Boas, M.; Ferreira, I.C. Flavonoid Composition and Antitumor Activity of Bee Bread Collected in Northeast Portugal. Molecules 2017, 22, 248. [Google Scholar] [CrossRef]
- Bunse, M.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Characterization of Secondary Metabolites in Flowers of Sanguisorba officinalis L. by HPLC-DAD-MSn and GC/MS. Chem. Biodivers. 2020, 17, e1900724. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Flavonoids and Other Phenolic Compounds in Needles of Pinus peuce and Other Pine Species from the Macedonian Flora. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar]
- Llorent-Martínez, E.J.; Spínolaa, V.; Gouveiac, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crop. Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Farid, M.M.; Marzouk, M.M.; Hussein, S.R.; Elkhateeb, A.; Abdel-Hameed, E.S. Comparative Study of Posidonia oceanica L.: LC/ESI/MS Analysis, Cytotoxic Activity and Chemosystematic Significance. J. Mater. Environ. Sci. 2018, 9, 1676–1682. [Google Scholar]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 443–449. [Google Scholar] [CrossRef]
- Masullo, M.; Cerulli, A.; Pizza, C.; Piacente, S. Pouteria Lucuma Pulp and Skin: In Depth Chemical Profile and Evaluation of Antioxidant Activity. Molecules 2021, 26, 5236. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and in vitro preliminary anti-inflammatory activity of Castanea sativa (Italian Cultivar “Marrone di Roccadaspide” PGI) burs, leaves, and chestnuts extracts and their metabolite profiles by LC-ESI/LTQ Orbitrap/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef]
- Rush, M.D.; Rue, E.A.; Wong, A.; Kowalski, P.; Glinski, J.A.; van Breemen, R.B. Rapid Determination of Procyanidins Using MALDI-TOF/TOF Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 11355–11361. [Google Scholar] [CrossRef]
- Napolitano, A.; Cerulli, A.; Pizza, C.; Piacente, S. Multiclass polar lipid profiling in fresh and roasted hazelnut (Corylus avellana cultivar “Tonda di Giffoni”) by LC-ESI/LTQ Orbitrap/MS/MSn. Food Chem. 2018, 269, 125–135. [Google Scholar] [CrossRef]
- Hsu, F.F.; Turk, J. Electrospray Ionization Multiple-Stage Linear Ion-trap Mass Spectrometry for Structural Elucidation of Triacylglycerols: Assignment of Fatty Acyl Groups on the Glycerol Backbone and Location of Double Bonds. J. Am. Soc. Mass Spectrom. 2010, 21, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, R.; Chen, H.; Wu, Y.; Lin, S.; Yuan, S.; Pan, W.; Jia, A.Q. Chemical Constituents of Smilax riparia and their Tumoral Cytotoxicities. Chem. Nat. Compd. 2020, 56, 228–234. [Google Scholar] [CrossRef]
- Terfassi, S.; Dauvergne, X.; Cérantola, S.; Lemoine, C.; Bensouici, C.; Fadila, B.; Christian, M.; Marchioni, E.; Benayache, S. First report on phytochemical investigation, antioxidant and antidiabetic activities of Helianthemum getulum. Nat. Prod. Res. 2022, 36, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Bouzergoune, F.; Bitam, F.; Aberkane, M.C.; Mosset, P.; Fetha, M.N.H.; Boudjar, H.; Aberkane, A. Preliminary Phytochemical and Antimicrobial Activity Investigations on the Aerial Parts of Helianthemum kahiricum. Chem. Nat. Compd. 2013, 49, 751–752. [Google Scholar] [CrossRef]
- Laraoui, H.; Long, C.; Haba, H.; Benkhaled, M. New methylated flavonol glucosides from Fumana montana Pomel. Nat. Prod. Res. 2013, 27, 770–775. [Google Scholar] [CrossRef]
- Lukas, B.; Bragagna, L.; Starzyk, K.; Labedz, K.; Stolze, K.; Novak, J. Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species. Plants 2021, 10, 615. [Google Scholar] [CrossRef]
- Kihara, Y.; Mizuno, H.; Chun, J. Lysophospholipid receptors in drug discovery. Exp. Cell Res. 2015, 333, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.-X.; Liu, B.; Lu, J.-Y.; Liu, S.-S.; Ma, Q.-M.; Su, Z.-X. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. J. Biomol. Struct. Dyn. 2012, 29, 999–1012. [Google Scholar] [CrossRef]
- Gervasi, T.; Calderaro, A.; Barreca, D.; Tellone, E.; Trombetta, D.; Ficarra, S.; Smeriglio, A.; Mandalari, G.; Gattuso, G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int. J. Mol. Sci. 2022, 23, 1710. [Google Scholar] [CrossRef]
- Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal Importance of Gallic Acid and Its Ester Derivatives: A Patent Review. Pharm. Pat. Anal. 2015, 4, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Rana, H.K.; Gupta, A.; Lauro, M.R.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Fariña, L.O.; Da Silva De Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef] [PubMed]
Species | Abbreviation | Date | Location | Elevation (m) |
---|---|---|---|---|
Helianthemum nummularium (L.) Mill. | HN | 05/2021 | Mt. Devas, woodland Quercus macedonica, Juniperus excelsa and Carpinus sp., Prespa National Park, NW Greece | 1067 |
Helianthemum oelandicum (L.) DC. in Lam. and DC. subsp. incanum (L.) Bonnier | HO | 1065 |
Compound | Area (%) | |
---|---|---|
HN-C | HO-C | |
α-Thujene | 0.63 | - |
α-Pinene | 35.77 | 40.77 |
Sabinene | 12.05 | 14.74 |
β-Pinene | 1.03 | - |
Myrcene | 2.70 | 2.97 |
δ-3-Carene | 6.47 | 7.18 |
p-Cymene | 1.45 | 1.04 |
Limonene | 28.95 | 28.93 |
γ-Terpinene | 1.25 | 1.11 |
Terpinolene | 1.43 | 1.25 |
Thujone isomer | <0.1 | <0.1 |
Palmitic acid methyl ester | 0.76 | - |
Compound | Area (%) | |
---|---|---|
HN-D | HO-D | |
1-Nonadecene | - | 7.74 |
Octadecane | - | 5.63 |
Eicosane | - | 19.46 |
Hexadecanoic acid (Palmitic acid) | 1.35 | 1.42 |
9,12-Octadecenoic acid (Linoleic acid) | 1.14 | - |
γ-Sitosterol | 1.11 | 1.19 |
β-Sitosterol | 0.83 | 0.90 |
Rt (min) | Adduct Ions | Observed m/z | MS/MS | Mass | Molecular Formula | Identified Compounds | Determined by | |
---|---|---|---|---|---|---|---|---|
HN-M | HO-M | |||||||
3.54 | 3.51 | [M − H]− | 169 | 169, 125 | 170 | C7H6O5 | Gallic acid | [12], NMR |
4.02 | [M + H]+ | 365 | 203, 185 | 364 | C17H16O9 | Xanthotoxol glucopyranoside | [12,23] | |
4.05 | 4.03 | [(M − H) + HCO2H]− | 387 | 341, 179, 119, 101, 89 | 342 | C15H18O9 | Caffeic acid hexoside | [24] |
4.29 | [M − H]− | 312 | 312, 184, 183 | 313 | Methylgallate derivative | [25] | ||
14.16 | [M − H]− | 315 | 179, 153, 152, 108 | 316 | C13H16O9 | Dihydroxybenzoic acid hexoside | [26] | |
14.44 | [M − H]− | 343 | 191, 169 | 344 | C14H16O10 | O-galloylquinic acid | [27] | |
14.60 | [M − H]− | 153 | 153, 109 | 154 | C7H6O4 | Dihydroxybenzoic acid | [28] | |
14.88 | 14.88 | [M − H]− | 183 | 184 | C8H8O5 | Methyl gallate | [12], NMR | |
14.93 | [M − H]− | 455 | 409, 325, 307, 265, 205, 163, | 456 | p-Coumaric acid derivative | [26] | ||
15.38 | [M − H]− | 305 | 179,174, 139, 137, 125 | 306 | C15H14O7 | (Epi)gallocatechin | [27] | |
15.47 | [M + H]+ | 355 | 354 | C16H18O9 | Chlorogenic acid | [12] | ||
15.90 | [M − H]− | 153 | 153, 135, 109, 65 | 154 | C7H6O4 | Dihydroxybenzoic acid | [28] | |
15.95 | [M − H]− | 325 | 169, 125 | 326 | C14H14O9 | Galloylshikimic acid isomer | [29] | |
16.12 | [M − H]− | 783 | 783, 765, 301, 275, 247, 169 | 784 | C34H24O22 | Pedunculagin isomer (Ellagitannin) | [30,31] | |
16.28 | [M − H]− | 451 | 451, 329, 313, 289, 271 | 452 | C21H24O11 | Catechin-3-O-glucopyranoside | [32], NMR | |
16.66 | 16.64 | [M − H]− | 483 | 484 | C20H20O14 | Digalloyl-hexoside | [29] | |
17.05 | 17.05 | [M − H]− | 431 | 385, 223, 205, 161, 153, | 432 | C17H22O10 | Sinapic acid hexoside | [26] |
17.16 | [M − H]− | 367 | 367, 193, 134 | 368 | C17H20O9 | 5-O-Feruloyl-quinic acid | [33] | |
17.35 | [M − H]− | 337 | 191, 163, 119 | 338 | C16H18O8 | Coumaroyl-quinic acid | [34] | |
17.57 | [M − H]− | 633 | 633, 463, 301, 275, 257, 245 | 634 | C27H22O18 | Galloyl-HHDP-hexoside | [30,31] | |
17.64 | 17.64 | [(M − H) + HCO2H]− | 461 | 415, 269. 161, 101 | 416 | C21H20O9 | Dicaffeoyl glycerol | [35] |
18.47 | [(M − H) +HCO2H]− | 567 | 567, 521, 359, 341, 329, 179, | 522 | C21H30O15 | Syringyl dihexoside | [36] | |
18.52 | 18.52 | [M − H]− | 631 | 631, 479, 317, 179 | 632 | C28H24O17 | Myricetin-O-galloyl-hexoside | [37] |
18.67 | [M − H]− | 463 | 463, 301, 300, 271, 255 | 464 | C21H20O12 | Isoquercetin | [38], NMR | |
18.68 | [M − H]− | 609 | 301, 300, 271 | 610 | C27H30O16 | Rutin | [38], NMR | |
18.82 | [M − H]− | 761 | 609, 305 | 762 | C37H30O18 | (Epi)gallocatechin-O-galloyl(epi)gallocatechin | [33] | |
19.15 | [M − H]− | 436 | 436, 316, 273, 145, 119 | 437 | C25H31N3O4 | N, N″-di-p-coumaroylspermidine | [39,40,41] | |
19.23 | [M − H]− | 593 | 593, 571, 447, 384, 327, 285, | 594 | C27H30O15 | Kaempferol rutinoside | [12,42] | |
19.28 | 19.31 | [M − H]− | 463 | 463, 301, 300, 271, 255 | 464 | C21H20O12 | Hyperoside | [38], NMR |
19.31 | [M − H]− | 615 | 463, 301, 300, 271, 255, 169 | 616 | C28H24O16 | Quercetin galloylhexoside | [43] | |
19.33 | [M − H]− | 615 | 463, 301, 300, 271, 255, 243 | 616 | C28H24O16 | Quercetin-3-O-(2″-O-galloyl)-galactopyranoside | [43], NMR | |
19.76 | [M − H]− | 447 | 285, 284, 255, 227 | 448 | Kaempferol-3-O-glucopyranoside | [38], NMR | ||
19.80 | [M − H]− | 599 | 517, 447, 429, 415, 301, 285 | 600 | C28H24O15 | Kaempferol galloyl hexoside | [44] | |
19.85 | 19.85 | [M − H]− | 137 | 137, 93 | 138 | C7H6O3 | 4-Hydroxybenzoic acid | [28] |
19.94 | 19.90 | [M − H]− | 447 | 315, 299, 284, 255, 227 | 448 | C21H20O11 | Isorhamnetin-pentoside | [45] |
20.25 | [M − H]− | 625 | 463, 301 | 626 | C27H30O17 | Quercetin dihexoside | [46] | |
20.40 | [M − H]− | 477 | 301 | 478 | C21H18O13 | Quercetin glucuronide | [46] | |
21.22 | [(M − H) + HCO2H]− | 493 | 447, 399, 315, 161 | 448 | C21H20O11 | Isorhamnetin pentoside isomer | [47] | |
21.43 | [M − H]− | 419 | 153, 152, 108, 109 | 420 | Procatechuic acid derivative | [24] | ||
21.97 | 21.95 | [M − H]− | 593 | 593, 447, 307, 285, 255, 145, | 594 | C30H26O13 | cis/trans-Tiliroside | [12,47], NMR |
22.24 | 22.24 | [M − H]− | 593 | 594 | C30H26O13 | cis/trans-Tiliroside | ||
23.39 | 23.41 | [M − H]− | 327 | 327, 291, 239, 229, 211 | 328 | C18H32O5 | Oxo-dihydroxy-octadecenoic acid | [48] |
24.12 | 24.11 | [M − H]− | 329 | 329, 229, 211 | 330 | Linoleic acid derivative | [49] | |
25.36 | 25.40 | [M − H]− | 739 | 739, 593, 453, 285, 255, 227, | 740 | C36H36O17 | Kaempferol coumaroyl rutinoside | [47] |
25.63 | [M − H]− | 739 | 593, 285, 284, 255, 227, 145 | 740 | C36H36O17 | Kaempferol coumaroyl rutinoside isomer | [47] | |
26.60 | [M − H]− | 593 | 593, 315, 277, 241, 152 | 594 | C27H30O15 | Isorhamnetin deoxyhexosyl-pentoside | [50] | |
27.71 | 27.70 | [(M − H) + HCO2H]− | 721 | 675, 415, 397, 277, 235, 179 | 676 | C33H56O14 | DGMG (18:3) galactolipid | [51,52] |
27.79 | [M − H]− | 577 | 577, 441, 299, 225, 94, 80 | 578 | C30H26O12 | Procyanidin dimer | [53] | |
28.19 | 28.16 | [M − H]− | 595 | 415, 315, 279, 214, 152 | 596 | C27H49O12P− | Lysophospatidylinositol 18:2 | [52,54] |
29.45 | [(M − H) + HCO2H]− | 647 | 601, 571,341, 323, 277, 265 | Fatty acid derivative | [55] | |||
32.37 | [M − H]− | 279 | 280 | C18H32O2 | Linoleic acid | [56], NMR |
Samples | TPC (mg GAE/g) | % Inhibition of DPPH• | Tyrosinase % Inhibition | |||||
---|---|---|---|---|---|---|---|---|
200 μg/mL | 100 μg/mL | 50 μg/mL | 25 μg/mL | 12.5 μg/mL | 6.25 μg/mL | 300 µg/mL | ||
HN-M | 177.21 ± 2.35 | 94.58 ± 0.11 | 86.93 ± 2.45 | 59.40 ± 0.67 | 48.81 ± 1.58 | 19.66 ± 2.25 | 16.05 ± 0.97 | 42.72 ± 0.61 |
HO-M | 150.63 ± 4.72 | 93.96 ± 1.00 | 85.66 ± 4.38 | 57.11 ± 2.84 | 47.83 ± 2.25 | 15.84 ± 2.54 | 13.95 ± 1.23 | 8.46 ± 1.12 |
Gallic acid (2.6 μg/mL) | 53.56 ± 2.47 | |||||||
Kojic acid (2.0 μg/mL) | 52.84 ± 2.39 |
Sample/Standards | S. aureus | S. epidermidis | P. aeruginosa | K. pneumoniae | E. cloacae | E. coli | S. mutans | S. viridans | C. albicans | C. tropicalis | C. glabrata |
---|---|---|---|---|---|---|---|---|---|---|---|
HN-M | 0.10 | 0.08 | 0.75 | 0.82 | 0.93 | 0.78 | 0.12 | 0.07 | 0.67 | 0.70 | 0.79 |
HO-M | 0.12 | 0.10 | 0.72 | 0.97 | 1.00 | 0.80 | 0.15 | 0.12 | 0.70 | 0.77 | 0.90 |
Netilmicin | 3.5 × 10−3 | 4 × 10−3 | 8.5 × 10−3 | 7.7 × 10−3 | 7.5 × 10−3 | 9 × 10−3 | |||||
Sanguinarine | 0.017 | 0.013 | |||||||||
5-flucytocine | 0.12 × 10−3 | 1.2 × 10−3 | 10 × 10−3 | ||||||||
Amphotericin B | 1.5 × 10−3 | 0.7 × 10−3 | 0.25 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panou, E.; Graikou, K.; Tsafantakis, N.; Sakellarakis, F.-N.; Chinou, I. Phytochemical Profiling and Biological Activities of Two Helianthemum Species Growing in Greece. Sci. Pharm. 2024, 92, 42. https://doi.org/10.3390/scipharm92030042
Panou E, Graikou K, Tsafantakis N, Sakellarakis F-N, Chinou I. Phytochemical Profiling and Biological Activities of Two Helianthemum Species Growing in Greece. Scientia Pharmaceutica. 2024; 92(3):42. https://doi.org/10.3390/scipharm92030042
Chicago/Turabian StylePanou, Evgenia, Konstantia Graikou, Nikolaos Tsafantakis, Fanourios-Nikolaos Sakellarakis, and Ioanna Chinou. 2024. "Phytochemical Profiling and Biological Activities of Two Helianthemum Species Growing in Greece" Scientia Pharmaceutica 92, no. 3: 42. https://doi.org/10.3390/scipharm92030042